Абсцисса как найти примеры

Где абсцисс и ординат?

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо. Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек).

Почему называется ось абсцисс?

Оси декартовой системы Ось х имеет название оси абсцисс. Название это происходит от латинского «отрезок».

Что такое абсцисса функции?

Абсциссой (лат. abscissa — отрезок) точки A называется координата этой точки на оси X в прямоугольной системе координат (рис. 1).

Как найти ординату точки?

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки перпендикуляры на оси координат. Точка пересечения с осью «x» называется абсциссой точки «А», а с осью y называется ординатой точки «А».

Как выглядит прямоугольная система координат?

Прямоугольная система координат обозначается Oxy O x y . Координатными осями называют Ох и Оу , называемые соответственно ось абсцисс и ось ординат.

Что такое ордината простыми словами?

Ординатой (от лат. ordinatus — расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямоугольной системе координат. Величина ординаты точки A равна длине отрезка OC (см.

Что такое ось абсцисс простыми словами?

АБСЦИССА, в математике — расстояние от точки до оси у В ДЕКАРТОВОЙ СИСТЕМЕ КООРДИНАТ. Эта величина является х-координатой в паре (х, у), которая определяет местоположение точки на плоскости.

Что такое абсцисса пример?

Абсцисса (от лат. abscindere — отрезать) — отсеченная, одна из трех координат, определяющих положение точки в пространстве. Положим, в частности, что рассматриваемая точка M находится на плоской кривой AMB, отнесенной к двум осям ОХ в OY. АБСЦИССА ж.

Как записываются координаты функции?

Положительные абсциссы обычно располагаются на оси XX’ справа от начала координат; положительные ординаты – вверх по оси YY’ от начала координат. На рис. 1 видно: точка M имеет абсциссу x = 2 и ординату y = 3; точка K имеет абсциссу x = — 4 и ординату y = — 2.5. Это можно записать так: M ( 2, 3 ), K ( — 4, — 2.5 ).

Чему равны абсциссы точек лежащих на оси координат?

1) Все точки, лежащие на оси x (абсцисс) имеют равные нулю ординаты (y=0); 2) Все точки, лежащие на оси y (ординат) имеют равные нулю абсциссы (x=0);

Что значит найти абсциссу точки?

Абсциссой (лат. abscissa — отрезок) точки A называется координата этой точки на оси X’X в прямоугольной системе координат. Величина абсциссы точки A равна длине отрезка OB (см. рисунок).

Сколько координат имеет точка в декартовой системе координат?

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве — три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат — чисел в соответствии единице длины системы координат.

Сколько систем координат?

Горизонтальные системы координат отвечают за размещение объектов на поверхности Земли, а вертикальные определяют локализацию относительных высот и глубин объектов. Существует три типа горизонтальных систем координат – географические, системы координат проекции и местные.

Что такое оси ординат?

Ординатой (от лат. ordinatus — расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямоугольной системе координат. … В прямоугольной системе координат ось Y’Y называется «осью ординат». При построении графиков функций, ось ординат обычно используется как область значений функции.

Что такое ось абсцисс в математике?

АБСЦИССА, в математике — расстояние от точки до оси у В ДЕКАРТОВОЙ СИСТЕМЕ КООРДИНАТ. Эта величина является х-координатой в паре (х, у), которая определяет местоположение точки на плоскости.

Что называется ординатой точки?

Ординатой (от лат. ordinatus — расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямоугольной системе координат. Величина ординаты точки A равна длине отрезка OC (см.

Как правильно записать координаты точек?

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Координаты на плоскости:

Возьмем на плоскости две взаимно перпендикулярные прямые, пересекающиеся в точке Координаты на плоскости - определение и вычисление с примерами решения

Определение: Координатными осями на плоскости называются две взаимно перпендикулярные прямые, на которых установлены: 1) направления, 2) масштаб и 3) общая точка отсчета.

Координаты на плоскости - определение и вычисление с примерами решения

Назовем одну из осей осью Координаты на плоскости - определение и вычисление с примерами решения или осью абсцисс, другую—осью Координаты на плоскости - определение и вычисление с примерами решения или осью ординат. Точку их пересечения назовем началом координат.

Возьмем произвольную точку Координаты на плоскости - определение и вычисление с примерами решения, лежащую на плоскости, и опустим из нее перпендикуляры на оси координат, т. е. найдем ее проекции на оси. Обозначим проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения. Обозначим координату точки Координаты на плоскости - определение и вычисление с примерами решения (по оси Координаты на плоскости - определение и вычисление с примерами решения) через Координаты на плоскости - определение и вычисление с примерами решения, а координату точки Координаты на плоскости - определение и вычисление с примерами решения (по оси Координаты на плоскости - определение и вычисление с примерами решения) через Координаты на плоскости - определение и вычисление с примерами решения. Введем определение:

Определение. Абсциссой точки называется координата ее проекции на ось Координаты на плоскости - определение и вычисление с примерами решения. Ординатой точки называется координата ее проекции на ось Координаты на плоскости - определение и вычисление с примерами решения.

Абсциссу точки обычно обозначают буквой Координаты на плоскости - определение и вычисление с примерами решения, ординату— буквой Координаты на плоскости - определение и вычисление с примерами решения. Точку Координаты на плоскости - определение и вычисление с примерами решения, имеющую абсциссу Координаты на плоскости - определение и вычисление с примерами решения и ординату Координаты на плоскости - определение и вычисление с примерами решения, обозначают следующим образом: пишут скобку и в ней на первом месте ставят абсциссу, на втором ординату и разделяют эти два числа запятой или точкой с запятой. Таким образом, запись точки выглядит так: Координаты на плоскости - определение и вычисление с примерами решения.

Координатные оси разделяют плоскость на четыре части, которые называют четвертями.

Первой четвертью называется та часть плоскости, в которой абсцисса и ордината положительны.

Второй четвертью — та часть, в которой абсцисса отрицательна, а ордината положительна.

Третьей четвертью—та часть, в которой абсцисса и ордината отрицательны, и, наконец, четвертой,—та часть, в которой абсцисса положительна, а ордината отрицательна (рис. 7). На рис. 8 указаны Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения Заметим, что абсцисса Координаты на плоскости - определение и вычисление с примерами решения по абсолютной величине равна расстоянию точки от оси ординат, так как Координаты на плоскости - определение и вычисление с примерами решения (см. рис. 7), а ордината — расстоянию точки Координаты на плоскости - определение и вычисление с примерами решения от оси абсцисс, так как Координаты на плоскости - определение и вычисление с примерами решения.

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти точку Координаты на плоскости - определение и вычисление с примерами решения (рис. 9).

Решение:

Возьмем на оси Координаты на плоскости - определение и вычисление с примерами решения точку Координаты на плоскости - определение и вычисление с примерами решения с координатой Координаты на плоскости - определение и вычисление с примерами решения, ее координатный отрезок Координаты на плоскости - определение и вычисление с примерами решения. На оси Координаты на плоскости - определение и вычисление с примерами решения возьмем точку Координаты на плоскости - определение и вычисление с примерами решения с координатным отрезком Координаты на плоскости - определение и вычисление с примерами решения. Восставим перпендикуляры к осям из точек Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, точка их пересечения и даст искомую точку Координаты на плоскости - определение и вычисление с примерами решения.

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Иначе говоря, нужно найти длину отрезка Координаты на плоскости - определение и вычисление с примерами решения (рис. 10).

Решение:

Обозначим проекцию точки Координаты на плоскости - определение и вычисление с примерами решения на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а ее проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения— через Координаты на плоскости - определение и вычисление с примерами решения. Проекцию точки Координаты на плоскости - определение и вычисление с примерами решения на ось Координаты на плоскости - определение и вычисление с примерами решения обозначим через Координаты на плоскости - определение и вычисление с примерами решения и через Координаты на плоскости - определение и вычисление с примерами решения — ее проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения. Тогда Координаты на плоскости - определение и вычисление с примерами решения. Из точки Координаты на плоскости - определение и вычисление с примерами решения проведем прямую, параллельную оси Координаты на плоскости - определение и вычисление с примерами решения, до пересечения с прямой Координаты на плоскости - определение и вычисление с примерами решения в точке Координаты на плоскости - определение и вычисление с примерами решения. Рассмотрим треугольник Координаты на плоскости - определение и вычисление с примерами решения По теореме Пифагора имеем Координаты на плоскости - определение и вычисление с примерами решения. to Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решения, как противоположные стороны прямоугольников; кроме того, на основании формулы (3 из § 1) направленные отрезки Координаты на плоскости - определение и вычисление с примерами решения, и Координаты на плоскости - определение и вычисление с примерами решения будут равны Координаты на плоскости - определение и вычисление с примерами решения Подставляя полученные выражения в Координаты на плоскости - определение и вычисление с примерами решения, получим

Координаты на плоскости - определение и вычисление с примерами решения

откуда

Координаты на плоскости - определение и вычисление с примерами решения

т. е. расстояние между двумя точками равно корню квадратному из суммы квадратов разностей, координат.

Примечание. Расстояние между двумя точками, так же как длина отрезка, всегда положительно, поэтому в формуле (1) перед квадратным корнем берут только знак плюс.

Пример:

Найти расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

Решение:

Применяя формулу (1), получим

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти длину отрезка Координаты на плоскости - определение и вычисление с примерами решения, если даны Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

Решение:

Применяя формулу (1), получим

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти точку Координаты на плоскости - определение и вычисление с примерами решения, делящую отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении Координаты на плоскости - определение и вычисление с примерами решения, если известны координаты точек Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

Решение:

По условию задачи надо найти такую точку Координаты на плоскости - определение и вычисление с примерами решения, чтобы было выполнено равенство

Координаты на плоскости - определение и вычисление с примерами решения

Обозначим, как и выше, проекции точки Координаты на плоскости - определение и вычисление с примерами решения на оси через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, а проекции точки Координаты на плоскости - определение и вычисление с примерами решения—через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения; тогда Координаты на плоскости - определение и вычисление с примерами решения (рис. 11).

Кроме того, обозначим координаты искомой точки Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, а ее проекции на оси — через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, т. е. Координаты на плоскости - определение и вычисление с примерами решения

Так как прямые Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения параллельны между собой, то на основании теоремы о пропорциональных отрезках можно записать, что

Координаты на плоскости - определение и вычисление с примерами решения

Но Координаты на плоскости - определение и вычисление с примерами решения поэтому, подставляя в равенство Координаты на плоскости - определение и вычисление с примерами решения, будем иметь уравнение

Координаты на плоскости - определение и вычисление с примерами решения

решая которое найдем абсциссу точки Координаты на плоскости - определение и вычисление с примерами решения:

Координаты на плоскости - определение и вычисление с примерами решения

Рассуждая аналогично о проекциях на оси Координаты на плоскости - определение и вычисление с примерами решения, т.е. о точках Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, по- лучим ординату точки Координаты на плоскости - определение и вычисление с примерами решения, делящей отрезок в отношении Координаты на плоскости - определение и вычисление с примерами решения,

Координаты на плоскости - определение и вычисление с примерами решения

Итак, искомая точка Координаты на плоскости - определение и вычисление с примерами решения имеет координаты, определяемые равенствами (2) и (3).

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти точку, делящую в отношении 1:2 отрезок Координаты на плоскости - определение и вычисление с примерами решения, гдеКоординаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

Здесь Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения.

Решение:

Применяя формулы (2) и (3), получим:

Координаты на плоскости - определение и вычисление с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Найти точку, делящую расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения в отношении 3:1.

Здесь Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения.

Решение:

По формулам (2) и (3) находим:

Координаты на плоскости - определение и вычисление с примерами решения

Следствие (из формул (2) и (3)). Если точка Координаты на плоскости - определение и вычисление с примерами решения делит отрезок Координаты на плоскости - определение и вычисление с примерами решения пополам, то Координаты на плоскости - определение и вычисление с примерами решения, поэтому

Координаты на плоскости - определение и вычисление с примерами решения

т. е. абсцисса середины отрезка равна средней арифметической абсцисс его начала и конца; ордината середины отрезка равна средней арифметической ординат его начала и конца.

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Даны три вершины треугольника: Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Найти длину биссектрисы угла Координаты на плоскости - определение и вычисление с примерами решения (рис. 12).

Решение:

Найдем длины сторон Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Для этого применим формулу (1):

Координаты на плоскости - определение и вычисление с примерами решения

Обозначим точку пересечения биссектрисы угла Координаты на плоскости - определение и вычисление с примерами решения с противоположной стороной Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а ее координаты—через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Помня, что биссектриса внутреннего угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам, можно утверждать, что точка Координаты на плоскости - определение и вычисление с примерами решения делит отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении Координаты на плоскости - определение и вычисление с примерами решения; поэтому, применяя формулы (2) и (3), получим:

Координаты на плоскости - определение и вычисление с примерами решения

т.е. Координаты на плоскости - определение и вычисление с примерами решения (5,6).

Теперь вычисляем длину биссектрисы как расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения:

Координаты на плоскости - определение и вычисление с примерами решения

Пример:

Найти точку пересечения медиан треугольника, вершинами которого являются точки Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения (рис. 13).

Координаты на плоскости - определение и вычисление с примерами решения

Решение:

Точка пересечения медиан делит каждую из медиан в отношении 2:1, считая от вершины треугольника. Обозначим через Координаты на плоскости - определение и вычисление с примерами решения середину стороны Координаты на плоскости - определение и вычисление с примерами решения; по формулам (4) и (5) можно найти ее координаты:

Координаты на плоскости - определение и вычисление с примерами решения

т. е. Координаты на плоскости - определение и вычисление с примерами решения. Точка Координаты на плоскости - определение и вычисление с примерами решения пересечения медиан делит отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении 2:1, поэтому ее координаты найдутся по формулам (2) и (3):

Координаты на плоскости - определение и вычисление с примерами решения

Итак, искомая точка Координаты на плоскости - определение и вычисление с примерами решения Задача 5. Записать условие того, что точка Координаты на плоскости - определение и вычисление с примерами решения находится на расстоянии 5 от точки Координаты на плоскости - определение и вычисление с примерами решения. По формуле (1) имеем

Координаты на плоскости - определение и вычисление с примерами решения

или, возводя обе части равенства в квадрат, получим

Координаты на плоскости - определение и вычисление с примерами решения

Это равенство есть уравнение с двумя неизвестными Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Этому уравнению удовлетворяют координаты любой точки, лежащей на расстоянии 5 от точки Координаты на плоскости - определение и вычисление с примерами решения. Иначе говоря, ему удовлетворяют координаты любой точки, принадлежащей геометрическому месту точек, расстояние которых от точки Координаты на плоскости - определение и вычисление с примерами решения равно 5. Это геометрическое место есть окружность.

Следовательно, можно сказать, что уравнение Координаты на плоскости - определение и вычисление с примерами решения есть уравнение окружности с центром в точке Координаты на плоскости - определение и вычисление с примерами решения и радиуса 5.

В следующих главах будут рассмотрены уравнения с двумя неизвестными Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения и те линии (геометрические места), точки которых имеют координаты, удовлетворяющие этим уравнениям.

  • Линейная функция
  • Квадратичная функция
  • Тригонометрические функции
  • Производные тригонометрических функции
  • Уравнение линии
  • Функции нескольких переменных
  • Комплексные числ
  • Координаты на прямой

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Как найти координаты точки

Поддержать сайтспасибо

Каждой точке координатной плоскости соответствуют две координаты.

Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором
ордината точки.

Найти координаты точки

Рассмотрим как в системе координат (на координатной плоскости):

  • находить координаты точки;
  • найти положение точки.

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.

Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».

Координаты точки плоскости

Обозначают координаты точки, как указано выше (·) A (2; 3).

Пример (·) A (2; 3) и (·) B (3; 2).

Точки с разными координатами

Запомните!
!

На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.

Особые случаи расположения точек

  1. Если точка лежит на оси «Oy»,
    то её абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси «Ox», то её ордината равна 0.
    Например,
    точка F (3, 0).
  3. Начало координат — точка O имеет координаты, равные нулю O (0,0).
    Точки на координатный осях
  4. Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
    Точки на прямой перпендикулярной оси абсцисс
  5. Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
    Точка на оси абсцисс
  6. Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
    Точка на оси абсцисс
  7. Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
    Точка на оси ординат

Как найти положение точки по её координатам

Найти точку в системе координат можно двумя способами.

Первый способ

Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:

  1. Отметить на оси «Ox», точку с координатой
    «−4», и провести через неё прямую перпендикулярную оси «Ox».
  2. Отметить на оси «Oy»,
    точку с координатой 2, и провести через неё прямую перпендикулярную
    оси «Oy».
  3. Точка пересечения перпендикуляров (·) D — искомая точка.
    У неё абсцисса равна «−4», а ордината равна 2.

    Как найти точку в системе координат

Второй способ

Чтобы найти точку D (−4 , 2) надо:

  1. Сместиться по оси «x» влево на
    4 единицы, так как у нас
    перед 4
    стоит «».
  2. Подняться из этой точки параллельно оси y вверх на 2 единицы, так
    как у нас перед 2 стоит «+».
    Как найти точку на координатной плоскости

Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Прямоугольная система координат. Ось абсцисс и ординат

О чем эта статья:

Прямоугольная декартова система координат

Французский математик Рене Декарт предложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.

Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;

Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Координаты точки в декартовой системе координат

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.

Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.

Число xM — это координата точки М на заданной координатной прямой.

Пусть точка будет проекцией точки Mx на Ох, а My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на ОуyM. Как это выглядит на координатных осях:

Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.

Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.

Как найти абсциссу точки окружности

Как найти координаты точки?

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

Декартовы координаты точек плоскости. Уравнение окружности

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

9 класс. Геометрия. Метод координат. Уравнение окружности.

9 класс. Геометрия. Метод координат. Уравнение окружности.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Решение задач

Вы­яс­ни­те, какие из дан­ных урав­не­ний яв­ля­ют­ся урав­не­ни­я­ми окруж­но­сти.

Най­ди­те ко­ор­ди­на­ты цен­тра и ра­ди­ус каж­дой окруж­но­сти.

а)

б)

в)

г) ;

д)

Рас­смот­рим каж­дое урав­не­ние в от­дель­но­сти.

а) – окруж­ность,

б) – окруж­ность,

в)
Вы­де­лим пол­ный квад­рат:

урав­не­ние не яв­ля­ет­ся урав­не­ни­ем окруж­но­сти.

г) .
Вы­де­лим пол­ный квад­рат:
– окруж­ность,

д)
Вы­де­лим пол­ный квад­рат:
– окруж­ность,

На окруж­но­сти, за­дан­ной урав­не­ни­ем , най­ди­те точки

а) с абс­цис­сой –4; б) с ор­ди­на­той 3.

Ре­ше­ние: по­стро­им окруж­ность с цен­тром (0;0) ра­ди­у­са 5 (рис. 1).

Рис. 1. Ил­лю­стра­ция к за­да­че

а) Ко­ор­ди­на­ты точек окруж­но­сти с абс­цис­сой –4 яв­ля­ют­ся ре­ше­ни­я­ми си­сте­мы:

По­лу­ча­ем точку и точку

Рис. 2. Ил­лю­стра­ция к за­да­че

б) Ко­ор­ди­на­ты точек окруж­но­сти с ор­ди­на­той 3 яв­ля­ют­ся ре­ше­ни­я­ми си­сте­мы:

Рис. 3. Ил­лю­стра­ция к за­да­че

По­лу­ча­ем точку и ту же самую точку

Ответ: .

За­пи­ши­те урав­не­ние окруж­но­сти ра­ди­у­са r с цен­тром в точке А, если

а)

б)

в)

г)

а) Окруж­ность
Ответ:

б) Окруж­ность .
Ответ:

в) Окруж­ность
Ответ:

г) Окруж­ность
Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти с цен­тром в на­ча­ле ко­ор­ди­нат, про­хо­дя­щей через точку

Рис. 4. Ил­лю­стра­ция к за­да­че

Най­дем ра­ди­ус, как рас­сто­я­ние ОВ:

За­пи­шем урав­не­ние окруж­но­сти с цен­тром О(0;0):

Для кон­тро­ля про­ве­рим, удо­вле­тво­ря­ют ли по­лу­чен­но­му урав­не­нию ко­ор­ди­на­ты точки В:

зна­чит, точка В лежит на окруж­но­сти.

Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти, про­хо­дя­щей через точку А(1;3), если из­вест­но, что центр окруж­но­сти лежит на оси абс­цисс, а ра­ди­ус равен 5.

Сколь­ко су­ще­ству­ет таких окруж­но­стей?

Дано: А(1;3) – точка окруж­но­сти,

Найти: урав­не­ние окруж­но­сти (С; r=5).

Ре­ше­ние: центр ис­ко­мой окруж­но­сти уда­лен от точки А(1;3) на рас­сто­я­ние 5, зна­чит, он лежит на окруж­но­сти с цен­тром в точке А(1;3) ра­ди­у­са 5, но он еще лежит и на оси Ох. По­стро­им окруж­ность (А(1;3); r=5) (рис. 5).

Рис. 5. Ил­лю­стра­ция к за­да­че

Точек, удо­вле­тво­ря­ю­щих нашим усло­ви­ям, на оси Ох две:

Для опре­де­ле­ния ко­ор­ди­нат этих точек со­ста­вим си­сте­му:

За­пи­шем урав­не­ния ис­ко­мых окруж­но­стей:

окруж­ность (

окруж­ность ( и по­стро­им эти окруж­но­сти (рис. 6):

Рис. 6. Ил­лю­стра­ция к за­да­че

Ответ: две окруж­но­сти.

На­пи­ши­те урав­не­ние окруж­но­сти, про­хо­дя­щей через две за­дан­ные точки и В(0;9), если из­вест­но, что центр окруж­но­сти лежит на оси ор­ди­нат.

Дано: окруж­но­сти ;

oкруж­но­сти .

за­пи­сать урав­не­ние окруж­но­сти.

Рис. 7. Ил­лю­стра­ция к за­да­че

За­пи­шем урав­не­ние окруж­но­сти так как окруж­ность про­хо­дит через точки А и В, то их ко­ор­ди­на­ты удо­вле­тво­ря­ют урав­не­нию окруж­но­сти:

Под­ста­вим най­ден­ные зна­че­ния в урав­не­ние.

Ответ:

На­пи­ши­те урав­не­ние окруж­но­сти с цен­тром в точке А(6;0), про­хо­дя­щей через точку В(-3;2).

Дано: А(6;0) – центр,

окруж­но­сти.

Найти: урав­не­ние окруж­но­сти.

Рис. 8. Ил­лю­стра­ция к за­да­че

На­хо­дим ра­ди­ус как рас­сто­я­ние АВ:

За­пи­шем урав­не­ние окруж­но­сти:

Ответ:

Заключение

Итак, мы рас­смот­ре­ли серию задач по теме «Окруж­ность» и в каж­дой за­да­че ис­поль­зо­ва­ли урав­не­ние окруж­но­сти.

На сле­ду­ю­щем уроке мы вы­ве­дем урав­не­ние пря­мой.

Как найти абсциссу и ординату точки на числовой окружности

Единичной окружностью называют окружность радиуса 1.

Числовая окружность — это единичная окружность, точки которой соответствуют определенным действительным числам.

Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки. Отсчет от точки А против часовой стрелки называется положительным направлением. Отсчет от точки А по часовой стрелке называется отрицательным направлением.

Центр радиуса числовой окружности соответствует началу координат (числу 0). Горизонтальный диаметр соответствует оси x, вертикальный — оси y. Начальная точка А числовой окружности находится на оси x и имеет координаты (1; 0).

Любая точка числовой окружности с координатами (x; y) не может быть меньше -1, но не может быть больше 1:  ; 

Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности. Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2П) против часовой стрелки.

1) Начнем с крайних точек на осях координат. Начальная точка — это 2П (крайняя правая точка на оси х, равная 1). Как вы знаете, 2П — это длина окружности. Значит, половина окружности — это 1П или П. Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х, равная -1, называется П. Крайняя верхняя точка на оси у, равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность — это П, то половина полуокружности — это П/2. Одновременно П/2 — это и четверть окружности. Отсчитаем три таких четверти от первой до третьей — и мы придем в крайнюю нижнюю точку на оси у, равной -1. Но если она включает три четверти — значит имя ей 3П/2.

Определение. Если точка М числовой окружности соответствует числу t, то абсциссу точки М называют косинусом числа t и обозначают соs t, а ординату точки М называют синусом числа t и обозначают sin t.
Если М(t) = М(х;у), то х = cost, у = sint.

Определение. Отношение синуса числа t к косинусу того же числа называют тангенсом числа t. Отношение косинуса числа t к синусу того же числа называют котангенсом числа t.

источники:

http://b4.cooksy.ru/articles/kak-nayti-abstsissu-tochki-okruzhnosti

http://matematika-ru.1gb.ru/9.html

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.

Координаты на прямой

Если на прямой задано направление, то такую прямую называют направленной, а выбранное направление — положительным. Например, на горизонтальной прямой можно отметить направление вправо, тогда будем говорить, что направленная прямая имеет положительное направление вправо. Можно с таким же правом считать положительным и направление влево. Направление прямой будем указывать стрелкой (рис. 1).

Координаты

Выберем на направленной прямой точку, которую назовем началом отсчета или началом координат, и будем обозначать ее буквой О.

Кроме того, выберем отрезок, длину которого будем считать единицей длины. Этот отрезок назовем единицей масштаба.

Определение:

Прямая линия, на которой указаны: начало отсчета, единица масштаба и направление отсчета, называется осью координат.

Рассмотрим отрезок, расположенный на оси координат. Если одну из точек, ограничивающих отрезок, назовем началом отрезка, а другую—его концом, то отрезок будем называть направленным отрезком. Направленный отрезок обозначают двумя буквами, например: АВ, СМ, КР, причем на первом месте ставят букву, обозначающую начало, на втором—букву, обозначающую конец. Таким образом, запись АВ показывает, что начало отрезка есть точка А, а конец — точка В. Направление отрезка считается от начала к концу.

Если направление отрезка совпадает с направлением оси, то отрезок называют положительно направленным; если же его направление противоположно направлению оси, то — отрицательно направленным. Таким образом, отрезки АВ и ВА имеют противоположные направления. Это записывают так:

Координаты

Отметим, что положительный отрезок может находиться в любом месте координатной оси, только его направление должно совпадать с направлением оси.

Сложение направленных отрезков производится по следующему правилу:

Для того чтобы сложить два направленных отрезка, нужно к концу первого приложить начало второго; тогда отрезок, имеющий началом начало первого отрезка и концом конец второго, называют суммой двух направленных отрезков.

Из этого определения вытекает, что сумма отрезков АВ и ВС равна отрезку АС при любом расположении точек А, В, С, т. е. всегда:

Координаты

(рис. 2 и 3).

Координаты

Координатным отрезком точки А называется направленный отрезок, имеющий начало в точке О (т. е. в начале координат), а концом — рассматриваемую точку А.

Всякий направленный отрезок, лежащий на оси, можно выразить через координатные отрезки его начала и конца. В самом деле, рассмотрим направленный отрезок АВ. На основании равенства (2) можно написать

Координаты

(здесь вместо точки В поставлена точка О, а вместо точки С точка В) или

Координаты

Отрезок ОВ есть координатный отрезок (его начало есть точка О), но отрезок АО не является координатным, поскольку его начало не является началом координат. Но в силу равенства (1)

Координаты

поэтому можно написать

Координаты

Получен следующий результат:

Направленный отрезок равен разности координатного отрезка его конца и координатного отрезка его начала.

Это верно для любого отрезка, лежащего на координатной оси.

Теперь дадим одно из самых важных определений: Координатой точки на координатной оси называется число, равное по абсолютной величине длине координатного отрезка этой точки и по знаку совпадающее со знаком координатного отрезка.

Точку А, имеющую координатной число х, будем обозначать А (х).

Координаты

Указанные на рис. 4 точки имеют следующие координаты:

Координаты

Будем также писать

Координаты

Если даны точки А(х1) и В(х2), то на основании формул (3) и (4) получим

Координаты

т. е. направленный отрезок равен разности координат его конца и начала.

Отсюда сразу получаем, что длина отрезка равна абсолютной величине разности координат его конца и начала.

Длину отрезка будем обозначать, пользуясь знаком | |, т. е. знаком абсолютной величины. Таким образом, длина отрезка АВ будет записываться так:

Координаты

Пример:

Если даны точки А (+4), В (+8), то отрезок АВ = (+8) — (+4), а его длина |АВ|= |+ 4 | = 4.

Если даны точки М (+5) и Р (+3), то отрезок МР = (+3)—(+5) = —2, а его длина |МР| = | —2| = 2. Даны две точки: Q (+ 3) и S (—4). Длина отрезка

Координаты

Даны две точки R (— 6) и Т (—2); отрезок = ( — 2) — (—6) = +4, а его длина | | = 4.

Пример:

Начало отрезка АВ находится в точке А (—950), а конец—в точке В ( —1200); найти его направление и длину.

Отрезок АВ = ( — 1200)—( — 950) = —250. Так как он

получился отрицательным, то его направление противоположно направлению оси. Его длина равна | АВ | = | —250 | = 250.

Задача:

На координатной оси даны две точки: A (x1) и В (x2) Найти точку С, лежащую между ними и делящую отрезок АВ в отношении т : п.

Чтобы найти точку, надо найти ее координату. По условию задачи должно быть

Координаты

Обозначая координату искомой точки С через х и выражая отрезки через координаты, т. е. применяя формулу (5), получим, что АС = х—х1, СВ = х2 — х. Подставляя эти выражения в равенство (6), будем иметь

Координаты

Решая последнее уравнение относительно х, найдем:

Координаты

Это и есть координата искомой точки.

Пример:

Найти точку С, делящую отрезок АВ в отношении 1:2, если даны начало отрезка А (+ 3) и конец В ( + 5) (рис. 5).

Координаты

Здесь т = 1, п = 2, х1=-3, х2 = 5. Применяя формулу (7), получим

Координаты

Пример:

Найти точку М, делящую расстояние между точками Р ( — 2) и Q (—9) в отношении 3:4 (рис. 5). Здесь т = 3, п = 4, х1 = —2, х2 = —9. По формуле (7) находим

Координаты

Если т = n т. е. точка С делит отрезок АВ пополам, тогда формула (7) перепишется так:

Координаты

Таким образом, координата точки, делящей отрезок пополам, равна средней арифметической координат его начала и конца.

Координаты

Пример:

Найдем середину отрезка, заключенного между точками А (—6) и B (4) (рис. 6).

Применяя формулу (8), получим, что

Координаты

Координаты на плоскости

Возьмем на плоскости две взаимно перпендикулярные прямые, пересекающиеся в точке О. На каждой из этих прямых зададим направление, указав его стрелкой (рис. 7).

Координаты

Установим масштаб, общий для обеих прямых, а за начало отсчета выберем точку О.

Определение:

Координатными осями на плоскости называются две взаимно перпендикулярные прямые, на которых установлены: 1) на-правления, 2) масштаб и 3) общая точка отсчета.

Назовем одну из осей осью Ох или осью абсцисс, другую — осью Оу или осью ординат. Точку их пересечения назовем началом координат.

Возьмем произвольную точку M, лежащую на плоскости, и опустим из нее перпендикуляры на оси координат, т. е. найдем ее проекции на оси. Обозначим проекцию на ось Ох через А, а проекцию на ось Оу через В. Обозначим координату точки А (по оси Ох) через х, а координату точки В (по оси Оу) через у. Введем определение:

Определение:

Абсциссой точки называется координата ее проекции на ось Ох. Ординатой точки называется координата ее проекции на ось Оу.

Абсциссу точки обычно обозначают буквой х, ординату— буквой у. Точку М, имеющую абсциссу х и ординату у, обозначают следующим образом: пишут скобку и в ней на первом месте ставят абсциссу, на втором ординату и разделяют эти два числа запятой или точкой с запятой. Таким образом, запись точки выглядит так: М(х, у).

Координатные оси разделяют плоскость на четыре части, которые называют четвертями.

Первой четвертью называется та часть плоскости, в которой абсцисса и ордината положительны.

Второй четвертью — та часть, в которой абсцисса отрицательна, а ордината положительна.

Третьей четвертью — та часть, в которой абсцисса и ордината отрицательны, и, наконец, четвертой, — та часть, в которой абсцисса положительна, а ордината отрицательна (рис. 7), На рис. 8 указаны точки M1 (5, 2), М2 ( — 1, 1), М3 (-1, -3), М4 (2, -3). Заметим, что абсцисса х = ОА по абсолютной величине равна расстоянию точки от оси ординат, так как ОА = ВМ (см. рис. 7), а ордината — расстоянию точки М от оси абсцисс, так как ОВ = АМ.

Координаты

Пример:

Найти точку Р( — 4, 2) (рис. 9), Возьмем на оси Ох точку А с координатой —4, ее координатный отрезок ОА = —4. На оси Оу возьмем точку В с координатным отрезком ОВ= 2. Восставим перпендикуляры к осям из точек А и В, точка их пересечения и даст искомую точку Р.

Координаты

Задача:

Найти расстояние между точками Р (х1, у1) и Q( х1, у1 ). Иначе говоря, нужно найти длину отрезка РQ(рис. 10).

Обозначим проекцию точки Р на ось Ох через А1, а ее проекцию на ось Оу — через В1. Проекцию точки Q на ось Ох обозначим через А2 и через В2— ее проекцию на ось Oy. Тогда ОА1 = х1, ОВ1 = y1, ОА2 = х2, ОВ2 = у2. Из точки Р проведем прямую, параллельную оси Ох, до пересечения с прямой A2Q в точке К. Рассмотрим треугольник PKQ. По теореме Пифагора имеем

Координаты

Но РК = А1А2, KQ = B1B2, как противоположные стороны прямоугольников; кроме того, на основании формулы (3 из § 1) направленные отрезки А1А2 и В1В2 будут равны

Координаты

Подставляя полученные выражения в (*), получим

Координаты

откуда

Координаты

т. е. расстояние между двумя точками равно корню квадратному из суммы квадратов разностей координат.

Примечание:

Расстояние между двумя точками, так же как длина отрезка, всегда положительно, поэтому в формуле (1) перед квадратным корнем берут только знак плюс.

Пример:

Найти расстояние между точками Р (— 2, — 1) и Q (2, 2). Применяя формулу (1), получим

Координаты

Пример:

Найти длину отрезка MN, если даны М (8, 2) и N(2, 10). Применяя формулу (1), получим

Координаты

Задача:

Найти точку С, делящую отрезок PQ в отношении т : п, если известны координаты точек Р (х1, у1) и Q (х2, у2). По условию задачи надо найти такую точку С, чтобы было выполнено равенство

Координаты

Решение:

Обозначим, как и выше, проекции точки Р на оси через А1 и В1, а проекции точки Q—через А2 и В2; тогда ОА1 = х1 , OB1 = y1, ОА2 =х2, ОВ2=у2 (рис. 11). Кроме того, обозначим координаты искомой точки С через х и у, а ее проекции на оси — через А и В, т. е. ОА = х, ОВ = у.

Так как прямые А1Р, АС и А2Q параллельны между собой, то на основании теоремы о пропорциональных отрезках можно записать, что

Координаты

Но А1А = ОА — ОА1 = х—х1, АА2 = ОА2 — ОА = х2—х; поэтому, подставляя в равенство (*), будем иметь уравнение

Координаты

решая которое найдем абсциссу точки С:

Координаты

Рассуждая аналогично о проекциях на ось Оу, т. е. о точках В1, В и В2, получим ординату точки С, делящей отрезок в отношении т : п,

Координаты

Итак, искомая точка С имеет координаты, определяемые равенствами (2) и (3).

Пример:

Найти точку, делящую в отношении 1:2 отрезок PQ, где Р (4, —3) и Q (8, 0). Здесь х1 = 4, у1 = — 3, х2 = 8, у2 = 0, т = 1, п = 2. Применяя формулы (2) и (3), получим:

Координаты

Пример:

Найти точку, делящую расстояние между точками А (4, 2) и B (8, 10) в отношении 3 : 1. Здесь х1=-4, у1 = 2, х2 = 8, у2= 10, т = 3, п = 1. По формулам (2) и (3) находим:

Координаты

Следствие (из формул (2) и (3)). Если точка С делит отрезок РQ пополам, то т = n, поэтому

Координаты

т. е. абсцисса середины отрезка равна средней арифметической абсцисс его начала и конца; ордината середины отрезка равна средней арифметической ординат его начала и конца.

Задача:

Даны три вершины треугольника: А (7, 0), В (4, 4) и С (7, 10). Найти длину биссектрисы угла A (рис. 12).

Координаты

Найдем длины сторон АВ и АС. Для этого применим формулу (1):

Координаты

Обозначим точку пересечения биссектрисы угла А с противоположной стороной ВС через М, а ее координаты—через х и у. Помня, что биссектриса внутреннего угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам, можно утверждать, что точка М делит отрезок ВС в отношении 5 : 10 = Координаты; поэтому, применяя формулы (2) и (3), получим:

Координаты

т. е. М (5, 6).

Теперь вычисляем длину биссектрисы между точками А(7, 0) и М(5, 6):

Координаты

Задача:

Найти точку пересечения медиан треугольника, вершинами которого являются точки А(4, 6), В(—8, 10), С( —2, —6) (рис. 13).

Координаты

Точка пересечения медиан делит каждую из медиан в отношении 2:1, считая от вершины треугольника. Обозначим через М середину стороны АС; по формулам (4) и (5) можно найти ее координаты:

Координаты

т. е. М(19 0). Точка Р пересечения медиан делит отрезок ВМ в отношении 2:1, поэтому ее координаты найдутся по формулам (2)

и (3):

Координаты

Итак, искомая точка

Координаты

Задача:

Записать условие того, что точка М (х, у) находится на расстоянии По формуле (1) имеем

Координаты

или, возводя обе части равенства в квадрат, получим

Координаты

Это равенство есть уравнение с двумя неизвестными х и у. Этому уравнению удовлетворяют координаты любой точки, лежащей на расстоянии 5 от точки С. Иначе говоря, ему удовлетворяют координаты любой точки, принадлежащей геометрическому месту точек, расстояние которых от точки С равно 5. Это геометрическое место есть окружность.

Следовательно, можно сказать, что уравнение (*) есть уравнение окружности с центром в точке С и радиуса 5.

В следующих главах будут рассмотрены уравнения с двумя неизвестными х и у и те линии (геометрические места), точки которых имеют координаты, удовлетворяющие этим уравнениям.

Числовая ось

Числовой осью называют направленную прямую, на которой указывается начальная точка О и задается некоторый «эталон» длины Е. Каждой точке Системы координат этой прямой отвечает вещественное число, равное длине отрезка Системы координат если Системы координат расположено правее точки О, и равное этой

Системы координат

длине со знаком минус — в противном случае (см. рис. 1 а). Числовую ось будем обозначать Системы координат (смысл этого обозначения прояснится ниже).

Указанное соответствие между точками числовой оси Системы координат и множеством вещественных чисел Системы координат является взаимно однозначным, т. е. каждой точке Системы координатсоответствует единственное число Системы координат, обратно, каждому числу Системы координат соответствует единственная точка Системы координат Таким образом, множество Системы координат. вещественных чисел можно отождествлять с числовой осью Системы координат, чем мы будем впредь постоянно пользоваться.

Декартова система координат

Декартовой (прямоугольной) системой координат на плоскости называют две взаимно перпендикулярные числовые оси Системы координати Системы координат, имеющие общее начало О и одинаковые единицы масштаба (см. рис. 1 б). Ось Системы координат называют осью абсцисс, а ось Системы координатосью ординат. Плоскость Системы координат называют координатной плоскостью и обозначают Системы координат

Пусть М — произвольная точка координатной плоскости. Опустим из нее перпендикуляры МА и МВ на оси Системы координат и Системы координат соответственно. Декартовыми координатами точки М называют числа, которым соответствуют точки А к В. Например, точка Системы координат имеет декартовы координаты Системы координат что записывается в виде Системы координатТочка О имеет координаты (0,0).

Полярная система координат

В плоскости зададим луч Системы координат — полярную ось, выходящий из точки О — полюса полярной системы координат (см. рис. 2 а). Произвольная точка М плоскости определяется парой чисел Системы координат называемой ее полярными координатами, где р — длина отрезка ОМ, а Системы координат — выраженный в радианах угол между ОМ и осью Системы координат. Угол в считается положительным, если откладывается против часовой стрелки, и отрицательным в противоположном случае. Точка О имеет полярные координаты Системы координат где Системы координат — любой угол.

Системы координат

Полярные и декартовы координаты, заданные на одной плоскости (см. рис. 2 6), связаны очевидными равенствами:

Системы координат
Системы координат

Полярные координаты удобны для задания многих кривых. Например, уравнение р=2 описывает окружность, изображенную на рис. За. Уравнение Системы координатописывает спираль Архимеда (рис . Уравнение Системы координат описывает окружность с диаметром 1 и с центром в точке Системы координат(рис. Зв).

Системы координат в пространстве

Декартова система координат в пространстве определяется тремя взаимно перпендикулярными осями Системы координат, Системы координат и Системы координат , называемыми соответственно осями абсцисс, ординат и аппликат (см. рис. 4 а). Проcтранство Системы координат обозначают Системы координат. Положение точки М в Системы координатопределяется тройкой чисел Системы координат

Системы координат

Аналогами полярной системы координат в пространстве служат цилиндрическая и сферическая системы координат.

Цилиндрическая система координат (рис. 4 б) представляет собой объединение полярной системы координат в плоскости Системы координат с аппликатой z:

Системы координат

где Системы координат

Сферическая система координат (рис. 4 в) связана с декартовой системой равенствами

Системы координат

где Системы координат

Пространство

Пространство Системы координат

На плоскости и в пространстве положение точки в декартовых координатах полностью определяется соответственно, парой и тройкой чисел вида [Системы координат) и (x,y,z). Желая обобщить эти геометрические подходы, в анализе вводят понятие пространства Системы координат

Упорядоченную систему из Системы координат вещественных чисел Системы координат называют Системы координат-мерной точкой, а множество всех Системы координат-мерных точек называют Системы координатмерным пространством Системы координат или короче — пространством Системы координат.

Понятие пространства Системы координат естественно дополнить понятиями основных операций над его элементами. По определению полагают

Системы координат

Наконец, обобщая известную из аналитической геометрии формулу, определяют расстояние между двумя точками Системы координат и Системы координат

Системы координат

Прямую, плоскость и пространство можно рассматривать как пространства Системы координат, Системы координати Системы координат соответственно. Ниже это будет практиковаться постоянно.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторная алгебра
  128. Векторный анализ
  129. Векторы
  130. Скалярное произведение векторов
  131. Векторное произведение векторов
  132. Смешанное произведение векторов
  133. Операции над векторами
  134. Непрерывность функций
  135. Предел и непрерывность функций нескольких переменных
  136. Предел и непрерывность функции одной переменной
  137. Производные и дифференциалы функции одной переменной
  138. Частные производные и дифференцируемость функций нескольких переменных
  139. Дифференциальное исчисление функции одной переменной
  140. Матрицы
  141. Линейные и евклидовы пространства
  142. Линейные отображения
  143. Дифференциальные теоремы о среднем
  144. Теория устойчивости дифференциальных уравнений
  145. Функции комплексного переменного
  146. Преобразование Лапласа
  147. Теории поля
  148. Операционное исчисление
  149. Системы координат
  150. Рациональная функция
  151. Интегральное исчисление
  152. Интегральное исчисление функций одной переменной
  153. Дифференциальное исчисление функций нескольких переменных
  154. Отношение в математике
  155. Математическая логика
  156. Графы в математике
  157. Линейные пространства
  158. Первообразная и неопределенный интеграл
  159. Линейная функция
  160. Выпуклые множества точек

Понравилась статья? Поделить с друзьями:
  • Гидра как найти закладку
  • Как найти угол бета косинус
  • Океанариум в москве как его найти
  • Как исправить ошибку 0хс00000е9
  • Как исправить в яндекс картах свой дом