Абсолютная погрешность весов как найти

ЛАБОРАТОРНАЯ РАБОТА 2

Прямые измерения
массы тела с помощью рычажных весов и определение полной погрешности измерений

Цель работы:
измерить массы трёх предложенных тел прямым способом и рассчитать полную погрешность
результатов прямых  измерений.

Оборудование: три тела разной плотности, рычажные весы, разновес (набор гирь)

ТАОРЕТИЧЕСКИЕ СВЕДЕНИЯ

При определении 
полной погрешности  измеренного значения массы необходимо учитывать погрешность
весов
, погрешность гирь
, и погрешность подбора гирь
.

  
Погрешность весов
зависит от нагрузки линейно и
определяется по графику зависимости . Смотрите об этом §
75 учебника «физика-10» Пинский А.А
. Вам необходимо построить такой график
самостоятельно в отчёте по следующим данным: при нагрузке  погрешность весов ,
а при нагрузке  ­­­­погрешность весов (см.§ 75). Зная, что зависимость линейная, построение графика не составит
никакого труда.

  
Погрешность гирь
,
входящих в набор гирь (разновес) приводится в таблице 1. Смотрите также 
§ 75 учебника «физика-10» Пинский А.А.

Таблица 1 Погрешность гирь

НОМИНАЛЬНОЕ
ЗНАЧЕНИЕ МАССЫ ГИРИ

ГРАНИЦЫ
ПОГРЕШНОСТИ

10
мг; 20 мг; 50 мг; 100 мг

1 мг

200
мг

2 мг

500
мг

3 мг

4 мг

6 мг

5 г

8 мг

10 г

12 мг

20 г

20 мг

50 г

30 мг

100 г

40 мг

Погрешность гирь
равна сумме погрешностей всех использованных гирь (формула 1)

 (1)

Погрешность подбора гирь  аналогична погрешности отсчёта и половине
значения наименьшей гири, находящейся на весах, или той, которая выводит весы
из равновесия (формула 2)

 (2)

Таким образом, при прямом измерении массы тела
на весах граница абсолютной погрешности измерений (формула 3)

 (3)

Ниже смотрите пример определения полной
погрешности массы тела, измеренной прямым способом на рычажных весах.

Пример определения полной погрешности
массы тела

Пусть весы
находятся в равновесии, если на чашке лежат гири со значениями массы: , , . Тогда за результат измерения массы тела
принимается значение

  (4)

Погрешность
весов
при нагрузке равна  . Как было сказано выше, это определяется
по графику зависимости , который уже
необходимо построить.

Таким образом:

 (5)

Погрешность
всех гирь
определим,  пользуясь таблицей 1,
(см. формулу 1):

 (6)

Погрешность
подбора гирь
определяем  по значению наименьшей
гири на весах (см. формулу 2)

 (7)

Полная
погрешность массы тела
определяется как сумма всех
погрешностей (см. формулу 3)

 (8)

Полная погрешность
округляется до одной значащей цифры (общее правило для любых измерений), поэтому
в нашем примере для погрешности получаем окончательно:

 (9)

Результат измерения
массы записывается в интервальной форме:

       

Не забывайте, что
разряд последней цифры измеренного значения и разряд погрешности должны совпадать
(правило Брадиса-Крылова), поэтому в данном примере измеренное значение массы (см. формулу 4) округляется до разряда
десятых, т.к. погрешность находится в этом разряде (см. формулу 9)

Относительная
погрешность
измерения массы определяется по
известной формуле:

ПРАКТИЧЕСКАЯ
ЧАСТЬ РАБОТЫ

ВНИМАНИЕ! Прежде
чем приступать к работе, вам необходимо изучить правила работы с весами. Обратитесь
к учебникам 7-го класса (Пёрышкин А.В. или Громов С.В.) и 10-го (Пинский А.А.).
Без знаний этих правил вас не допустят к работе.

Порядок
выполнения работы

  1. Определите массу
    первого тела.
    Запишите значение массы в виде суммы масс всех гирь
    находящихся на весах. Смотрите пример выше.

(результат в граммах)

  1. Постройте график
    зависимости погрешности весов от нагрузки (смотрите теоретическую часть
    работы) и по графику определите погрешность весов

(результат в миллиграммах)

  1. Пользуясь таблицей
    1
    , определите погрешность всех гирь

(результат в миллиграммах)

  1. По значению наименьшей гири на весах (не в
    наборе) определите погрешность подбора гирь

= (результат в миллиграммах)

  1. Полная
    погрешность определяется как сумма всех погрешностей

= (результат выразите в граммах и
округлите до одной значащей цифры)

  1. Округлите
    результат измерения массы (см. пункт 1 практической части) так, чтобы
    последняя цифра в округлённом результате принадлежала тому же разряду, в
    котором находится значащая цифра полной абсолютной  погрешности (пункт 2).
  1. Результат
    запишите в интервальной форме в соответствии с правилом Брадиса-Крылова

  1. Определите относительную погрешность
    измерения массы

ПОВТОРИТЬ ИЗМЕРЕНИЯ
В СООТВЕТСТВИИ С ПУНКТАМИ 1-8 ДЛЯ ДВУХ ДРУГИХ ТЕЛ

ВСЕ ЗАПИСИ И
РАСЧЁТЫ ВЫПОЛНЯТЬ В ЛАБОРАТОРНАОЙ ТЕТРАДИ 

ОТЧЁТ К РАБОТЕ ПОДГОТОВИТЬ
ПО ПЕРДЛАГАЕМОЙ ФОРМЕ (СМ.НИЖЕ)

ОТЧЁТ К РАБОТЕ № 2                                                             ВЫПОЛНИЛ­­­­­­­­­­­­­­­­________________________

Цель работы:_____________________________________________________________________________

_________________________________________________________________________________________

Оборудование:_____________________________________________________________________________

Расчёт погрешности измерения массы первого
тела

(Выполняется в
соответствии с пунктами 1-8)

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Расчёт погрешности измерения массы второго
тела

(Выполняется в
соответствии с пунктами 1-8)

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Расчёт погрешности измерения массы третьего
тела

(Выполняется в
соответствии с пунктами 1-8)

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Вывод

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

КОНТРОЛЬНЫЕ ВОПРОСЫ (ОТВЕТИТЬ ПИСЬМЕННО И СДАТЬ С ОТЧЁТОМ)

1 Как определяется погрешность весов?

Ответ на вопрос 1__________________________________________________________________________
_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2 Как определяется погрешность гирь?

Ответ на вопрос
2__________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3 Как определяется погрешность подбора
гирь?

Ответ на вопрос
3__________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4 Как определяется полная абсолютная 
погрешность измерения массы?

Ответ на вопрос
4__________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5 Как определяется относительная
погрешность и что она показывает?

Ответ на вопрос
5__________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6 Какие цифры числа являются значащими? В
чём состоит правило Брадиса-Крылова?

Ответ на вопрос
6__________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Лабораторные весы применяются в научной сфере и в производственных отраслях, например, в фармацевтике и ювелирном деле. Мы расскажем, как определить точность лабораторных весов, и рассмотрим критерии выбора на конкретных примерах.

Проблемы при определении точности весов

Главным критерием для выбора аналитических весов является высокая точность измерений. Для оценки точности используются следующие параметры:

  1. погрешность при взвешивании;
  2. стандартная и расширенная неопределенность;
  3. возможный диапазон измерений.

Но в методических рекомендациях часто содержатся требования к классу точности прибора, а не к фактической точности взвешивания. При этом составители методики приводят ссылку на ГОСТ, действующий во время составления рекомендаций. Однако стандарты, разработанные в СССР, не подходят для нашего времени.

В СССР все произведенные весы соответствовали единому стандарту. Для выбора нужно было знать класс точности. В наши дни производители применяют стандарты в добровольном порядке. На рынке присутствует множество устройств, характеристики которых не соответствуют ГОСТу. Подобные устройства проходят утверждение в Росстандарте после серии испытаний.

Существуют и лабораторные весы, которые не соответствуют ГОСТу и не проходили утверждение в Росстандарте. Использовать такие приборы можно только для измерений, которые не подлежат государственному регулированию.

Для чего нужна калибровка оборудования

Фактическая точность весов не зависит от соответствия ГОСТу или утверждения в Росстандарте. В международной практике большинство исследований проводятся на калиброванных приборах, класс которых не соответствует общепринятым стандартам.

Именно калибровка, а не наличие сертификатов, гарантирует точный результат взвешивания. При калибровке не имеет значения погрешность, указанная в документах. Целью калибровки является определение реальных показателей. В процессе калибровки устанавливается неопределенность измерений и поправки на систематические погрешности.

ГОСТ Р ИСО/МЭК 17025-2006 разрешает лабораториям использовать не только весы, прошедшие поверку, но и калиброванные приборы. На калиброванных приборах возможно измерение массы маленьких навесок.

Например, когда относительная погрешность не превышает 1%, масса навески не должна быть менее 100 мг. Когда относительная погрешность не более 0,1%, допустимая масса груза должна быть не менее 1 г.

Выбор лабораторных весов по рекомендациям

Рассмотрим типичные формулировки из нормативно-методических документов, которые содержат требования к точности прибора или точности измерений. Для оценки корректности формулировок мы будем разбирать конкретные примеры.

Пример №1

Формулировка: «Лабораторные весы, соответствующие ГОСТ Р 53228-2008».

В этой формулировке нет конкретных требований к точности прибора или точности взвешивания. Упоминание любого из стандартов в методической документации значительно уменьшает число вариантов. Из списка исключаются устройства, не прошедшие сертификацию и поверку.

Приведенный ГОСТ содержит перечень требований к весовому оборудованию, составленный с учетом всех возможных погрешностей. В этот перечень входят:

  1. Требования к конструкции прибора.
  2. Возможные погрешности в допусках.
  3. Описание допустимых методов работы.
  4. Допустимые условия эксплуатации.
  5. Требования к квалификации персонала.

Стандарт включает методы оценки выполнения всех перечисленных требований. Текст стандарта занимает 140 листов. Основой для написания стандарта стал перевод рекомендации Р76 (1)-2006 от Международной организации законодательной метрологии.

Ссылка на упомянутый стандарт бесполезна: он содержит требования к идеальным устройствам. ГОСТ написан для узкого круга специалистов, которые занимаются разработкой, изготовлением, тестированием весов. Описанные в нем стандарты пока не достижимы на практике, но возможно максимально к ним приблизится.

Согласно упомянутому ГОСТу, класс точности весов зависит от основной величины «е». Величина «е» показывает предел допускаемой погрешности, который при эксплуатации в 2 раза выше, чем при поверке.Как величина «е» связана с классом точности приборов, показано в таблицах.

Таблица №1 — «Определение класса точности весового оборудования».

таблица 1

Таблица №2 — «Зависимость погрешности от уменьшения или увеличения нагрузки».

таблица 2

Пример №2

Формулировка: «Весы, соответствующие II классу точности согласно ГОСТ Р 53228-2008».

Таблица №1 показывает, что к II классу точности относятся весы с «е» не менее 1 мг. Лаборатория может закупить приборы с е = 1 мг или е = 10 мг. Требование будет выполняться в обоих случаях. Но погрешность устройств будет отличаться в 10 раз. Для ограничения выбора следует указывать не только класс точности, но и допустимое значение величины «е».

Пример №3

Формулировка: «Весы, соответствующие ГОСТ Р 53228-2008, точность которых равна 0,0001 г.»

По РМГ 29-99, точность весов — характеристика, которая указывает близость погрешности к нулю. Чем меньше значение погрешности, тем выше точность устройства. Согласно этому определению, термин «точность» не может использоваться в связке с каким-либо числом.

Возможно, под термином «точность» составители рекомендаций имели в виду предел допустимой погрешности 0,0001 г. = 0,1 мг. Но в таком случае выполнить условие невозможно. В приведенном ГОСТ минимальный предел допустимой погрешности составляет 1 мг. (см. таблицу №1).

Предположение о том, что в формулировке подразумевается цена деления, является еще менее вероятным. Цена деления не является характеристикой, которая указывает на точность прибора.

Пример №4

Формулировка: «Лабораторные весы II класса точности по ГОСТ 24104-88Е».

Упомянутый ГОСТ действовал до 1 июля 2002 года. Этот стандарт связывает предел допускаемой погрешности с двумя характеристиками:

  1. класс точности прибора;
  2. наибольший предел взвешивания.

Таблица №3 — «Зависимость погрешности от НПВ прибора».

таблица 3

Допустим, что в одной лаборатории грузы массой 1 г. взвешивают на весах с НПВ = 1 г. В другой лаборатории для этого используют прибор с НПВ = 200 г. При взвешивании грузов с одинаковой массой погрешность будет отличаться в 30 раз. Но формально измерения соответствуют единому стандарту.

Кроме того, в редакциях ГОСТ 24104 от 1980, 1988 и 2001 гг. содержались некорректные значения пределов допускаемой погрешности (для устройств I класса точности). Некорректность с точки зрения метрологии заключалась в отсутствии стандартных гирь, которые смогли бы обеспечивать заявленные погрешности. А также в том, что обозначенные пределы учитывали только случайную составляющую.

Пределы погрешностей в устаревших редакциях были равны среднеквадратическому отклонению показаний, умноженному на 3. Но эта формула верна только в одном случае: если проводить все измерения с образцовой гирей, как при поверке или калибровке. Формула не учитывает реальную погрешность гирь, которые участвуют в работе, и погрешность неравноплечести.

Пример №5

Формулировка: «Весы типа ВЛР-200 или другой модели, не уступающей им по метрологическим характеристикам».

Требование выглядит простым: в нем указана конкретное оборудование, которое можно закупить для лаборатории. Кажется, что нужно значение погрешности можно посмотреть в характеристиках прибора.

Но на самом деле ВЛР-200 — не электронные, а механические весы. Указанная модель относится к равноплечим приборам. Для взвешивания грузов требуется использовать комплект гирь и брать поправку на погрешность.

Как работать с прибором ВЛР-200:

  1. На одну чашу ставится груз, а на другую — гири, которые могут его уравновесить. При этом возникает погрешность неравноплечести.
  2. Для исключения погрешности неравноплечести выполняется повторное взвешивание того же груза.
  3. Точность измерений определяется по методу Борда, Гаусса или Менделеева. Для расчетов можно использовать номинальную или действительную массу гирь с учетом поправок.

Чтобы рассчитать длину носителя, нужно сложить длину стикера с длиной промежутка и умножить результат на число стикеров. Расчет для приведенного примера выглядит так: (40+2) х 600 = 25200 мм или 25,2 м.

Возможная длина риббона: 74, 300 и 450 м. Чтобы рассчитать соотношение, следует разделить длину риббона на рассчитанную длину носителя. Например, одного риббона длиной 300 м хватит для печати на 300 / 25,2 = 11,9 рулонов. Следовательно, при закупке расходных материалов для принтера нужно соблюдать пропорцию 1 к 12.

Таблица №4 — «Определение погрешности неравноплечести».

таблица 4

Таблица показывает, что погрешность при взвешивании грузов массой до 25 г. может различаться в 6 раз.

Пример №6

Формулировка: «Весы с относительной погрешностью не более 0,1% и наличием государственной поверки».

Допустим, возможная масса груза от 1 г. до 100 г., а масса посуды не превышает 40 г. В таком случае при взвешивании грузов массой 1 г. допускается абсолютная погрешность в 1 мг. Цена одного деления должна быть в 5-10 раз меньше, чем абсолютная погрешность: 0,1 мг. или 0,2 мг. На практике весы с ценой одного деления 0,2 мг. встречаются крайне редко.

Максимальный предел взвешивания не должен быть менее 140 грамм (для грузов массой 100 г. и лабораторной посуды массой 40 г.) Кроме перечисленных характеристик, при покупке весов нужно обратить внимание на наличие сертификата о государственной поверке.

Пример №7

Формулировка: «Предел относительной неопределенности составляет 0,1% для 3-кратного среднеквадратического отклонения из 10 результатов, при этом доверительная вероятность равна 99,73%».

Выбрать подходящие весы можно по характеристикам, указанным производителем. Для подбора оборудования подходит таблица №5.

Таблица №5 — «Определение минимальной массы навески».

таблица 5

Для оценки неопределенности измерений следует провести калибровку весов в лаборатории. На отклонение показаний влияют:

  • Условия внешней среды: температура, влажность.
  • Наличие сквозняка: для повышения точности нужно установить ветрозащитный экран.
  • Выбранный критерии стабильности результатов в меню.
  • Квалификация оператора: степень его аккуратности при работе.
  • Используемая посуда: чем меньше вес посуды, тем меньше будет отклонение.

При относительной неопределенности 0,1% и доверительной вероятности 99,73% минимальная навеска равна 300 мг. Если значение доверительной вероятности равно 95,54%, то минимальная навеска составляет 200 мг. Если в лаборатории придется взвешивать грузы с массой 1 мг, нужно будет использовать ультрамикровесы с ценой одного деления 0,0001 мг.

Выводы

При выборе лабораторных весов главным критерием служит погрешность или неопределенность измерений. Оба критерия могут быть абсолютными или относительными. Если сфера проведения измерений подлежит государственному регулированию, для выбора используются установленные требования по погрешности. Если измерения не регулируются государством, то для выбора весов можно использовать стандартную или расширенную неопределенность.

Приемлемой для указания в нормативно-методических документах является формулировка:
Электронные весы, обеспечивающие в диапазоне от … до … г. относительную погрешность (или относительную неопределенность) измерений не более … %.

Основные характеристики весов — это пределы взвешивания, точность, дискретность и погрешность. С пределами взвешивания обычно никаких вопросов не возникает, но точность, дискретность и погрешность довольно часто между собой путают.

Про государственные стандарты для лабораторных весов

Требования к лабораторным весам ранее устанавливались в ГОСТе 24104-2001 «Весы лабораторные. Общие технические требования». Этот ГОСТ распространялся на весы, предназначенные для лабораторий различных предприятий и организаций. Срок его действия истек в 2010 году, и на данный момент на все весы (не только на лабораторные) действуют два стандарта:

  • Российский ГОСТ Р 53228-2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».
  • И международный ГОСТ OIML R 76-1-2011 «Государственная система обеспечения единства измерений (ГСИ). Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания (с Поправкой)».

В них описаны основные термины и определения, дана стандартизация классов и испытаний. По техническому содержанию они одинаковы, но первый стандарт учитывает особенности российского законодательства, а второй специально создавался под соответствие международным стандартам. Обычно лабораторные весы сертифицируются по ГОСТ OIML R 76-1-2011, чтобы производители имели возможность продавать их в других странах.

Пределы взвешивания

Самая понятная характеристика. У весов их два — наибольший (НПВ или Max) и наименьший (НмПВ). Наибольший предел взвешивания — это максимальное значение нагрузки, а наименьший — это значение нагрузки, ниже которого результат взвешивания может иметь чрезмерную относительную погрешность. К примеру, на весах AnD HR-100 AZG можно взвешивать навески от 0,01 до 102 граммов.

Наибольший предел взвешивания не надо путать с предельной нагрузкой (Lim). Если навеска тяжелее НПВ, то весы не смогут её правильно измерить, а если навеска больше предельной нагрузки, то они просто сломаются.

Дискретность (цена деления)

Цена деления (d), согласно определению, это разность значений массы, соответствующих двум соседним отметкам шкалы весов с аналоговым отсчетным устройством, или значение массы, соответствующее дискретности отсчета цифровых весов.

Чем меньше цена деления, тем выше точность измерения. Пример: у весов ВЛТЭ-150 дискретность 0,01 г. Если у нас будет навеска 3,7562 г, то эти весы покажут, что она весит 3,76 г. А вот весы AnD HR-100 AZG с дискретностью 0,0001 г покажут более точное значение.

Цена поверочного деления (предельно допустимая погрешность)

Следующим важным для стандартов является цена поверочного деления e. Это условная величина, которая присутствует только в документах, но посредством которой определяется класс точности весов и осуществляется их поверка.

e определяет предельно допустимую погрешность весов. В большинстве весов с ценой деления порядка 0,01 г и выше e=d, то есть максимальная погрешность определения массы будет совпадать с ценой деления. Но в случае весов, предназначенных для взвешивания очень маленьких навесок, погрешность может быть выше.

Исходя из значения цены поверочного деления, для весов можно вычислить общее число поверочных делений: n=НПВ/е.

К примеру, у нас есть лабораторные весы ВЛТЭ-6100. НПВ у них 6100 г, цена деления 1 г, цена поверочного деления тоже 1 г (то есть у них выполняется условие e=d). Число поверочных делений будет: 6100 / 1 = 6100.

У упоминавшихся уже весов AnD HR-100 AZG НПВ равен 102 г, цена деления — 0,0001 г, цена поверочного деления 0,001 (e=10d). Для них число поверочных делений будет: 102 / 0,001 = 102 000.

Класс точности весов

На основе цены поверочного деления и наименьшего предела взвешивания весам присваивается класс точности.

Для весов класса точности ниже II e должно быть равно d. Для весов специального (I) и высокого (II) классов точности допускается e=2d, e=5d и даже больше, вплоть до e=1000d.

Все лабораторные весы соответствуют либо I, либо II классу точности.

Класс точности е n НмПВ

Специальный (I)

0,001 г ≤ е

50 000 и более

100 d

Высокий (II)

0,001 г < е ≤ 0,05 г

100 ≤ n ≤ 100 000

20 d

0,1 г ≤ е

5 000 ≤ n ≤ 100 000

50 d

Средний (III)

0,1 г < е ≤ 2 г

100 ≤ n ≤ 10 000

20 d

5 г ≤ е

500 ≤ n ≤ 10 000

20 d

Для весов из примеров: AnD HR-100 AZG соответствуют специальному классу точности, ВЛТЭ-6100 — высокому.

Несмотря на то, что есть весы с ценой деления 0,1 мг и ниже, из-за большой неопределенности испытательных нагрузок их предельно допустимая погрешность всё равно будет не менее 1 мг (0,001 г), потому что на практике невозможно провести их испытания и поверку на более точном уровне.

Погрешность весов

Зная класс точности весов и предельно допустимую погрешность, можно вычислить реальную погрешность весов. Она будет отличаться от е (хотя и зависеть от неё).

Интервалы взвешивания (для навески массой m) и весов Пределы допускаемой погрешности

специального класса точности

высокого класса точности

среднего класса точности

при первичной поверке

в эксплуатации

m ≤ 50 000 е

m ≤ 5 000 е

m ≤ 500 е

±0,5 е

±1,0 е

50 000е < m ≤ 200 000 е

5 000 е < m ≤ 20 000 е

500 е < m ≤ 2000 е

±1,0 е

±2,0 е

m >200 000 е

20 000 е < m ≤ 100 000 е

2 000 е < m ≤ 10 000 е

±1,5 е

±3,0 е

Обратите внимание, что при поверке (любой: первичной, периодической, внеочередной, инспекционной, в рамках метрологической экспертизы) пределы в два раза строже.

Примеры

Весы AnD HR-100 AZG (НПВ равен 102 г, цена деления 0,0001 г, цена поверочного деления 0,001 г).

  • Мы взвешиваем на них навеску 43,6789 г. Эта навеска попадает в интервал до 50 000 е (е=0,001 г, т.е. 50000 е будет равно 50 г). Предел допускаемой погрешности в этом случае будет ±0,001 г.
  • Мы взвешиваем навеску 98,1235 г. Это больше 50 000 е и, значит, предел допускаемой погрешности в этом случае будет ±0,002 г.
  • Свыше 200 000 е мы на этих весах ничего взвесить не сможем, потому что у них интервал взвешивания 102 000 е.

Весы ВЛТЭ-6100 (НПВ 6100 г, цена деления 1 г, цена поверочного деления 1 г).

  • У этих весов интервал взвешивания 6100 е, поэтому предел погрешности будет во всем диапазоне ±1,0 г.

Компания «НВ-Лаб» предлагает лабораторные и аналитические весы любого класса точности. Вы можете получить консультацию наших менеджеров или выбрать весы в нашем каталоге, исходя из ваших требований.

  • Телефон: 8 (800) 500-93-80.
  • E-mail: info@nv-lab. ru.

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы – килограммы, объёма – кубические литры, времени – секунды, скорости – метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 106.

В простой линейке длина имеет единицу измерения – сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром – чтобы измерять температуру, гигрометром – чтобы определять влажность, амперметром – замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

абсолютная погрешность измерений

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 — 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А — в виде величины для измерительных процессов;

а — значение результата замеров;

D — обозначение абсолютной погрешности.

Если слаживать или вычитать величины с учетом погрешности, это число будет составлять сумму цифр, которые и обозначают погрешность, и имеются у каждой отдельно взятой величины.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Знакомство с понятием

Если рассматривать классификацию погрешностей в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения погрешности измерения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой метод измерения физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

абсолютная и относительная погрешность измерений

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

вычисление абсолютной погрешности измерений

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1o С + 0,1o С / 2 = 0,15o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. Точность измерения не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2o С, то можно измерять температуру с точностью до 1o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности – 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

как рассчитать абсолютную погрешность измерений

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности –(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.

абсолютная и относительная погрешность измерений формулы

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

пределы допускаемой абсолютной погрешности измерений

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

определение абсолютной и относительной погрешности измерений

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

6.4.2.1 При поверке весов, состоящих из
двух модулей, нагружение их осуществляется
«связывающим» эталонным грузом на
обе платформы одновременно. Например,
установкой весоповерочной тележки с
гирями не менее 40т, таким образом, чтобы
одна колесная пара тележки находилась
на одном из грузоприемных модулей весов,
а другая колесная пара тележки в это
время находилась на другом модуле
весов. Затем дополнительно на
грузоприемные модули помещают эталонные
гири или спецгрузы известной массы. Для
определения погрешности весов фиксируют
не мене двух показаний весов.

Абсолютную погрешность весов определяют
как в 6.4.1.

Погрешность весов не должна превышать
значений, указанных в ГОСТ 29329 и
эксплуатационной документации.

6.4.2.2 При поверке весов для статического
потележечного взвешивания вагонов на
одном модуле (далее весы) допускается
использование весоповерочного вагона
(или открытой платформы с эталонными
грузами).

Для определения погрешности весов
каждая тележка пустого весоповерочного
вагона должна быть взвешена на весах
не менее 3-х раз.

Полученные шесть показаний значений
массы каждой тележки вагона суммируют
повагонно. При этом получают три значения
массы порожнего вагона.

Загружают порожний вагон равномерно
эталонными гирями массой не менее
разности между НПВ и значением, равным
массе порожнего вагона, умноженной на
1,5 с округлением до 1 т, а затем взвешивают
каждую тележку груженного вагона не
менее 3-х раз в центре грудозприемного
модуля. Полученные шесть показаний
значений массы каждой тележки груженного
вагона суммируют повагонно. При этом
получают три значения массы груженных
вагонов.

Определяют значение массы эталонных
гирь как разность между результатами
взвешивания каждого груженного и
порожнего вагона .

Погрешность весов для взвешивания
вагонов в целом определяется как разность
значения массы эталонных гирь определенной
выше указанным способом и номинальным
значением массы используемых эталонных
гирь

Погрешность весов не должна превышать
значений, указанных в эксплуатационной
документации для взвешивания вагона.

Понравилась статья? Поделить с друзьями:
  • Как найти доход от инвестирования
  • Отсутствует сетевой адаптер windows 10 как исправить
  • Как найти трендовую музыку для рилс
  • Как найти свою аудиторию в сети
  • Как найти нужные куки