Абсолютная шкала как найти

Погрешности измерений, представление результатов эксперимента

  1. Шкала измерительного прибора
  2. Цена деления
  3. Виды измерений
  4. Погрешность измерений, абсолютная и относительная погрешность
  5. Абсолютная погрешность серии измерений
  6. Представление результатов эксперимента
  7. Задачи

п.1. Шкала измерительного прибора

Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.

Примеры шкал различных приборов:

п.2. Цена деления

Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.

Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.

Пример определения цены деления:

Пример определения цены деления Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале:a = 5 c
b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*}

п.3. Виды измерений

Вид измерений

Определение

Пример

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.

Составляющие погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$

Если величина (a_0) — это истинное значение, а (triangle a) — погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$

Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$

Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.

Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Пример получения результатов прямых измерений с помощью линейки Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см})
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$
Пример получения результатов прямых измерений с помощью линейки Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см})
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}

п.6. Представление результатов эксперимента

Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то

  • абсолютная погрешность их суммы равна сумме абсолютных погрешностей

$$ triangle (a+b)=triangle a+triangle b $$

  • абсолютная погрешность их разности также равна сумме абсолютных погрешностей

$$ triangle (a-b)=triangle a+triangle b $$

Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:

  • относительная погрешность их произведения равна сумме относительных погрешностей

$$ delta_{acdot b}=delta_a+delta_b $$

  • относительная погрешность их частного также равна сумме относительных погрешностей

$$ delta_{a/b}=delta_a+delta_b $$

Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:

  • относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности

$$ delta_{a^2}=2delta_a $$

  • относительная погрешность куба (a^3) равна утроенной относительной погрешности

$$ delta_{a^3}=3delta_a $$

  • относительная погрешность произвольной натуральной степени (a^n) равна

$$ delta_{a^n}=ndelta_a $$

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Задача 1

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac{b-a}{n+1}), мл
1 20 40 4 (frac{40-20}{4+1}=4)
2 100 200 4 (frac{200-100}{4+1}=20)
3 15 30 4 (frac{30-15}{4+1}=3)
4 200 400 4 (frac{400-200}{4+1}=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac{triangle}{2}), мл
Относительная погрешность
(delta_V=frac{triangle V}{V_0}cdot 100text{%})
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})

Абсолютная шкала

Абсолютная шкала
в которых
единственными
допустимыми преобразованиями являются
тождественные преобразования:

.
Это
означает, что
существует
только одно отображение эм
пирических
объектов в числовую систему.
Отсюда
и название шкалы,
так как для нее единственность измерения
понимается в буквальном
абсолютном смысле.

Абсолютные шкалы
применяются,
например, для измерения количества
объектов, предметов, событий, решений
и т.п.

В качестве шкальных значений при
измерении количества объектов используются
натуральные числа, когда объекты
представлены целыми единицами, и
действительные числа, если кроме целых
единиц присутствуют и части объектов.

Абсолютные
шкалы являются частным случаем всех
ранее рассмотренных
типов шкал, поэтому сохраняют любые
соотношения между числами оценками
измеряемых свойств объектов: различие,
порядок, отношение интервалов, отношение
и разность значений
и т.д.

Кроме
указанных существуют промежуточные
типы шкал,

такие,
например, как степенная
шкала

()
иее
разновидность логарифмическая
шкала


().

На
рис.3.6
изображено
соотношение между основными ти
пами
шкал в виде иерархической структуры
основных шкал
.

Рис.3.6. Иерархическая
структура основных шкал

Здесь
стрелки указывают включение совокупностей
допустимых
преобразований более «сильных» в менее
«сильные» типы шкал. При этом шкала тем
«сильнее», чем меньше свободы в
выборе
.
Некоторые
шкалы являются изоморфными,
т.е. равносильны
ми.
Например, равносильны шкала интервалов
и степенная шкала.
Логарифмическая шкала равносильна
шкале разностей и шкале
отношений.

Шкалы наименований
и порядка

являются качественными
шкалами. В
шкале наименований описывается различие
или эквивалентность объектов, а в шкале
порядка – качественное превосходство,
отличие объектов. В
этих шкалах нет понятия начала отсчета
и масштаба измерения.

Шкалы интервалов,
отношений, разностей и абсолютная шкала

являются количественными
шкалами. В
этих шкалах существуют понятия начала
отсчета и масштаба, которые выбираются
произвольно
.
Количественные шкалы позволяют измерить,
на сколько (шкалы интервалов и разностей)
или во сколько (шкалы отношений и
абсолютная) раз один объект отличается
от другого по выбранному показателю.

Выбор той или
иной шкалы для измерения определяется
характером отношений между объектами
эмпирической системы, наличием информации
об этих отношениях и целями принятия
решения.

Применение количественных шкал требует
значительно более полной информации
об объектах по сравнению с применением
качественных шкал.

Следует обратить
внимание на правильное согласование
выбираемой шкалы измерения с целями
решения.

Например, если целью решения является
упорядочение объектов, то нет необходимости
измерять количественные характеристики
объектов, достаточно определить только
качественные характеристики. Типичным
примером такого решения является
подведение определение наилучших
предприятий. Для решения этой задачи,
как правило, не требуется определять,
на сколько или во сколько раз один объект
лучше другого, т.е. нет необходимости
при таком измерении пользоваться
количественными шкалами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Высокое качество продукции любого предприятия напрямую зависит от точности и общего качества измерений. Мы не можем решить, соответствует ли конкретный образец продукции требованиям заказчика, если не выразим эти требования количественно или качественно.

Для сравнения какого-либо параметра с его заданным значением служат шкалы измерений.

Измерительная шкала на приборе

Виды шкал измерений

Суть измерения состоит в том, что текущему состоянию объекта ставится в соответствие некоторое число, порядковый номер или символ.

Что такое шкала

Совокупность таких чисел, номеров или символов и называется шкалой измерений Классификация измерительных шкалПо своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
  • количественные, выражающие значения в определенных единицах;.
    • интервалов;
    • отношений;
    • абсолютная .

Шкалы также делятся по их силе. Чем больше сведений об объекте измерений можно извлечь из результатов измерений по ней. Самыми сильными считаются абсолютные шкалы, самыми слабыми — номинальные. Иногда исследователи усиливают шкалу, характерным примером является «оцифровка» номинальных шкал. Качественным признакам присваивают некое их числовое выражение. Это облегчает обработку результатов, особенно компьютерную. Важно помнить, что оцифровка не придает качественным признакам всех свойств, которыми обладают числа. К такой шкале можно применять операции сравнения, но нельзя — сложения, вычитания и т.п.Шкалы измерения по Стивенсу

Шкалы измерений

Рассмотрим шкалы измерений подробнее.

Номинальная

Самые простые измерительные шкалы – номинальные. Они относятся к качественным и отражают те или иные свойства объекта, выраженные словесно. Их элементы могут только совпадать или не совпадать друг другом, Их нельзя сопоставлять по принципу «больше-меньше». Недопустимы также и арифметические действия. Характерным примером может служить группа крови. Первая группа не больше третьей и не может быть сложена с четвертой. У человека может быть только одна группа крови, и измерение

Порядковая

По ней можно ранжировать и сравнивать объекты, по какому — либо признаку, например, расположить людей в строю по росту. Иванов больше Сидорова, а Сидоров больше Кузнецова. Шкала порядкаИз этих данных можно сделать вывод о том, что Иванов выше Кузнецова, но нельзя определить, насколько именно.

Интервалов

Она состоит из заранее определенных и равных между собой интервалов. И является намного более информативной. Свойство объекта соотносится с одним из таких интервалов. Характерным примером такой шкалы измерений может служить принятое у людей исчисление времени. Период оборота Земли вокруг Солнца делится на 365 дней, дни делятся на часы, далее на минуты и секунды. Мы можем соотнести событие с одним из таких интервалов: «эта статья была написана в 2018 году» или «Дождь начнется в 14 часов» Шкалы интерваловЗначения в этом случае можно сравнивать друг с другом не только качественно, но и количественно, становятся доступны операции сложения и вычитания. «Заход солнца произойдет на 12 часов позже восхода». «Фильм А длиннее фильма В на 25 минут» Однако поскольку начало отсчета не установлено, невозможно определить, во сколько раз одно значение больше другого.

Отношений

Точкой начала отсчета является точка, в которой значение параметра равно нулю. Появляется возможность отсчитывать от нее абсолютное значение параметра, определять разницы значений и во сколько раз одно больше другого. Характерный пример — температурная шкала Кельвина. За начало отчета взята точка «абсолютного нуля», при которой прекращается тепловое движение материи. Второй опорной точкой выбрана температура таяния льда при нормальном давлении. Разница между этими точками по Цельсию составляет 273 °C, и один градус Кельвина равен одному градусу Цельсия. Таким образом, можно сказать, что лед тает при 273К. Шкала отношенийОтношений – наиболее информативная. На ней возможны все арифметические операции-

  • сложение;
  • вычитание;
  • умножение ;
  • деление.

Деление, умножение сложение и вычитание значений параметра будет иметь физический смысл. Мы можем вычислить не только насколько одно значение больше другого, но и во сколько раз.

Разностей

Представляет собой частный случай интервальных. Для них значение не меняется при произвольном числе сдвигов на определенный параметр. Другими характерными признаками являются

  • единицы измерений и точка отсчета определяется по соглашению;
  • существует понятие размерности;
  • доступны операции линейных преобразований;
  • осуществляется путем создания системы эталонов.

В качестве примера можно привести циферблат часов – каждые сутки значение времени будет, например, «7 часов», хотя это разные дни. Циферблат часов Другим примером может служить компас, показывающий направление из одной точки. Сама эта точка может иметь различные координаты. Важно помнить, что в этом случае при измерении мы можем вычислять разницу между двумя значениями, но должны все время помнить о том, что начальное значении задано произвольно. Например, при переходе на летнее время придется задать новое начальное значение.

Абсолютная

Абсолютная шкала занимает высшую ступень в шкальной иерархии. Единицы их естественные и не основаны на соглашениях и допущениях. Кроме того, эти единицы не имеют размерности, не служат производными системы СИ или какой-либо другой. Они всегда безразмерны:

  • разы;
  • проценты;
  • доли;
  • полные углы.

Абсолютная шкалаАбсолютные подразделяют на

  • ограниченные. Диапазон от 0 до 1. Сюда относятся КПД, оптические коэффициенты поглощения т.д.
  • неограниченные – предел упругости, коэффициент усиления в радиотехнике и т.д. Все они нелинейные и не имеют единиц измерений.

Иерархия шкал измерений

Условная иерархия составляется по признаку силы.

  • Количественные:
    • абсолютная;
    • разностей;
    • отношений;
    • интервалов;
  • Качественные:
    • порядковая;
    • наименований.

По мере возрастания силы увеличивается конкретность информации об объекте.

Различные измерения и показатели используются в каждой фирме, в любой организации. Выбор подходов к оценке степени достижения некоторого показателя (например, плана продаж) огромен: тут сколько людей, фирм, ситуаций, видов работ, столько и мнений. Задача этой статьи не придумывать что-либо своё, а попытаться классифицировать доминирующее большинство существующих подходов к измерению показателей.
В соответствии с теорией измерений при моделировании реального явления следует прежде всего установить типы шкал, в которых измеряются или должны быть измерены те или иные переменные. Что такое шкала? Какими они бывают? Какие ограничения накладываются на числа, используемые для измерений? Как правильно пользоваться шкалами, чтобы получить достоверные первичные измерения? Какие интегральные и комплексные показатели могут быть построены на множестве измерений, выполненных в различных шкалах?

Шкалы и их классификации

Шкалы используются как для первичных измерений, так и для перевода разных измерений (в нашем случае — различных показателей) в единую шкалу. Как выбрать единую шкалу? Начнём с трёх определений.

Шкалой называют систему чисел или иных элементов и отношений между ними, принятых для измерения или оценки каких-либо величин (объектов, качеств и т. д.).

Шкалирование — это:

  • выбор шкалы для первичных измерений;
  • перевод измерения из одной шкалы в другую.

Нормирование (или единообразное шкалирование) — это перевод всех переменных, показателей, отражающих разные объекты измерений, в одну шкалу.

Первая классификация шкал была предложена С. Стивенсом в 1946 г. и от современной общепринятой классификации принципиально не отличается.
Шкалы, как правило, объединяют в три основные группы:

  • номинальные — для качественных измерений;
  • порядковые — для отражения отношения порядка (больше, лучше, важнее, проще, правильнее и т. п.);
  • количественные — оперируют с числами так, как мы привыкли со школьных времен (например, 10 в 2 раза больше, чем 5).

Иногда все шкалы измерения делят на два класса:

  • шкалы качественных признаков (порядковая шкала и шкала наименований);
  • шкалы количественных признаков (количественные шкалы).

Далее мы последовательно разберём все типы шкал.

Как считать очки в десятиборье?

Сегодня в мужском легкоатлетическом десятиборье за удачное выступление в каждом виде спорта участнику начисляется около 1000 очков. Но какой результат, по вашему мнению, берётся за 1000? Первое, что приходит на ум, — взять за 1000 очков мировой рекорд для женщин. Но какой именно? Текущий не годится, так как он меняется, а хотелось бы иметь возможность сравнений во времени и измерять рекорды. Но допустим, мы зафиксируем раз и навсегда, за что дается 1000 очков: в прыжках в длину, например, за 7,90 м, в беге на 100 метров — за 11 секунд. Далее возникает другой вопрос: какой шаг указать? Результат 8,00 м в прыжках в длину — это 1050 или 1010 очков? И как справедливо сравнивать разные виды соревнований? Думается, у каждого специалиста будут на этот счёт своё мнение и своя шкала.

Номинальные шкалы

Номинальная шкала (nominal scale), или шкала наименований 1, сопоставляет каждый объект с определённым признаком. В результате объект либо обладает этим признаком, либо нет. Номинальная шкала состоит из названий — это самое простое и в то же время верное понимание номинальной шкалы.
Пример. Красное или чёрное — это измерение в некой цветовой гамме. Многие классификации, ответы на вопросы анкеты — всё это примеры номинальных измерений. С них начинается работа создателей сбалансированной системы показателей, а закончиться она должна цифрами. Но здесь важно не переборщить и оставить номинальные измерения только там, где они предпочтительнее формальной оцифровки.

Как правильно пользоваться шкалами, чтобы получить достоверные первичные измерения? Это не такой простой вопрос, как кажется на первый взгляд.

Допустимые преобразования. В номинальной шкале допустимыми преобразованиями (см. врезку) являются все взаимно-однозначные преобразования 2. Например, red — это «красный». Никаких отношений, кроме «равно» и «неравно», здесь нет. В этой шкале числа используются лишь как метки (как, например, при сдаче белья в прачечную), то есть лишь для различения объектов.

Допустимые преобразования

Этим понятием математики строго описывают шкалы. Тип шкалы задаётся группой её допустимых преобразований.
Допустимые преобразования — это такие преобразования, которые не меняют соотношения между объектами измерения и, соответственно, выводы, сделанные по результатам измерений.Например, при измерении длины переход от аршинов к метрам не меняет соотношений между длинами рассматриваемых объектов: если первый объект длиннее второго в пять раз, то это будет установлено при измерении как в аршинах, так и в метрах. Обратите внимание, что при этом численное значение длины в аршинах отличается от длины в метрах — не меняется лишь результат сравнения длин двух объектов.
Аналогично денежные суммы можно сопоставлять как в рублях, так и в иностранной валюте. Особенность, связанная с изменяющимися курсами валют: результат сопоставления денежных сумм в разных валютах меняется во времени. С аршинами и метрами ситуация иная: их соотношение вечно. Вот вам и проблема курсовых разниц в экономике. О ней сейчас не место говорить, но запомните её.

Порядковые шкалы

Порядковая шкала отражает более высокий уровень измерений, учитывающий, к какой категории принадлежит объект и в каком отношении он находится с другими объектами. В порядковой шкале числа используются не только для различения объектов, но и для установления порядка между ними.
Пример. Простейшим примером порядковой шкалы служат оценки знаний учащихся. Символично, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей школе тот же смысл выражается словесно — «неудовлетворительно», «удовлетворительно», «хорошо», «отлично». Этим подчёркивается «нечисловой» характер оценок знаний студентов.
Фактически измерение по порядковой шкале представляет собой операцию упорядочения. Предполагаются сравнения «больше — меньше» или «лучше — хуже». Например, мнения экспертов часто выражаются в порядковой шкале, то есть эксперт может сказать (и обосновать), что один показатель качества продукции важнее, чем другой; первый технологический объект опаснее, чем второй, и т. д. Но он не в состоянии сказать, во сколько раз или насколько он более важен, или, соответственно, более опасен.
Допустимые преобразования. Порядковая шкала допускает любое возрастающее преобразование, то есть такое, которое не меняет порядок шкалы.
Типы порядковых шкал. Используют два типа порядковых шкал, которые различны с практической точки зрения:

  • ранговая шкала, которая предполагает присвоение объектам рангов (ранжирование);
  • балльная шкала, в которой применяются баллы.

Обдумывание измерений некоторых показателей следует начать с выбора между ранговым и балльным типами шкал.

Ранговые порядковые шкалы

Ранговые шкалы — это шкалы, где числа служат только для присвоения мест. Экспертов часто просят ранжировать (упорядочить) объекты экспертизы, то есть расположить их в порядке возрастания (или убывания) интенсивности исследуемой характеристики. Ранг — это номер объекта экспертизы в упорядоченном ряду значений характеристики у различных объектов. Формально ранги выражаются числами 1, 2, 3…. Важно помнить, что измерения 1, 2, 3 и 6, 10, 50 означают одно и то же: первая альтернатива заняла первое место, вторая — второе место и т. д. В ранговых шкалах нет информации о величине различий между оцениваемыми объектами. Такие шкалы используются тогда, когда объект трудно описать несколькими характеристиками, которые потом оцениваются качественно (баллами, например) или количественно. В практике менеджмента рейтинги часто основаны на ранговых шкалах.

Ранговые измерения (процедуры ранжирования). Различают несколько основных типов алгоритмов ранжирования:

  1. процедура непосредственного ранжирования, когда эксперт должен просто упорядочить объекты. При ранжировании он располагает объекты в порядке предпочтения, руководствуясь знаниями, собственными соображениями и пр. — по сути, расставляет объекты в определённом порядке, пользуясь своим собственным алгоритмом и не объсняя, почему он выбрал именно этот вариант;
  2. процедура опосредованного ранжирования, когда эксперт должен упорядочить объекты и дать пояснения;
  3. процедура последовательного непосредственного ранжирования, когда эксперт сначала должен отнести объекты к одному из нескольких классов, которым заранее присвоил ранги, а затем упорядочить объекты внутри каждого класса. Метод используется при большом количестве объектов ранжирования;
  4. «метод пузырька» взят из программирования, где он применятется для сортировок. Эксперт должен найти место (N+1)-ого объекта в ряду уже упорядоченных N-объектов. Такая процедура весьма экономна и точна;
  5. процедура парных сравнений заключается в том, что эксперт устанавливает порядок объектов путём сравнения всех возможных их пар. Это самый точный, но и самый трудоёмкий метод. Перевод результатов таких парных сравнений в ранги не так прост, пример неверного перевода результатов парных сравнений в ранги приведен во врезке.

Простейший (и неверный) перевод результатов парных сравнений в ранги и в весовые коэффициенты

Заманчива идея получить весовые коэффициенты, то есть количественную меру, из порядковых измерений. Однако, как правило, такое действие некорректно — оно многозначно и потому единственный и корректный вывод для задач менеджмента невозможен. Вместе с тем оно популярно, особенно среди людей, плохо знающих математику.
Приведём пример наиболее простой и популярной модификации метода парных сравнений. Допустим, эксперт проводит оценку четырёх методов, которые связаны с решением кадровых вопросов в корпоративном проекте:
Z1 — повышение квалификации в процессе выполнения проекта;
Z2 — привлечение кадров со стороны;
Z3 — подготовка кадров в своём корпоративном университете;
Z4 — разовое повышение квалификации.

Zi/Zj Z1 Z2 Z3 Z4
Z1 1 1 1
Z2 0 0 0
Z3 0 1 1
Z4 0 1 0

Составим матрицу бинарных предпочтений эксперта, где 1 означает, что один метод „предпочтительнее”, чем другой, с которым он сравнивается. Определим оценку каждого метода (складываем по строкам): C= 3; C2 = 0; C3 = 2; C4 = 1. Получаем порядок предпочтения методов: Z1, Z3, Z4, Z2. Пока всё это корректные действия. Затем наступает черед „творчества”.
Простейший (и неверный) перевод результатов парных сравнений в весовые коэффициенты. Если нужны „веса” указанных четырёх альтернатив, то можно нормировать числа {С} и получить „веса” {v} делением каждого значения С на сумму всех Сi, равную шести: v= 3/6 = 0,5; v2 = 0; v3 = 0,33; v4 = 0,17. Проверка: сумма весов должна быть равна 1.
Однако анализ корректности метода даёт отрицательный результат. Дело в том, что объектам могут быть присвоены и другие веса (см. подобный пример ниже). Почему некорректно? Потому что в результате его применений вес v1 оказывается в три раза больше, чем v4, а этого эксперт, который проводил парное сравнение, не утверждал! Подделка очевидна, так как в результате обработки мы добавили весомую толику информации от себя к тому, что говорили эксперты.

Корректные методы перевода результатов парных сравнений в шкалу интервалов. Они существуют. Считая предпочтение некоторой случайной величиной, отражающей истинное соотношение характеристик объектов сравнения, можно решить задачу определения вероятности истинного соотношения сравниваемых объектов (модели Брэдли-Терри, Терстоуна-Мостеллера, Льюса и др.). Пример такого корректного перевода дан во врезке. Большого практического значения он не имеет, и чтобы понять его суть, надо хорошо знать математическую статистику 3. Но важно понимать, что такие методы существуют и у них есть обоснование, пусть и небесспорное. В результате метод парных сравнений позволяет определить значимость различий положения тех или иных объектов в иерархии, а также решать другие сходные задачи.

Корректный перевод результатов парных сравнений в интервальную шкалу

При опросе экспертов в августе 2001 г. попарно сравнивалось качество бензина в четырех компаниях: «ТНК», «Лукойл», «Юкос» и «Татнефть». При сравнениях четырёх компаний получается 6 пар для сравнения:

Таблица 1. Сравнение компаний по качеству бензина

Пары Частота выбора первого элемента пары Частота выбора второго элемента пары
«ТНК» — «Лукойл» π(1,2) = 0,508 π(2,1) = 0,492
«ТНК» — «Юкос» π(1,3) = 0,331 π(3,1) = 0,669
«ТНК» — «Татнефть» π(1,4) = 0,990 π(4,1) = 0,010
«Лукойл» — «Юкос» π(2,3) = 0,338 π(3,2) = 0,662
«Лукойл» — «Татнефть» π(2,4) = 0,990 π(4,2) = 0,010
«Юкос» — «Татнефть» π(3,4) = 0,997 π(4,3) = 0,003

По результатам парных сравнений удалось выразить „качество бензина” V1, V2, V3, V4 в шкале интервалов (см. ниже). Легко заметить, что „ценности” V1, V2, V3, V4 измерены в шкале интервалов. Начало координат можно выбрать произвольно, поскольку вероятности результатов сравнения зависят только от попарных разностей „ценностей” V1, V2, V3, V4. Например, примем, что V= 0.
Для оценки использовалась модель Терстоуна-Мостеллера, согласно которой погрешности мнений экспертов являются независимыми, нормально распределёнными случайными величинами с нулевым математическим ожиданием и дисперсией σ2. Поскольку дисперсия разности наших условных случайных величин V1, V2, V3, V4 равна 2σ2, единицу измерения удобно выбрать так, чтобы 2σ2 = 1. В результате получим следующие значения:
V1(«ТНК») = V2(«Лукойл») = 2,326348, V3(«Юкос») = 2,747781, V4(«Татнефть») = 0.
Таким образом, самый качественный бензин у «Юкоса»; несколько хуже у «ТНК» и «Лукойла», одинаковых по данному показателю, а у «Татнефти» значительно хуже тройки лидеров.

Балльные порядковые шкалы

Балльные шкалы используются очень часто, примеры мы уже приводили. Однако важно понимать, что каждому баллу необходимо присвоить качественную характеристику, в противном случае может пострадать корректность. Приведу пример: в конце 1990-х гг. я был назначен ответственным преподавателем (качество, контроль, апелляции) на устном экзамене по экономике для абитуриентов НИУ ВШЭ. Только что на ректорате ввели 10-балльную шкалу. Экспромт не удался — первый блин, как обычно, вышел комом. Моя работа заключалась, в том числе, и в „обеспечении справедливости”, то есть чтобы за примерно одни и те же ответы преподаватели в разных комиссиях ставили одинаковые баллы. Разброс в оценках оказался ужасающим — от 4 до 7 за похожие ответы. Буквально на следующий день ошибка в дефиниции шкалы была исправлена, а получившаяся шкала (см. таблица 2) успешно работает до сих пор (с небольшим изменением). Многие вузы взяли её на вооружение. Обращаю внимание читателей, что в соответствии со спецификой каждого предмета преподаватель конкретизирует шкалу.

Таблица 2. Пример 10-балльной шкалы для оценки успеваемости студентов.

Балл Качественная характеристика
10 Пять с плюсом — исключительные знания (кое-что из ответа студента даже преподаватель не знал)
9 Отлично, твёрдая пятёрка
8 Пять с минусом
7 Четыре с плюсом
6 Четыре, твёрдая четвёрка
5 Четыре с минусом
4 Три с плюсом
3 Три, твёрдая оценка «удовлетворительно»
2 Три с минусом
1 Неудовлетворительно

Важный вопрос: какова идеальная размерность балльной шкалы? Ответ: сколько качеств, столько и баллов. Баллы обозначают упорядоченные качества, и каждому качеству присваивают свой балл. Обратное неверно: если взять за основу 10-балльную шкалу и каждому баллу попытаться „присвоить” определённое качество, то можно столкнуться с ситуацией, что качеств может оказаться не 10, а всего 7. Поэтому следует отталкиваться именно от количества качеств, которые вы можете выделить.

Если нет обоснования логики присвоения баллов, будем считать измерение некорректным. Это необходимо для корректного выставления балльных оценок.

Балльные измерения. Балльные измерения формально просты, но коварны возможностью допустить необоснованные оценки и тем самым всё испортить. Существует два подхода к выставлению балльных оценок:

  1. непосредственная балльная оценка представляет собой приписывание объектам баллов на основании субъективного представления. Такая оценка используется в социологии, но в управлении компанией применяться не должна (за исключением, пожалуй, начальной стадии разработки системы показателей). Причина проста — слишком произвольно баллы приписываются объектам, трудно объяснить, почему мы по 10-балльной шкале ставим 5, а не 6, например;
  2. балльная оценка с обоснованием — это процедура приписывания объектам баллов на основании степени близости к описанным баллами качествам. На мой взгляд, это необходимо для корректного выставления балльных оценок. Примем следующее правило если нет обоснования логики присвоения баллов, будем считать измерение некорректным.

Перевод результатов балльных оценок в весовые коэффициенты. Если такой перевод делается одним экспертом — это операция сомнительная, но популярная. Во врезке приведён один из популярных методов — метод последовательных сравнений.

Перевод рангов в весовые коэффициенты одним экспертом. Метод последовательных сравнений

Продолжим пример, приведённый во врезке. Итак, эксперт проводит оценку четырёх целей, связанных с решением кадровой проблемы. Варианты ранжируются таким образом: Z1, Z3, Z4, Z2.
Шаг 1. Все оцениваемые объекты располагаются в порядке убывания их важности. Назначаются предварительные оценки важности, сумма которых отличается от 100. При этом первый объект массива получает оценку 100, остальные — в соответствии с их важностью. Выставляем предварительные оценки (условные баллы):
p1 = 100, p3 = 60, p4 = 40, p2 = 10.
Шаг 2. Первый объект массива сравнивается со всеми возможными комбинациями нижестоящих объектов, причём в каждой комбинации берётся по два таких объекта. Считается, что комбинацию можно рассматривать как сумму, то есть оба объекта „реализуются”. При необходимости оценка первого объекта корректируется.
Выполним сравнение целей и корректировку их оценок: Z1 сравниваем с (Z3 и Z4) (то есть цель Z1 сравниваем с комбинацией Z3 и Z4), затем Z1 сравниваем с (Z3 и Z2) и так далее. Допустим, эксперт полагает, что Z1 лучше, чем Z3 и Z4 вместе взятые, но Z3+Z4 в сумме составляют 100 условных баллов, поэтому корректируем оценку: p1 = 125.
Шаг 3. Второй объект массива сравнивается со всеми возможными комбинациями нижестоящих объектов, причём в каждой комбинации снова берётся только по два таких объекта. При необходимости корректируется оценка второго объекта и т. д.
Например, Z3 сравниваем с (Z4 и Z2). Остальные сравнения не приносят ничего нового.
Шаг 4. Производятся нормирование скорректированных оценок и расчёт на их основе весов объектов. Запишем скорректированные оценки и вычислим веса целей:
p1 = 125; p3 = 60; p4 = 40; p2 = 10;
v1 = 125/сумма всех оценок = 0,54; v3 = 0,25; v4 = 0,17; v2 = 0,04.
Теперь эти веса можно использовать в аддитивной функции полезности 4.
Корректность вычислений вам предстоит оценить позже, после знакомства с количественными шкалами и оценками, получаемыми на основе измерений в них.

Количественные шкалы

Количественные шкалы отражают более высокий уровень измерений, учитывающий не только то, в каком отношении измеряемый объект находится с другими объектами, но и степень их различия. Примеры использования количественных шкал мы видим повсюду.
Допустимые преобразования. Количественные шкалы определены с точностью до преобразований, которые не меняют единицы измерения (линейных или иных функциональных преобразований).
Типы количественных шкал. Различают количественные шкалы:

  • интервалов;
  • степеней;
  • отношений;
  • разностей;
  • абсолютную шкалу.

Расположение шкал в этом списке не случайно. Первая (шкала интервалов) — самая слабая по информативности и самая сильная в плане надёжности оценок, последняя (абсолютная шкала) — наиболее информативная (измерения могут быть очень надёжными), но при этом допускающая наименее надёжные оценки. Оценка степени соответствия некоторому идеалу максимально затруднена — помните разницу между оценкой и измерением?
Шкала интервалов (интервальная шкала) точно определяет величину интервала между точками на шкале. Для проведения измерений необходимо задать интервал (2 точки). Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования вида: F(Х) = а · Х + b, где а > 0. 

Шкала степенная. Шкала степеней (степенная) допускает степенное преобразование (F(Х) = АХВ). В области техники она вполне адекватна — у неё тоже две степени свободы, как у шкалы интервалов. В экономике она, напротив, является исключением, поэтому подробно рассматривать её не будем.

Шкала интервалов — самая слабая по информативности и дающая самые надёжные оценоки. Абсолютная шкала — наиболее информативная, но допускающая наименее надёжные оценки. Оценка степени соответствия некоторому идеалу в абсолютной шкале максимально затруднена — помните разницу между оценкой и измерением?

Шкала отношений. Из количественных шкал в науке и практике наиболее распространены шкалы отношений. В них есть естественное начало отсчёта — ноль (то есть отсутствие величины), но нет естественной единицы измерения.
Примеры использования шкалы отношений:

  • измерение большинства физических единиц: массы тела, длины, а также цены в экономике;
  • любое процентное соотношение — это измерение в шкале отношений;
  • простые индексы типа Выручка текущего года/Выручка прошлого года также представляют собой измерение в шкале отношений.

Шкала отношений допускает преобразования, изменяющие только масштаб, то есть преобразования подобия: F(Х) = аХ, где а > 0 (линейные возрастающие преобразования без свободного члена).
Примеры преобразования шкалы отношений:

  • пересчёт цен из одной валюты в другую по фиксированному курсу;
  • перевод массы из килограмм в фунты.

Базовая точка в шкале отношений одна — «единица». Эта условная «единица» может быть, например, 100 (проценты) или 1 (доли). Таким образом, измерения в долях и процентах эквивалентны, что очевидно и без всякой теории.
Однако выводы, которые делаются по результатам процентных измерений, могут быть ошибочными (см. врезку). Возникают сопутствующие вопросы:

  • встречаются ли в практике управления подобные сравнения?
  • какие проценты можно сравнивать друг с другом и для чего?
  • какие действия с процентами можно производить?
  • какие действия можно производить с индексами?

Корректность процентных измерений. Рейтинг Путина vs стоимость свинины

  • Рейтинг Путина: в январе 2014 — 60,6%, в июне 2014 — 87,4%.
  • Цена свинины: в январе — 116 руб/кг, в июне — 195 руб/кг.

Вывод: по темпам роста (в научной терминологии «прироста») свинина побеждает Путина: 44% vs 68%.
Корректны ли эти измерения? Решите сами и объясните (что гораздо сложнее). Точно сформулировать, насколько такие сравнения корректны, удается лишь 10% слушателей программ МВА. Это ещё один довод в пользу изучения шкал. Хотя бы на уровне знакомства.

Шкала разностей допускает преобразование сдвига: F(Х) = Х + в. В такой шкале есть естественная единица измерения, но нет естественного начала отсчета. Базовая точка в шкале разностей тоже одна — условный „ноль”, своеобразная точка отсчёта. Пример: по шкале разностей измеряется время, если естественной единицей измерения принимаем год (или сутки — от полудня до полудня). На современном уровне знаний естественное начало отсчёта указать нельзя. Даже дату сотворения мира различные авторы рассчитывают по-разному, как и дату рождения Иисуса Христа.
Абсолютная шкала — это шкала, которая запрещает преобразования 5Только для абсолютной шкалы результаты измерений (числа) используются в привычном смысле именно как числовые значения. В качестве примера измерений по абсолютной шкале можно привести число работников компании или выручку. При этом оценка выручки может отличаться от самой выручки (допустим, 20 млн руб. — „хорошо”, 24,5 млн руб. — „отлично”).
Кроме перечисленных шести основных типов количественных шкал, иногда используют и иные шкалы.

Степени свободы шкал

Для проведения измерений в шкалах отношений и разностей мы должны задавать одну точку. В шкале отношений она „играет роль единицы”, то есть соответствует переводу базового эмпирического элемента в единицу действительной оси. Для шкалы разностей это „нулевая точка”, то есть нужно задать отношение таким образом, чтобы „точка отсчёта” эмпирической системы превращалась в числовой ноль.
В этой связи математики различают шкалы по степеням свободы:

  • 2 степени свободы имеют шкалы интервалов, степеней;
  • 1 степень — шкалы отношений и разностей;
  • 0 степеней — абсолютная шкала.

Иерархия шкал измерений

Напомним, что все шкалы делят на две большие группы: качественные и количественные. Наиболее распространённая классификация шкал — континуальная (рис. 3). В ней шкалы упорядочены по мере повышения их способности удовлетворять требованиям информативности и надёжности проведения оценок. Слева — самая слабая по информативности и самая надёжная, справа — наиболее информативная и наименее надёжная.

SS1-3.jpg

Рис. 3. Иерархия шкал измерений

* * *

В следующей части мы поговорим о том, как собственно выставлять оценки чему-либо. Хорошая обработка результатов измерений — это достоверная система оценок. А какими математическими свойствами она должна обладать? Есть ли научный ответ на этот вопрос?

Литература

    Известное изречение гласит «все познается в сравнении».

    Сравнение — познавательная операция, заключающаяся в нахождении сходства и различия между предметами, явлениями, событиями и лежащая в основе суждений о сходстве или различии объектов. (Под объектами здесь и далее подразумеваются материальные тела, вещества, процессы, явления, события и т.п., их свойства и состояния.)
    Сравнение — один из главных способов познания окружающего мира. При сравнении устанавливают закономерности, присущие объектам, системам объектов и их характеристикам. Если один объект или его характеристика используются как основа для определения других объектов или характеристик, то его/еѐ рассматривают как меру сравнения (меру). А процедуру сравнения с мерой (определения мерой – Ожегов С.И. Словарь русского языка,1985 г.) называют измерением. При сравнении меры могут быть представлены в виде образцов продукции, описаний или изображений животных и растений, образцов состава или свойств веществ, графиков, формул, мер длины и т.д.

    Для идентификации объектов и их характеристик во множестве их проявлений требуется большое количество и разнообразие мер. С учетом особенностей измеряемых объектов и задач измерений меры группируют и используют для построения шкал измерений.

    Шкала измерений – упорядоченное множество проявлений количественных или качественных характеристик объектов, а также самих объектов. Указанное множество может быть образовано из наименований и обозначений (в том числе в цифровой форме) объектов и их характеристик, а также из значений и числовых значений (для количественных характеристик).

    Согласно РМГ 83-2007 [7] «шкала измерений – отображение множества различных проявлений количественного или качественного свойства на принятое по соглашению упорядоченное множество чисел или другую систему логически связанных знаков (обозначений)». «Измерение – сравнение конкретного проявления измеряемого свойства (величины) со шкалой измерений этого свойства (величины) в целях получения результата измерений (оценки свойства или значения величины)».

    На шкалах измерений меры могут присутствовать непосредственно — в вещественной форме или опосредствованно в виде меток (наименований, обозначений, графических символов, чисел и т.п.), в соответствие которым поставлены конкретные вещественные меры или их описания. Меткам устанавливают определенные позиции на шкале. Промежуточные позиции (отметки) шкалы могут быть получены путем разбиения еѐ на интервалы на основе выбранного принципа построения шкалы. В этом случае позиции, которым соответствуют меры, выступают в качестве опорных (реперных) точек.

    Под качественной характеристикой в определении шкалы измерений и далее понимается описание объектов, их свойств и состояний, в словесной форме, в том числе с использованием наименований и обозначений.
    Количественная характеристика – характеристика, которая может быть представлена числовым значением, равным отношению количественного содержания этой характеристики к еѐ базовой реализации, называемой единицей измерения.

    В теории измерений различают пять основных типов шкал: наименований, порядка, разностей (интервалов), отношений и абсолютные. (Тип шкалы — набор признаков, классифицирующий данную шкалу измерений).

    Шкала наименований – шкала, состоящая из множества наименований (обозначений) объектов или проявлений их характеристик, в соответствии которым поставлено описание объекта (конкретная реализация объекта, его графическое изображение, математическая формула, график и т.п.) или проявлений его характеристик.

    Наименование (обозначение) в этом случае рассматривают как обобщенную характеристику объекта или его свойств и состояний. С помощью шкалы наименований устанавливают эквивалентность (равноценность) измеряемого объекта или его характеристик и описания, поставленному в соответствие тому или иному наименованию (обозначению). Это позволяет отнести объект к какой-либо группе или выделить его, путем присвоения индивидуального наименования (обозначения), после чего наименования (обозначения) применяются как идентификаторы объектов (характеристик объектов). При построении шкал наименований могут использоваться числа, но лишь как метки объектов. Примерами таких шкал являются: атласы цветов (до 1000 наименований), запахов (сырой, затхлый, кислый и т.д.), вкуса (чистый, полный, гармоничный и т.д.); множество номеров телефонов, автомашин, паспортов; разделение людей по полу, расе, национальности; классификаторы промышленной продукции, специальностей высшего образования; терминологические справочники и т.п.

    Числа, знаки, обозначения, наименования, составляющие шкалу наименований, разрешается менять местами. Для результатов измерений, полученных с использованием этой шкалы, нет отношений типа «больше — меньше», не применимы понятия единица измерения, нуль, размерность. С ними могут проводиться только некоторые математические операции. Например, числа нельзя складывать и вычитать, но можно подсчитывать, сколько раз (как часто) встречается то или иное число.

    Шкала порядка – шкала наименований (обозначений) объектов или проявлений их характеристик, расположенных в порядке возрастания или убывания по уровню проявления или значимости. Процедура расположения по порядку возрастания или убывания называется ранжированием (выстраиванием по рангу). Фиксированные точки на шкале порядка называют опорными или реперными. Отсюда происходит другое название шкал порядка — реперные шкалы. У реперных шкал может присутствовать нулевая отметка. Однако единица измерения для них отсутствует. Часто отметки шкал порядка и, соответственно, результаты измерений – это числовые метки (баллы, степени, уровни).
    Недостаток реперных шкал — неопределѐнность интервалов между реперными точками.
    Примеры шкал порядка: пятибалльная система оценок знаний учащихся, оценка уровня мастерства спортсменов на соревнованиях, шкала ветров по Бофорту («штиль», «слабый ветер», «умеренный ветер» и т.д.), шкала силы землетрясений. В минералогии используется шкала Мооса, по которому минералы классифицируются согласно критерию твердости. А именно: тальк имеет балл 1, гипс — 2, кальций — 3, флюорит — 4, апатит — 5, ортоклаз — 6, кварц — 7, топаз — 8, корунд — 9, алмаз — 10. Минерал с большим номером является более твердым, чем минерал с меньшим номером, при нажатии царапает его. Здесь же следует упомянуть шкалы твердости Бринеля, Виккерса, Роквелла. Номера домов также измерены в порядковой шкале — они показывают, в каком порядке стоят дома вдоль улицы. Номера томов в собрании сочинений писателя или номера дел в архиве предприятия обычно связаны с хронологическим порядком их создания.

    Порядковые шкалы используют при оценке качества продукции и услуг в квалиметрии (буквальный перевод: измерение качества). Так единица продукции оценивается как годная или не годная. При более тщательном анализе используется шкала с тремя градациями: есть значительные дефекты — присутствуют только незначительные дефекты — нет дефектов. Иногда применяют четыре градации: имеются критические дефекты (делающие невозможным использование) — есть значительные дефекты — присутствуют только незначительные дефекты — нет дефектов. Аналогичный смысл имеет сортность продукции — высший сорт, первый сорт, второй сорт,…

    Оценки экспертов часто осуществляются с использованием шкал порядка. Типичным примером являются задачи ранжирования и классификации промышленных объектов, подлежащих экологическому страхованию.
    В отличие от шкалы наименований шкала порядка позволяет не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в виде суждений: «больше — меньше», «лучше — хуже» и т.п. Однако нельзя утверждать, что землетрясение в 2 балла (лампа качнулась под потолком) ровно в 5 раз слабее, чем землетрясение в 10 баллов (полное разрушение всего на поверхности земли).
    Шкалы наименований и порядка, для которых не определены единицы измерений, называют также условными шкалами или не метрическими шкалами.

    Шкала разностей (интервалов) – шкала значений количественной характеристики, для которой существует условная (принятая по соглашению) единица измерения (масштаб) и условный нуль, устанавливаемый произвольно либо в соответствии с некоторыми традициями и договоренностью. Шкала интервалов — это шкала порядка, в которой числа не только упорядочены по рангам, но и разделены определенными интервалами. Это позволяет судить не только о том, что одна величина больше другой, но и на сколько больше. Для результатов измерений, полученных с использованием шкал интервалов, возможны такие математические действия, как сложение и вычитание, применимы процедуры определения математического ожидания, стандартного отклонения и др. Однако сказать во сколько раз одна величина больше другой невозможно, так как начало отсчета (нулевая точка) выбирается произвольно.
    Примерами шкал интервалов являются шкалы времени и температуры (в градусах Цельсия или Фаренгейта). По шкале интервалов измеряют потенциальную энергию или координату точки, расположенной на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Исследователь должен сам задать точку отсчета и сам выбрать единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: 0С = 5/9 ( 0F — 32), где 0С — температура (в градусах) по шкале Цельсия, а 0F — температура по шкале Фаренгейта.

    Шкала отношений – шкала значений количественной характеристики, для которой определена (по соглашению) единица измерения и существует естественный нуль, не зависящий от произвола наблюдателя (например, абсолютный нуль температурной шкалы). Шкалы отношений — это шкалы длин, термодинамической температуры, массы, силы света, уровня звука, жесткости воды и многих других количественных характеристик. Любое измерение по шкале отношений заключается в сравнении количественной характеристики с единицей измерения и выражении первой через вторую в кратном или дольном отношении.
    Это наиболее совершенная и информативная шкала. Результаты измерений в ней можно вычитать, умножать и делить. В некоторых случаях возможна и операция суммирования. Допустимость тех или иных математических операций определяется природой количественной характеристики.

    Абсолютная шкала – шкала числовых значений количественной характеристики. Отличительные признаки абсолютных шкал: наличие естественного нуля и отсутствие необходимости в единице измерений. С использованием абсолютных шкал измеряют коэффициенты усиления, ослабления, амплитудной модуляции, нелинейных искажений, отражения, коэффициент полезного действия и т. п. Результаты измерений в абсолютных шкалах при необходимости выражают в процентах, промилле, байтах, битах, децибелах.
    Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов, или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений (со специальным названием) в таких шкалах принимают какое-то определенное число частиц (квантов), например один моль – число частиц, равное числу Авогадро.
    Абсолютная шкала, диапазон значений которой находится в пределах от нуля до единицы (или некоторого предельного значения по спецификации шкалы) называют абсолютной ограниченной шкалой.

    Шкалы разностей (интервалов), отношений и абсолютные классифицируют как метрические или физические шкалы. Эти шкалы допускают логарифмическое преобразование, часто применяемое на практике, что приводит к изменению типа шкал. Такие шкалы называют логарифмическими. Практическое распространение получили логарифмические шкалы на основе применения систем десятичных и натуральных логарифмов, а также логарифмов с основанием два.

    Практически реализация шкал измерений достигается путем стандартизации как самих шкал и единиц измерений, так и, при необходимости, способов и условий (спецификаций) их однозначного воспроизведения.
    Измерение с помощью шкал заключается в установлении соответствия объекта или его характеристики отметке на шкале измерений. После чего объекту измерений приписывают количественную или качественную определенность, соответствующую выявленной отметке шкалы.

    Понравилась статья? Поделить с друзьями:
  1. Как найти все предприятия по оквэд
  2. Как найти среднегодовую производственную мощность
  3. Как составить устную речь
  4. Как найти игру соник бум
  5. Перевернулся экран на ноутбуке как исправить видео