Аналитическая геометрия как найти стороны треугольника

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.

Другие решения по аналитической геометрии на плоскости

Понравилось? Добавьте в закладки

Решения задач о треугольнике онлайн

Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.

Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.

Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.

Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.

Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.

Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.

Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, — 4)$, $В(3, 0)$ и $С(0, 6)$.

Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.

Не получаются задачи? Решим быстро и подробно!



2.9. Типовая задача с треугольником

Многие помнят из школы признаки равенства треугольников, признаки подобия треугольников и мучительное заучивание доказательств теорем. Как в

сердцАх сказал один мой одноклассник, «не понимаю, на### доказывать равенство треугольников, если и так видно, что они одинаковые». Мы тоже не

будем ничего доказывать, поскольку аналитическая геометрия рассматривает треугольник совсем с другой стороны.

Типовая задача, как правило, формулируется так: Даны три вершины треугольника. Требуется найти… много чего требуется

найти…. Повезёт, если будет пункта 3-4, но чаще всего их 5-6 и даже больше. И вам повезло – разберём всё! Или почти всё:

Задача 95

Даны вершины треугольника . Требуется:

1) составить уравнения сторон  и найти их угловые коэффициенты;
2) найти длину стороны ;
3) найти ;
4) составить прямой , проходящей через точку  параллельно прямой ;
5) составить уравнение высоты и найти её длину;
6) вычислить площадь треугольника ;
7) составить уравнение медианы ;
8) найти точку пересечения .
и для особо опасных энтузиастов:
9) найти уравнение биссектрисы ;
10) найти центр тяжести  треугольника;
11) составить систему линейных неравенств, определяющих треугольник.

С чего начать решение? Начать целесообразно с выполнения чертежа. По условию этого можно не делать, но для самоконтроля и

самопроверки всегда строим чертёж на черновике, не устану это рекомендовать:

Ещё раз напоминаю, что самый выгодный масштаб 1 единица = 1

см (2 тетрадные клетки). Всё хорошо видно, и расстояния удобно измерять линейкой.

Вперёд без страха и сомнений:

1) Составим уравнения сторон  и найдём их угловые

коэффициенты.
Поскольку известны вершины треугольника, то уравнения каждой стороны составим по двум

точкам.

Составим уравнение стороны  по точкам :

Для проверки мысленно либо на черновике подставляем координаты каждой точки в полученное уравнение.

Теперь

найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:

Таким образом, угловой коэффициент:

Самостоятельно разбираемся со сторонами  и сверяемся, что

получилось:

2) Найдём длину стороны .  Используем соответствующую формулу для точек :

Сторону легко измерить обычной линейкой, хотя это не сильно строгая проверка :)

3) Найдём . Это Задача 31, повторим:

Используем формулу .
Найдём векторы:

Таким образом:
, и сам угол:
, ну что же, похоже на правду, желающие могут приложить транспортир, у кого

он есть.

Внимание! При выполнении этого пункта лучше не использовать формулы ориентированного угла

между прямыми, так как они всегда дают острый угол.

4) Составим уравнение прямой , проходящей через точку  параллельно прямой . Это стандартная задача, и мы ленимся отработать её вновь!

Из общего уравнения прямой  вытащим направляющий вектор .

Составим уравнение прямой  по точке  и направляющему вектору :

5) Составим уравнение высоты и найдём её длину.
Первую часть задания мы тоже решали:

Из уравнения стороны  снимаем вектор нормали . Уравнение высоты

 составим по точке  и направляющему вектору :

Обратите внимание, что координаты точки  нам не известны.

Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты  составим по точке  и угловому коэффициенту :

Длину высоты можно найти двумя способами.

Существует окольный путь:

а) находим  – точку

пересечения высоты и стороны ;

б) находим длину отрезка  по двум

известным точкам.

Но зачем? – ведь есть удобная формула расстояния от точки  до прямой :

6) Вычислим площадь треугольника. Используем «школьную» формулу:

7) Уравнение медианы  составим в два шага:

а) Найдём точку  – середину стороны . Используем формулы координат середины отрезка.

Известны концы , и тогда середина:

б) Уравнение медианы  составим по точкам :

 – для проверки подставим координаты точек .

8) Найдём точку пересечения  высоты и медианы:
      в

Первое уравнение умножили на 5, складываем их почленно:
 – подставим в первое уравнение:

9) Биссектриса делит угол пополам:

Из свойств биссектрисы внутреннего угла следует соотношение длин следующих отрезков:

Длины сторон уже найдены в предыдущих пунктах: .

Таким образом, . Координаты точки  найдём по формулам деления отрезка в данном отношении. Да,

параметр «лямбда» получился просто сказочным, ну а кому сейчас легко? Точки  известны и понеслась нелёгкая:

Примечание: на последнем шаге я умножил числитель и знаменатель на сопряжённое выражение  – чтобы использовать формулу  и

избавиться от иррациональности в знаменателе.

Разбираемся со второй координатой:

аким образом:  

И предчувствие вас не обмануло, уравнение биссектрисы  составим по точкам  по формуле :

обратите внимание на технику упрощений:

Проверил, всё сходится. На практике, конечно, вычисления почти всегда будут проще. Никого не хотел запугать, так уж получилось =)

10) Найдём центр тяжести треугольника.

Но сначала поймём, что такое центр тяжести плоской фигуры. Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца

в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то

теоретически фигура не должна свалиться.

Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке.

Из пункта 7 нам уже известна одна из медиан: .  Как решить задачу?

Напрашивается очевидный алгоритм: можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь

короче! Нужно только знать полезное свойство:

Точка пересечения медиан делит каждую из медиан в

отношении , считая от вершины треугольника. Поэтому справедливо

отношение
Нам известны концы отрезка – точки  и .
По формулам деления отрезка в данном отношении:

Таким образом, центр тяжести треугольника:
И заключительный пункт задачи, для освоения которого нужно уметь решать недавно разобранные линейные

неравенства:

11) Составим систему линейных неравенств, определяющих треугольник.

Для удобства я перепишу найденные уравнения сторон:

Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится

вершина . Составим вспомогательный многочлен  и вычислим его значение в точке : . Поскольку сторона  принадлежит треугольнику, то неравенство будет нестрогим:

Внимание! Если вам не понятен этот алгоритм, то обратитесь к

Задаче 90.

Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому

очевидно неравенство .

И, наконец, для  составим многочлен , в который подставим координаты точки : .
Таким образом, получаем третье неравенство: .

Итак, треугольник  определяется следующей системой линейных

неравенств:

Готово.

Какой можно сделать вывод?


Многие задачи аналитической геометрии прозрачны и просты,
главное, не допустить вычислительных ошибок.

Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них!

Главное, придерживаться методики решения и проявить маломальское упорство.

Ну что, может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =) 

Но сейчас на очереди другая увлекательная тема, продолжаем изучать геометрию плоскости:

3.1. Алгебраическая линия и её порядок

2.8. Как научиться решать задачи по геометрии?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.

Решения задач о треугольнике онлайн

Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.

Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.

Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.

Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.

Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.

Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.

Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, — 4)$, $В(3, 0)$ и $С(0, 6)$.

Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.

Аналитическая геометрия решение треугольника

Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут

Неправильный логин или пароль.

Укажите электронный адрес и пароль.

Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.

Инструкция по изменению пароля отправлена на почту.

Чтобы зарегистрироваться, укажите ваш email и пароль

Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.

Аналитическая геометрия

Задача 3. Даны вершины треугольника ABC (рис. 1): А(-4,8), В(5,-4), С(10, 6).

1) длину стороны АВ;

2) уравнение высоты СД и ее длину;

3) уравнение медианы, проведенной из вершины А;

4) записать уравнение прямой, проходящей через точку С параллельно стороне АВ.

1. Расстояние d между точками М1(x1у1) и М2(х2у2) определя­ется по формуле

(1)

Подставим в формулу (1) координаты точек А и В, получим

.

2. Уравнение прямой, проходящей через точки М1(x1у1) и М2(х2у2), имеет вид

(2)

Подставив в формулу (2) координаты точек А и В, получим уравнение пря­мой АВ:

Для нахождения углового коэффициента КАВ прямой АВ разрешим полученное уравнение относительно у: .

Отсюда . Т. к. высота СD перпендикулярна АВ, то угловой коэффициент будет равен , .

Искомая высота проходит через точку С(10,6). Воспользуемся уравнением прямой, проходящей через данную точку, с заданным угловым коэффициентом:

Y-6= (x-10), 3x-4y-6=0 (СD)

Для нахождения длины СD определим координаты точки D, решив систему уравнений (АВ) и (СD): , откуда х=2, у=0, т. е. D(2,0).

Подставив в формулу (1) координаты точек С и Д, находим

3. Обозначим основание искомой медианы через М. По определению медианы М делит сторону ВС пополам. Координаты точки М най­дем по формуле

(4)

Чтобы записать уравнение медианы AM, воспользуемся форму­лой (2). , , , (АМ)

4. Обозначим искомую прямую СР. Угловой коэффициент , т. к. АВ и СР параллельны, то искомая прямая проходит через точку С (10,6). Воспользуемся уравнением (3)

, , (СP)

Задача 4. Расходы на автомобильном транспорте выражаются формулой у=120+30х, а на железнодорожном — у=160+20х, где х — расстояние в километрах, у — транспортные расходы на 1 км. (в усл. ден. ед.).

Построить графики функций, произвести экономический анализ, рассчитать транспортные расходы при х=200 км.

1. Построим прямые у=120+30х (I) и у=160+20х (II) (рис. 4).

Рис.4

Найдем точку пересечения двух прямых

х0=4 у0=240

Если х=4, оба вида транспорта эквивалентны по затратам.

Если х 4 выгоднее становятся же­лезнодорожные перевозки.

Рассчитаем транспортные расходы при х=200 км.
у=120+30∙200=6120 (усл. ден. ед.) — затраты на автомобильном

У=160+4000=4150 (усл. ден. ед.) — затраты на железнодорожном транспорте.

источники:

http://reshka.feniks.help/vysshaya-matematika/analiticheskaja-geometrija/dany-vershiny-treugolnika-abc

http://matica.org.ua/primery/primery/analiticheskaia-geometriia

Раздел V.
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

И В ПРОСТРАНСТВЕ

В раздел включены
задачи, которые рассматриваются в теме
«Аналитическая геометрия на плоскости
и в пространстве»: составление различных
уравнений прямых на плоскости и в
пространстве; определение взаимного
расположения прямых на плоскости,
прямых, прямой и плоскости, плоскостей
в пространстве; изображение кривых
второго порядка. Необходимо отметить,
что в данном разделе представлены задачи
экономического содержания, при решении
которых применяются сведения из
аналитической геометрии на плоскости.

При решении задач
аналитической геометрии целесообразно
воспользоваться учебными пособиями
следующих авторов: Д.В. Клетеника, Н. Ш.
Кремера, Д.Т. Письменного В.И. Малыхина,
т.к. в данной литературе рассматривается
более широкий круг задач, которые можно
использовать для самостоятельной
подготовки по данной теме. Применение
анали­тической геометрии к решению
экономических задач изложено в учебных
изда­ниях М.С. Красса и В.И. Ермакова.

Задача 5.1. Даны
координаты вершин треугольника
АВС.
Необходимо

а) написать
уравнения сторон треугольника;

б) написать
уравнение высоты треугольника проведенной
из вершины
С
к стороне
АВ
и найти ее длину;

в) написать
уравнение медианы треугольника,
проведенной из вершины
В
к стороне
АС;

г) найти углы
треугольника и установить его вид
(прямоугольный, остроугольный,
тупоугольный);

д) найти длины
сторон треугольника и определить его
тип (разносторонний, равнобедренный,
равносторонний);

е) найти координаты
центра тяжести (точка пересечения
медиан) треугольника
АВС;

ж) найти координаты
ортоцентра (точка пересечения высот)
треугольника
АВС.

К каждому из
пунктов а) – в) решения сделать рисунки
в системе координат. На рисунках
обозначить соответствующие пунктам
задачи линии и точки.

Данные к условию
задачи, соответствующие вариантам:

1)
;

2)
;

3)
;

7)
;

8)
;

9)
;

10)
;

11)
;

12)
;

13)
;

14)
;

15)
;

16)
;

17)
;

18)

;

4)
;

5)
;

6)
;

19)
;

20)
;

21)
;

22)
;

23)
;

24)
;

25)
;

26)
;

27)
;

28)
;

29)
;

30).

Пример 5.1

Даны координаты
вершин треугольника
АВС:

.
Необходимо а) написать уравнения сторон
треугольника; б) написать уравнение
высоты треугольника проведенной из
вершины
С
к стороне
АВ
и найти ее длину; в) написать уравнение
медианы треугольника, проведенной из
вершины
В
к стороне
АС;
г) найти длины сторон треугольника и
определить его тип (разносторонний,
равнобедренный, равносторонний); д)
найти углы треугольника и установить
его вид (прямоугольный, остроугольный,
тупоугольный); е) найти координаты центра
тяжести (точка пересечения медиан)
треугольника
АВС;
ж) найти координаты ортоцентра (точка
пересечения высот) треугольника
АВС.

Решение

а)
Для каждой стороны треугольника известны
координаты двух точек, которые лежат
на искомых линиях, значит уравнения
сторон треугольника – уравнения прямых,
проходящих через две заданные точки

,

(5.1)

где

и

соответствующие координаты точек.

Таким образом,
подставляя в формулу (5.1) координаты
соответствующих прямым точек получаем

,
,
,

откуда после
преобразований записываем уравнения
сторон

,

,

.

На рис. 7 изобразим
соответствующие сторонам треугольника

прямые.

Ответ:

,
,
.

Рис. 7

б)
Пусть

– высота, проведенная из вершины

к стороне
.
Поскольку

проходит через точку

перпендикулярно вектору
,
то составим уравнение прямой по следующей
формуле

,

(5.2)

где

– координаты вектора перпендикулярного
искомой прямой,

– координаты точки, принадлежащей этой
прямой. Найдем координаты вектора,
перпендикулярного прямой
,
и подставим в формулу (5.2)

,
,

,

,

.

Найдем длину высоты
CH
как расстояние от точки

до прямой

,

(5.3)

где

– уравнение прямой
,

– координаты точки
.

В предыдущем пункте
было найдено

.

Подставив данные
в формулу (5.3), получим

,

На рис. 8 изобразим
треугольник и найденную высоту СН.

Ответ:

.

Рис.
8

в)
медиана

треугольника

делит сторону

на две равные части, т.е. точка

является серединой отрезка
.
Исходя из этого, можно найти координаты

точки

,
,

(5.4)

где

и

– координаты соответственно точек

и
,
подставив которые в формулы (5.4), получим

;
.

Уравнение медианы

треугольника

составим как уравнение прямой, проходящей
через точки

и

по формуле (5.1)

,

.

Ответ:

(рис. 9).

Рис.
9

г)
Длины сторон треугольника найдем как
длины соответствующих векторов, т.е.

,
,
.

Стороны

и

треугольника

равны, значит, треугольник является
равнобедренным с основанием
.

Ответ:
треугольник

равнобедренный с основанием
;

,
.

д)
Углы треугольника

найдем как углы между векторами,
исходящими из соответствующих вершин
данного треугольника, т.е.

,
,
.

Поскольку треугольник
равнобедренный с основанием
,
то

,

Углы между векторами
вычислим по формуле (4.4), для которой
потребуются скалярные произведения
векторов
,
.

Найдем координаты
и модули векторов, необходимых для
вычисления углов

,
;

,
,
.

Подставляя
найденные данные в формулу (4.4), получим

,

,

Поскольку значения
косинусов всех найденных углов
положительны, то треугольник

является остроугольным.

Ответ:
треугольник

остроугольный;

,
,
.

е)
Пусть

– центр тяжести треугольника
,
тогда координаты

точки

можно найти, по формулам (5.5)

,
,

(5.5)

где
,

и

– координаты соответственно точек
,

и
,
следовательно,

,
.

Ответ:

– центр тяжести треугольника
.

ж) Пусть

– ортоцентр треугольника
.
Найдем координаты точки

как координаты точки пересечения высот
треугольника. Уравнение высоты

было найдено в пункте б).
Найдем уравнение высоты
:

,
,

,

.

Поскольку
,
то решение системы

является координатами
точки
,
откуда находим
.

Ответ:

– ортоцентр треугольника
.

Задача 5.2.
Фиксированные издержки на предприятии
при выпуске некоторой продукции
составляют
F
руб. в месяц, переменные издержки –
V0
руб. за
единицу продукции, при этом выручка
составляет
R0
руб. за единицу изготовленной продукции.
Составить функцию прибыли
P(q)
(
q
– количество произведенной продукции);
построить ее график и определить точку
безубыточности.

Данные к условию
задачи, соответствующие вариантам:

1)
;

2)
;

3)
;

4)
;

5)
;

6)
;

7)
;

8)
;

9)
;

10)
;

11)
;

12)
;

13)
;

14)
;

15)
;

16)
;

17)
;

18)
;

19)
;

20)
;

21)
;

22)
;

23)
;

24)
;

25)
;

26)
;

27)
;

28)
;

29)
;

30)
.

Пример 5.2

Фиксированные
издержки на предприятии при выпуске
некоторой продукции составляют


руб. в месяц, переменные издержки –


руб. за единицу
продукции, при этом выручка составляет


руб. за единицу
изготовленной продукции. Составить
функцию прибыли
P(q)
(
q
– количество произведенной продукции);
построить ее график и определить точку
безубыточности.

Решение

Вычислим совокупные
издержки на производстве при выпуске
q
единиц некоторой продукции

.

Если будет продано
q
единиц продукции, то совокупный доход
составит

.

Исходя из полученных
функций совокупного дохода и совокупных
издержек, найдем функцию прибыли

,

,

.

Точка
безубыточности – точка, в которой
прибыль равна нулю, или точка, в которой
совокупные издержки равны совокупному
доходу

,

,

откуда находим


– точка безубыточности.

Для построения
графика (рис. 10) функции прибыли найдем
еще одну точку

.

Рис. 10

Ответ:
функция прибыли
,
точка безубыточности
.

Задача 5.3. Законы
спроса и предложения на некоторый товар
соответственно определяются уравнениями
p=pD(q),
p=pS(q),
где
p
– цена на товар,
q
– количество товара. Предполагается,
что спрос определяется только ценой
товара на рынке
pС,
а предложение – только ценой
pS,
получаемой поставщиками. Необходимо

а) определить
точку рыночного равновесия;

б) точку равновесия
после введения налога, равного
t.
Определить увеличение цены и уменьшение
равновесного объема продаж;

в) найти субсидию
s,
которая приведет к увеличению объема
продаж на
q0
ед. относительно изначального
(определенного в пункте а));

г) найти новую
точку равновесия и доход правительства
при введении налога, пропорционального
цене и равного
N%;

д) определить,
сколько денег будет израсходовано
правительством на скупку излишка при
установлении минимальной цены, равной
p0.

К каждому пункту
решения сделать рисунок в системе
координат. На рисунке обозначить
соответствующие пункту задачи линии и
точки.

Данные к условию
задачи, соответствующие вариантам:

1)
;

2)
;

3)
;

4)
;

5)
;

6)
;

7)
;

8)
;

9)
;

10)
;

11)
;

12)
;

13)
;

14)
;

15)
;

16)
;

17)
;

18)
;

19)
;

20)
;

21)
;

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Аналитическая геометрия.

Задача 3. Даны вершины треугольника ABC (рис. 1): А(-4,8), В(5,-4), С(10, 6).

Найти:

1) длину стороны АВ;

2) уравнение высоты СД и ее длину;

3) уравнение медианы, проведенной из вершины А;

4) записать уравнение прямой, проходящей через точку С параллельно стороне АВ.

Решеиие

Аналитическая геометрия

1. Расстояние d между точками М1(x1у1) и М2(х2у2) определя­ется по формуле

Аналитическая геометрия (1)

Подставим в формулу (1) координаты точек А и В, получим

Аналитическая геометрия .

2. Уравнение прямой, проходящей через точки М1(x1у1) и М2(х2у2), имеет вид

Аналитическая геометрия (2)

Подставив в формулу (2) координаты точек А и В, получим уравнение пря­мой АВ:

Аналитическая геометрия

Для нахождения углового коэффициента КАВ прямой АВ разрешим полученное уравнение относительно у: Аналитическая геометрия .

Отсюда Аналитическая геометрия . Т. к. высота СD перпендикулярна АВ, то угловой коэффициент Аналитическая геометрия будет равен Аналитическая геометрия , Аналитическая геометрия .

Искомая высота проходит через точку С(10,6). Воспользуемся уравнением прямой, проходящей через данную точку, с заданным угловым коэффициентом:

(y-yо) = k(x-xo) (3)

Y-6= Аналитическая геометрия (x-10), 3x-4y-6=0 (СD)

Для нахождения длины СD определим координаты точки D, решив систему уравнений (АВ) и (СD): Аналитическая геометрия , откуда х=2, у=0, т. е. D(2,0).

Подставив в формулу (1) координаты точек С и Д, находим

Аналитическая геометрия

3. Обозначим основание искомой медианы через М. По определению медианы М делит сторону ВС пополам. Координаты точки М най­дем по формуле

Аналитическая геометрия (4)

Аналитическая геометрия

Чтобы записать уравнение медианы AM, воспользуемся форму­лой (2). Аналитическая геометрия , Аналитическая геометрия Аналитическая геометрия , Аналитическая геометрия , Аналитическая геометрия (АМ)

4. Обозначим искомую прямую СР. Угловой коэффициент Аналитическая геометрия , т. к. АВ и СР параллельны, то Аналитическая геометрия искомая прямая проходит через точку С (10,6). Воспользуемся уравнением (3)

Аналитическая геометрия , Аналитическая геометрия , Аналитическая геометрия (СP)

Задача 4. Расходы на автомобильном транспорте выражаются формулой у=120+30х, а на железнодорожном — у=160+20х, где х — расстояние в километрах, у — транспортные расходы на 1 км. (в усл. ден. ед.).

Построить графики функций, произвести экономический анализ, рассчитать транспортные расходы при х=200 км.

1. Построим прямые у=120+30х (I) и у=160+20х (II) (рис. 4).

Аналитическая геометрия

Рис.4 Аналитическая геометрияАналитическая геометрияАналитическая геометрия

Найдем точку пересечения двух прямых

Аналитическая геометрияАналитическая геометрия Аналитическая геометрия х0=4 у0=240

Если х=4, оба вида транспорта эквивалентны по затратам.

Если х<4, автомобильные перевозки выгоднее, а при х>4 выгоднее становятся же­лезнодорожные перевозки.

Рассчитаем транспортные расходы при х=200 км.
у=120+30∙200=6120 (усл. ден. ед.) — затраты на автомобильном

Транспорте;

У=160+4000=4150 (усл. ден. ед.) — затраты на железнодорожном транспорте.

< Предыдущая   Следующая >

Понравилась статья? Поделить с друзьями:
  • Как найти угловую скорость вращения рамки
  • Как найти подруг одинокой женщине
  • Как найти письмо если утерян трек номер
  • Гта 5 как найти урсулу карта
  • Как правильно составить резюме пример скачать