Анодный процесс как его составить

Электрохимия – это раздел химии, который изучает процессы, протекающие в расплавах или растворах электролитов при прохождении через них постоянного электрического тока.

Данные процессы сопровождаются окислительно-восстановительными реакциями.

Собственно электрохимические превращения называются электролизом.

Любой процесс электролиза протекает с применением электродов – положительно или отрицательно заряженных материалов, которые участвуют в переносе электронов на границе двух фаз: расплав или раствор электролита – материал электрода.

Электрохимические процессы исследуют в т.н. электрохимических ячейках, состоящих из сосуда с расплавом или раствором электролита и помещёнными в него электродами, через которые пропускают постоянный электрический ток 

Электроды могут состоять из различных материалов. Нерастворимые электроды, как правило, состоят из графита, золота, платины а растворимые – из любых металлов (кроме щелочных).

Как известно, процесс диссоциации электролита сопровождается распадом его на катионы (положительно заряженные частицы) и анионы (отрицательно заряженные частицы).

Например, в случае диссоциации хлорида натрия, это можно изобразить схемой:

NaCl ↔ Na+ + Cl

Если расплав данного электролита поместить в электрохимическую ячейку и пропустить через него электрический ток, то на катоде будут восстанавливаться катионы, а на аноде будут окисляться анионы. 

undefined                           

Таким образом, в совокупности, процесс электролиза представляет собой катодный и анодный процессы или окислительно-восстановительные реакции.

Продукты электролиза зависят прежде всего от того, в каком виде находится электролит (расплав или раствор), от материала электрода (инертный или растворимый) и от положения металла, входящего в состав соли, в ряду напряжения. В общем виде, всё это может быть сведено в следующие правила:

1) Катион электролита расположен в ряду напряжения до алюминия (включительно), то на катоде идёт процесс восстановления воды – выделяется водород.

2) Катион металла находится в ряду напряжения между алюминием и водородом, то на катоде одновременно восстанавливаются ионы металла и молекулы воды. 

3) Катион металла расположен в ряду напряжения после водорода, то на катоде восстанавливается металл.                

4) В растворе содержатся катионы разных металлов, то сначала восстанавливаются катионы металла, стоящего в ряду напряжения правее.

5) При растворимом аноде окисляется металл анода, независимо от вида катиона в электролите и природу аниона.

6) При нерастворимом аноде

— а) в случае электролиза раcтворов бескислородных кислот ( кроме фторидов) на аноде идёт процесс окисления аниона.

— б) в случае электролиза растворов солей кислородсодержащих кислот и фторидов на аноде идёт процесс окисления воды (выделяется кислород). Анионы не окисляются.

— в) анионы по их способности окисляться располагаются в следующем порядке:   

undefined

Электролиз расплавов электролитов.

Как правило, электролиз данного вида осуществляется для соединений с ионным типом связей (соли, щёлочи). 

При электролизе расплава гидроксида калия происходят следующие процессы:

undefined

Электролиз растворов электролитов.

В растворах электролитов, помимо катионов и анионов, присутствуют молекулы воды. При электролизе воды происходят следующие процессы:

undefined

Рассмотрим электролиз хлорида натрия в случае нерастворимого и растворимого анода.

а) Анод нерастворимый.

В растворе протекает процесс электролитической диссоциации:

NaCl = Na+ + Cl

на катоде (-) ионы натрия не восстанавливаются, остаются в растворе: 2H2O + 2ē → H2 + 2OH

на аноде (+): 2Cl — 2ē  Cl2

Суммарное ионное уравнение:

2H2O + 2Cl = H2 + Cl2 + 2OH

Учитывая присутствие ионов натрия в растворе, составим молекулярное уравнение:

2NaCl + 2H2 H2 + Cl2 + 2NaCl

б) Анод растворимый (например, медный).

Если анод растворимый, то металл анода будет окисляться:

Cuо — 2ē  Cu2+

Катионы меди в ряду напряжений стоят после водорода, поэтому они будут восстанавливаться на катоде.       
на катоде (-): Cu2+ + 2ē  Cuо

на аноде (+): Cuо — 2ē   Cu2+

При этом концентрация хлорида натрия в растворе не меняется.

Если Вам нужна помощь по химии, записывайтесь в расписании на сайте ко мне на занятия.

С уважением, Ваш Владимир Смирнов. 

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Электролиз

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

Правила составления окислительно-восстановительных реакций

Электролиз растворов электролитов с инертными электродами

Напомним, что на катоде протекают процессы восстановления, на аноде — процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:
Zn 2+ +2e → Zn 0 .

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H2:
2H2O + 2e → H2 0 + 2OH – .
Например, в случае электролиза растворов NaNO3 или KOH.

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:
2H + +2e → H2.
Например, в случае электролиза раствора H2SO4.

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F – ), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:
2Cl – – 2e → Cl2.

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды — почему? Потому что больше ничего написать и не получится: 1) H + написать не можем, так как OH – и H + не могут стоять по разные стороны одного уравнения; 2) H2 написать также не можем, так как это был бы процесс восстановления водорода (2H + +2e → H2), а на аноде протекают только процессы окисления.
4OH – – 4e → O2 + 2H2O.

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:
2H2O – 4e → O2 + 4H + .
Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO2 и удвоение остатка углеродной цепи:
2R-COO – – 2e → R-R + 2CO2.

Примеры:

1. Раствор NaCl

Расписываем диссоциацию на ионы:
NaCl → Na + + Cl –

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

К: 2Na + (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 2Cl – – 2e → Cl2

Коэффициент 2 перед Na + появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

2Na + + 2Cl – + 2H2O → H2 0 + 2Na + + 2OH – + Cl2. Соединяем катионы и анионы:
2NaCl + 2H2O → H2 0 + 2NaOH + Cl2.

2. Раствор Na2SO4

Расписываем диссоциацию на ионы:
Na2SO4 → 2Na + + SO4 2–

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H2O + 2e → H2 0 + 2OH –
А: 2H2O – 4e → O2 0 + 4H + .

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H2O + 4e → 2H2 0 + 4OH –
А: 2H2O – 4e → O2 0 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
6H2O → 2H2 0 + 4OH – + 4H + + O2 0 .

4OH- и 4H+ соединяем в 4 молекулы H2O:
6H2O → 2H2 0 + 4H2O + O2 0 .

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H2O и получаем итоговое уравнение гидролиза:
2H2O → 2H2 0 + O2 0 .

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

3. Раствор CuCl2

Расписываем диссоциацию на ионы:
CuCl2 → Cu 2+ + 2Cl –

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-анионы.

К: Cu 2+ + 2e → Cu 0
A: 2Cl – – 2e → Cl2

Записываем суммарное уравнение:
CuCl2 → Cu 0 + Cl2.

4. Раствор CuSO4

Расписываем диссоциацию на ионы:
CuSO4 → Cu 2+ + SO4 2–

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Cu 2+ + 2e → Cu 0
A: SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Уравниваем количество электронов на катоде и аноде. Для это умножим все коэффициенты катодного уравнения на 2. Количество сульфат-ионов также необходимо удвоить, так как в сульфате меди соотношение Cu 2+ и SO4 2– 1:1.

К: 2Cu 2+ + 4e → 2Cu 0
A: 2SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Записываем суммарное уравнение:
2Cu 2+ + 2SO4 2– + 2H2O → 2Cu 0 + O2 + 4H + + 2SO4 2– .

Соединив катионы и анионы, получаем итоговое уравнение электролиза:
2CuSO4 + 2H2O → 2Cu 0 + O2 + 2H2SO4.

5. Раствор NiCl2

Расписываем диссоциацию на ионы:
NiCl2 → Ni 2+ + 2Cl –

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться только хлорид-анионы.

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
A: 2Cl – – 2e → Cl2

Уравниваем количество электронов, принимаемых и отдаваемых на катоде и аноде. Для этого умножаем все коэффициенты анодного уравнения на 2:

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
Ni 2+ (в растворе)
A: 4Cl – – 4e → 2Cl2

Замечаем, что согласно формуле NiCl2, соотношение атомов никеля и хлора 1:2, следовательно, в раствор необходимо добавить Ni 2+ для получения общего количества 2NiCl2. Также это необходимо сделать, так как в растворе должны присутствовать противоионы для гидроксид-анионов.

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 4Cl – + 2H2O → Ni 0 + H2 0 + 2OH – + Ni 2+ + 2Cl2.

Соединяем катионы и анионы для получения итогового уравнения электролиза:
2NiCl2 + 2H2O → Ni 0 + H2 0 + Ni(OH)2 + 2Cl2.

6. Раствор NiSO4

Расписываем диссоциацию на ионы:
NiSO4 → Ni 2+ + SO4 2–

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
A: SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Проверяем, что количество принятых и отданных электронов совпадает. Также замечаем, что в растворе есть гидроксид-ионы, но в записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор Ni 2+ . Так как удвоилось количество ионов никеля, необходимо удвоить и количество сульфат-ионов:

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
Ni 2+ (в растворе)
A: 2SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 2SO4 2– + 2H2O + 2H2O → Ni 0 + Ni 2+ + 2OH – + H2 0 + O2 0 + 2SO4 2– + 4H + .

Соединяем катионы и анионы и записываем итоговое уравнение электролиза:
2NiSO4 + 4H2O → Ni 0 + Ni(OH)2 + H2 0 + O2 0 + 2H2SO4.

В других источниках литературы также говорится об альтернативном протекании электролиза кислородсодержащих солей металлов средней активности. Разница состоит в том, что после сложения левых и правых частей процессов электролиза необходимо соединить H + и OH – с образованием двух молекул воды. Оставшиеся 2H + расходуются на образование серной кислоты. В этом случае не нужно прибавлять дополнительные ионы никеля и сульфат-ионы:

Ni 2+ + SO4 2– + 2H2O + 2H2O → Ni 0 + 2OH – + H2 0 + O2 0 + SO4 2– + 4H + .

Ni 2+ + SO4 2– + 4H2O → Ni 0 + H2 0 + O2 0 + SO4 2– + 2H + + 2H2O.

NiSO4 + 2H2O → Ni 0 + H2 0 + O2 0 + H2SO4.

7. Раствор CH3COONa

Расписываем диссоциацию на ионы:
CH3COONa → CH3COO – + Na +

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. На аноде будет происходит окисление ацетат-ионов с образованием углекислого газа и удвоением остатка углеродной цепи:

К: 2Na + (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 2CH3COO – – 2e → CH3-CH3 + CO2

Так как количества электронов в процессах окисления и восстановления совпадают, составляем суммарное уравнение:
2Na + + 2CH3COO – + 2H2O → 2Na + + 2OH – + H2 0 + CH3-CH3 + CO2

Соединяем катионы и анионы:
2CH3COONa + 2H2O → 2NaOH + H2 0 + CH3-CH3 + CO2.

8. Раствор H2SO4

Расписываем диссоциацию на ионы:
H2SO4 → 2H + + SO4 2–

Из катионов в растворе присутствуют только катионы H+, они и будут восстанавливаться до простого вещества. На аноде будет протекать окисление воды, так как кислород содержащие кислотные остатки в растворах на аноде не окисляются.

К: 2H + +2e → H2
A: 2H2O – 4e → O2 + 4H +

Уравниваем число электронов. Для этого удваиваем каждый коэффициент в уравнении катодного процесса:

К: 4H + +4e → 2H2
A: 2H2O – 4e → O2 + 4H +

Суммируем левые и правые части уравнений:
4H + + 2H2O → 2H2 + O2 + 4H +

Катионы H + находятся в обеих частях реакции, следовательно, их нужно сократить. Получаем, что в случае растворов кислот, электролизу подвергаются только молекулы H2O:
2H2O → 2H2 + O2.

9. Раствор NaOH

Расписываем диссоциацию на ионы:
NaOH → Na + + OH –

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу, на катоде восстанавливается только водород. На аноде будут окисляться гидроксид-анионы с образованием кислорода и воды:

К: Na+ (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 4OH – – 4e → O2 + 2H2O

Уравниваем число электронов, принимаемых и отдаваемых на электродах:

К: Na + (в растворе)
4H2O + 4e → 2H2 0 + 4OH –
А: 4OH – – 4e → O2 + 2H2O

Суммируем левые и правые части процессов:
4H2O + 4OH – → 2H2 0 + 4OH – + O2 0 + 2H2O

Сокращая 2H2O и ионы OH – , получаем итоговое уравнение электролиза:
2H2O → 2H2 + O2.

Вывод:
При электролизе растворов 1) кислородсодержащих кислот;
2) щелочей;
3) солей активных металлов и кислородсодержащих кислот
на электродах протекает электролиз воды:
2H2O → 2H2 + O2.

Составление электронных уравнений анодного и катодного процессов происходящих при коррозии

Решение задач на коррозию металлов

Задание 287.
Составьте электронные уравнения анодного и катодного процессов с кислородной и водородной деполяризацией при коррозии пары магний — никель. Какие продукты коррозии образуются в первом и во втором случаях?
Решение:
Магний имеет более электроотрицательный стандартный электродный потенциал (-2,36 В), чем никель (-0,24 В), поэтому он является анодом, никель – катодом.

Анодный процесс – окисление металла: Mе 0 — 2 = Mе n+

и катодный процесс – восстановление ионов водорода (водородная деполяризация) или молекул кислорода (кислородная деполяризация). Поэтому при коррозии пары Mg — Ni с водородной деполяризацией происходит следующие процессы:

Анодный процесс: Mg 0 — 2 = Mg 2+
Катодный процесс: в кислой среде: 2Н + + 2 = Н2

Продуктом коррозии будет газообразный водород соединение магния с кислотным остатком (соль).

При коррозии пары Mg — Ni в атмосферных условиях на катоде происходит кислородная деполяризация, а на аноде – окисление магния:

Анодный процесс: Mg 0 — 2 = Mg 2+
Катодный процесс: в нейтральной среде: 1/2O2 + H2O + 2 = 2OH —
в нейтральной или в щелочной среде: 1/2O 2 + H 2 O + 2 = 2OH —

Так как ионы Mg 2+ с гидроксид-ионами ОН — образуют нерастворимый гидроксид, то продуктом коррозии будет Mg(OH)2.

Задание 288.
В раствор хлороводородной (соляной) кислоты поместили цинковую пластинку и цинковую пластинку, частично покрытую медью. В каком случае процесс коррозии цинка происходит интенсивнее? Ответ мотивируйте, составив электронные уравнения соответствующих процессов.
Решение:
а) При помещении цинковой пластинки в раствор хлороводородной (соляной) кислоты происходит реакция замещения:

Через некоторое время цинковая пластинка в растворе разбавленной соляной кислоте пассивируется оксидной плёнкой, образующейся при взаимодействии цинка с кислородом растворённым в воде по схеме: Zn + 1/2 O2 = ZnO, поэтому коррозия цинка вскоре замедлится.

б) При помещении цинковой пластинки, частично покрытой медью, в раствор соляной кислоты образуется гальваническая пара Zn — Cu, в которой цинк будет анодом, а медь – катодом. Происходит это так, потому что цинк имеет более электроотрицательный электродный потенциал (-0,763 В), чем медь (+0-,34 В).

Анодный процесс: Zn 0 — 2 = Zn 2+ ;
Катодный процесс: в кислой среде: 2Н + + 2 = Н2

Ионы цинка Zn 2+ с ионами хлора Cl — будут давать соль ZnCl2 – сильный электролит, а водород будет интенсивно выделяться в виде пузырьков газа. Этот процесс будет бурно протекать до тех пор пока не закончится приход ионов водорода Н + соляной кислоты или пока полностью не растворится цинковая пластинка. Ионно-молекулярное уравнение коррозии:

Zn 0 + 2H + = Zn 2+ + H2О↑

Молекулярная форма уравнения:

Задание 289.
Почему химически чистое железо более стойко против коррозии, чем техническое железо? Составьте электронные уравнения анодного и катодного процессов происходящих при коррозии технического железа во влажном воздухе и в кислой среде.
Решение:
Химически чистое железо более стойко к коррозии, потому что с кислородом образует на поверхности оксидную плёнку, которая препятствует дальнейшему разрушению металла. Техническое железо содержит примеси различных металлов и неметаллов, которые образуют различные гальванические пары железо — примесь. Железо, имея отрицательный стандартный электродный потенциал (-0,44 В) со многими примесями, потенциал которых значительно положительнее, является анодом, а примеси – катодом:

Анодный процесс: Fe 0 -2 = Fe 2+
Катодный процесс: в кислой среде: 2Н + + 2 = Н2
в нейтральной или в щелочной среде: 1/2O2 + H2O + 2 = 2OH —

Так как ионы Fe 2+ с гидроксильной группой образуют нерастворимый гидроксид, то продуктом атмосферной коррозии железа будет Fe(OH)2. При контакте с кислородом воздуха Fe(OH)2 быстро окисляется до метагидроксида железа FeO(OH), приобретая характерный для него бурый цвет:

источники:

http://chemrise.ru/theory/inorganic_11/electrolysis_solution_11

http://buzani.ru/zadachi/khimiya-shimanovich/952-elektronnye-uravneniya-anodnogo-i-katodnogo-protsessov-zadachi-287-289

Электролиз

совокупность окислительно-восстановительных
процессов, происходящих на электродах
при прохождении постоянного электрического
тока через раствор или расплав
электролита
.

Анод
(А) – это электрод, на котором происходит
процесс окисления. Катод (К) – электрод,
на котором происходит процесс
восстановления. При электролизе катод
подключается к отрицательному полюсу
источника тока, а анод – к положительному.

Рассмотрим
сущность процесса на примере электролиза
расплава
NaОН
с угольными электродами. В расплавах,
как и в растворах, молекулы электролитов
диссоциируют на ионы:

NaОН

Na+
+ ОН.

Прохождение
электрического тока вызывает направленное
перемещение ионов. Катионы натрия Na+
движутся к катоду и принимают от него
электроны:

Анионы
ОН
подходят к аноду и отдают электроны:

Суммарная
реакция электролиза расплава вещества
NaОН
представлена суммой двух электродных
процессов и выражается уравнением:

Электролиз
расплавов солей или оксидов используют
в технике для получения активных
металлов (Li,
Na,
K,
Ca,
Al).

В
водных
растворах
,
кроме ионов самого электролита, находятся
молекулы воды, которые также могут
участвовать в процессах окисления и
восстановления на электродах.

Для
определения результатов электролиза
растворов
можно пользоваться следующими правилами.

11.1 Катодные процессы

На
катоде легче восстанавливаются катионы
с бóльшим стандартным электродным
потенциалом φ0.

Так,
если стандартный электродный потенциал
металла больше величины –0,41 В, то на
катоде обычно восстанавливаются
ионы этого металла. Если потенциал
металла находится в интервале
,
то на катоде одновременно восстанавливаются
и ионы металла, и вода. Если потенциал
металла меньше величины –1,4 В, то на
катоде восстанавливается только вода.
Отмеченное выше можно представить в
виде следующей схемы:

11.2 Анодные процессы

Аноды,
используемые при электролизе,
подразделяются на инертные
(графит,
уголь, платина, золото, иридий) и активные
(остальные металлы).

На аноде в первую
очередь окисляется система с меньшим
окислительно-восстановительным
потенциалом. Но в ряде случаев из-за
сложности разряда кислородосодержащих
ионов (NO3,SO2–4,PO3–4,CO2–3и т. д.)
это правило не выполняется. Вид анодной
реакции в общем случае определяется
природой разряжающей частицы.

В случае
использования активного(растворимого)
анода окисляется металл анода:

Ме0–nē = Меn+.

При электролизе
с инертныманодом легко окисляются
простые анионы бескислородных кислот,
присутствующие в растворе (I,Br,Cl).

Сложные ионы
кислородсодержащих кислот (SO,CO,POи др.) в водных растворах, как правило,
не окисляются – вместо них окисляется
вода:

2О – 4ē = О2+ 4Н+.

Последовательность
процессов окисления на аноде можно
представить следующей схемой:

Пример 1.Составить уравнения катодного и анодного
процессов, протекающих при электролизе
водного раствораK2SO4на угольных электродах.

Решение

В водном растворе
соль K2SO4диссоциирует:K2SO4
2К++SO2–4
.

К катоду подходят
катионы К+и молекулы Н2О,
к аноду – ионыSO2–4и молекулы Н2О. Поскольку потенциал
системы(см. табл. 9.1) меньше, чем –1,4 В, на катоде
будут восстанавливаться молекулы воды
(см. вышеприведенную схему).

Анионы SO2–4– это сложные ионы, в водных растворах
они не окисляются. Поэтому на аноде
окисляются молекулы воды.

Раствор у катода
подщелачивается (появляются ионы ОН),
у анода становится более кислым
(появляются ионы Н+). Суммарное
молекулярное уравнение реакции
электролиза:

КОН
и Н2SO4
образуются из К+
и ОН,
Н+
и SO24,
находящихся в растворе.

Пример 2.Составить уравнения катодного и анодного
процессов, протекающих при электролизе
раствораCuCl2с
медным анодном.

Решение

В водном растворе
соль CuCl2диссоциирует:CuCl2 Сu2++ 2Cl.

К катоду подходят
катионы Сu2+и Н2О;
к аноду – ионыClи Н2О. Медный анод – растворимый,
он принимает участие в электродной
реакции. Потенциал φ0Сu/Cu2+= 0,34 В, и на катоде, в соответствии с
вышеприведенной схемой, будет
восстанавливаться Сu2+.
В анодном процессе участвует металл
анода (Cu-растворимый
анод):

В результате
электролиза медь переносится с анода
на катод, а соль оказывается не затронутой
этим процессом и обеспечивает лишь
электропроводность.

Количественная
характеристика процессов электролиза
даётся законамиФарадея. Им
можно дать следующую общую формулировку:

масса электролита,
подвергшаяся превращению при электролизе,
а также массы образующихся на
электродах веществ прямо пропорциональны
количеству электричества, прошедшего
через раствор или расплав электролита,
и эквивалентным массам соответствующих
веществ.

Объединенный закон
Фарадея выражается следующим уравнением:

,

где А– атомная масса вещества простого
вещества, выделяющегося на электроде;

n– заряд
иона или число электронов, принимающих
участие в процессе электролиза;

I
сила тока в амперах, А;

t
время пропускания тока в секундах, с;

F– число
Фарадея (F= 96 500 Кл/моль).

Эквивалентная масса вещества
.

Поскольку обычно имеются
конкурирующие процессы, законы Фарадея
нуждаются в поправках.

Отношение массы
фактически выделившегося на электроде
вещества mпр.
к массе вещества, которая должна
была выделиться в соответствии с законом
Фарадея, называется выходом по току:

.

Пример 3.
При прохождении электрического тока
силой 1 А через растворFeCl2
(электроды инертные) в течение 1 ч
выделилось 0,90 г железа. Определите
выход по току. На какие процессы
расходуется остальной ток?

Решение

Так как атомная масса Feравна 56 г/моль, то в соответствии с
законом Фарадея теоретическое значение
массы железа, выделяющегося на катоде,
составляет:

.

Выход по току:

.

Обратимся к
схеме процессов на катоде. Поскольку
величина лежит в области –1,4 В < φ < –0,41 В, то
на катоде идет совместное восстановление
ионов железаFe2+ и
молекул воды. Преимущественно
восстанавливаются ионыFe2+:

Fe2+ + 2ē =Fe

и,
частично, молекулы воды:

2O + 2ē = Н2↑ + 2OH.

Таким образом,
часть тока, протекающая через электролит,
затрачивается на восстановление воды.

Пример 4.Электрический ток силой 1 А проходит в
течение 1 часа через растворZnCl2(электроды инертные). Определить
количество выделившегося на катоде
за указанное время цинка, если выход
по току равен
64%. Объяснить, на какие процессы
расходуется остальной ток.

Решение

Потенциал
В
(см. табл. 9.1) и лежит в области
–1,4 В
<<0,41
В. Следовательно, на катоде будет идти
совместное восстановление катионовZn2+и, частично,
молекул воды:

Zn2++ 2ē =Zn

2H2O+ 2ē = 2OH+H2(частично, побочный процесс)

Для определения
теоретического количества выделившегося
на катоде цинка воспользуемся уравнением
закона Фарадея:

г.

Выход по току
вычисляется по формуле

следовательно

г.

На получение
цинка на катоде расходуется 64 % всего
прошедшего через электролит тока,
остальной ток тратится на восстановление
воды.

Задачи

271277Составьте
электронные уравнения процессов,
протекающих на катоде и аноде при
электролизе:

1) расплава
вещества А с графитовыми электродами;

2) раствора
вещества Б с графитовыми электродами;

3) раствора
вещества В с растворимым (активным)
анодом.

Масса твердого
вещества, выделившегося на катоде при
электролизе раствора вещества Б при
прохождении тока I(А) в течение времени τ (ч), составляетm (г). Вычислите
выход по току. Объясните, почему в ряде
случаев не весь ток расходуется на
выделение металла.

задачи

Соединения

Растворимый
анод

I,
А

τ, час

m,
г

А

Б

В

271

KCl

SnCl2

ZnSO4

Zn

8,5

2

36,6

272

FeCl2

ZnSO4

MgCl2

Mg

10

1,5

11,3

273

NaOH

FeCl2

MnSO4

Mn

12

0,5

4,2

274

PbCl2

Cu(NO3)2

FeCl2

Fe

6

1

7,1

275

Ca(OH)2

NiCl2

AlCl3

Al

9,3

2

18,8

276

LiBr

MnSO4

CoCl2

Co

10,5

0,5

3,0

277

SnCl2

FeSO4

Pb(NO3)2

Pb

8,8

2

14,2

Ответ:
271) 97 %; 272) 62 %; 273) 67 %; 274) 99 %; 275) 91,9 %;
276)
55,8 %; 277) 77,3 %.

278–284.Составьте электронные
уравнения процессов, протекающих на
катоде и аноде при электролизе:

1) расплава
вещества А с графитовыми электродами;

2) раствора
вещества Б с графитовыми электродами;

3) раствора
вещества В с растворимым (активным)
анодом.

Вычислите
время, необходимое для практического
получения 100 г металла из раствора
вещества Б при силе тока I, если выход по току.

задачи

Вещества

Растворимый
анод

I,
A

,
%

А

Б

В

278

SnCl2

Fe(NO3)2

NiSO4

Ni

12

66,7

279

Ni(OH)2

CoCl2

Pb(NO3)2

Pb

9,5

96

280

MgCl2

ZnSO4

NiSO4

Zn

6,4

82

281

ZnCl2

AgNO3

CuCl2

Cu

14,8

99

282

CuBr2

Cd(NO3)2

AgNO3

Ag

8,7

86

283

NaOH

Pb(NO3)2

NiCl2

Ni

5,9

94

284

PbCl2

CоSO4

Mg(NO3)2

Mg

10

74

Ответ:
278) 12 ч; 279) 10 ч; 280) 17,3 ч; 281) 1,7 ч; 282) 6,4 ч; 283)
4,7 ч; 284) 12,3 ч.

285–291Составьте электронные
уравнения процессов, протекающих на
катоде и аноде при электролизе:

1) расплава
вещества А с графитовыми электродами;

2) раствора
вещества Б с графитовыми электродами;

3) раствора
вещества В с растворимым (активным)
анодом.

Как изменится
масса анода после пропускания тока
силой I(А) в течение
времени τ (ч) через раствор В?

задачи

Вещества

Растворимый
анод

I,
A

τ,
час

А

Б

В

285

NaI

MgSO4

ZnCl2

Zn

8,5

2

286

CaCl2

Cu(NO3)2

FeCl2

Fe

10

3

287

RbCl

AgNO3

CuSO4

Cu

7,5

2,5

288

KOH

ZnCl2

CoCl2

Co

3,7

1

289

CuCl2

NaNO3

Pb(NO3)2

Pb

2,5

4

290

NaOH

Bi(NO3)3

NiCl2

Ni

2,0

2,5

291

CaI2

H2SO4

Cd(NO3)2

Cd

6,8

0,8

Ответ:
285) 20,6 г; 286) 31,3 г; 287) 22,4 г; 288) 4,1 г; 289) 38,6 г;

290) 5,5 г; 291) 7,1 г.

292–300Составьте электронные
уравнения процессов, протекающих на
катоде и аноде при электролизе:

1) расплава
вещества А с графитовыми электродами;

2) раствора
вещества Б с графитовыми электродами;

3) раствора
вещества В с растворимым (активным)
анодом.

Постройте
график зависимости изменения массы
растворимого анода mот силы токаIпри
времени электролиза 0,5 ч. Сила токаIравна 0,5; 1; 2; 3 и 5 А.

задачи

Соединения

Растворимый
анод

А

Б

В

292

KOH

Na2SO4

NiCl2

Ni

293

RbCl

Li2SO4

Pb(NO3)2

Pb

294

NaCl

Ni(NO3)2

AgNO3

Ag

295

AlCl3

Fe2(SO4)3

CuSO4

Cu

296

NaI

Cu(NO3)2

ZnCl2

Zn

297

SnCl2

CoSO4

CuSO4

Cu

298

CoCl2

BiСl3

AgNO3

Ag

задачи

Соединения

Растворимый
анод

А

Б

В

299

KCl

SnCl2

ZnSO4

Zn

300

NaI

Cu(NO3)2

PbCl2

310

Рис.
11.1. Структурно-логическая схема
взаимосвязи электродных процессов при
электролизе

Анодный процесс

Cтраница 1

Анодный процесс сводится к электрохимической реакции образования высшего оксида никеля, который на второй стадии вступает в химическое взаимодействие с адсорбированными органическими соединениями. Для изготовления активных электродов из оксидов никеля применяют технологию, разработанную для производства положительных безламельных пластин щелочных аккумуляторов. Электроды получают путем прессования смеси: карбонильного никеля и карбоната аммония с последующим спеканием при температуре 920 — 950 С. В результате разложения карбоната аммония и удаления из основы диоксида углерода получается пористая заготовка ( объемная пористость 70 %), которая пропитывается раствором нитрата никеля и потом обрабатывается раствором щелочи.
 [1]

Анодный процесс, повидимому, протекает следующим образом.
 [2]

Анодный процесс при цинковании обладает некоторыми особенностями. В кислых ваннах анодный выход по, току даже превышает 100 % за счет химического растворения; кислотность раствора понижается.
 [3]

Анодный процесс при никелировании связан с двумя осложнениями. Во-первых, никелевые аноды дают шлам, состоящий из углерода, кремния, сернистых соединений, окислов и др. Взмучиваясь в электролите и попадая на катод, они загрязняют осадок. Приходится заключать аноды в суконные чехлы или фильтровать электролит. Следует применять аноды из возможно более чистого электролитического никеля. Во-вторых, никель склонен к пассивированию. Пассивные аноды перестают растворяться, начинается выделение кислорода с образованием в растворе серной кислоты, кислотность электролита повышается. Отдельные кристаллы никеля пассивируются в различной степени; одни кристаллы растворяются легко, другие остаются нерастворенными и выкрашиваются, опадая в шлам.
 [4]

Анодный процесс в целом принимает относительно простую форму, когда ионы металла остаются в растворе. И в этом случае, естественно, возникает концентрационная поляризация, но она не достигает больших значений и может быть уменьшена путем перемешивания. Если же растворение потребует значительной энергии активации, то может установиться очень сильная поляризация. Энергия активации связана с плотностью тока обмена, соответствующего равновесному потенциалу. Для большинства электродов ток обмена относительно велик ( 10 1 — 10 — 5 А / см2), что указывает на малую величину энергии активации процесса растворения. Для растворения таких металлов ( например, свинца) достаточно очень слабого перенапряжения активации, при растворении они очень мало поляризуются.
 [5]

Анодный процесс характеризуется выделением ионов металла трубопроводов в окружающую среду с одновременным выходом из металла свободных электронов. Катодный процесс характеризуется тем, что положительно заряженные ионы металла, соприкасаясь с отрицательно заряженными частицами электролита, образуют нейтральные молекулы. В почвах большой кислотности катодный процесс сопровождается водородной поляризацией с выделением нейтральных атомов и молекул воды. Электроны, освободившиеся в результате анодного процесса, перемещаются в металле от анодных зон к катодным, где присоединяются к положительно заряженным ионам электролита и нейтрализует их. При этом возникает движение электронов — электрический ток коррозии. На всем протяжении трубопроводов возникает множество мелких гальванических пар-элементов, что вызывает разрушение металла и переход его в почву.
 [6]

Анодный процесс состоит в том, что ионы металла переходят в раствор почвенного электролита, где происходит их гидратация. В результате на анодных участках происходит разрушение металла вследствие выноса ионов металла в почву. При этом в металле эквивалентное количество электронов переходит на катод.
 [7]

Анодный процесс протекает на участках с более отрицательным начальным потенциалом поверхности, катодный — с более положительным. Материальный эффект процесса коррозионного разрушения металла преобладает на анодных участках, так как из сооружения уносятся ионы железа в почву.
 [8]

Анодный процесс в этом случае остается тем же, что и в первом примере.
 [9]

Анодные процессы в некоторых случаях похожи на катодные, но протекают в обратном порядке. В других случаях первичным является разряд и дегидратация анионов, которые затем либо вторично влияют на металл катода, либо выделяются в виде газа.
 [10]

Анодный процесс по существу очень прост и для него нет оснований прибегать к гипотезе о первичном выделении кислорода.
 [11]

Анодный процесс в обычных для котельной практики условиях всегда протекает с большей готовностью и по этой причине не лимитирует хода всего разрушения. Точно так же не оказывает заметного действия на развитие коррозии электропроводность металла и водной среды; в данном случае приходится иметь дело с короткозамкнутыми, полностью заполя-ризованными микропарами, в которых омическое сопротивление играет второстепенную роль.
 [12]

Анодный процесс связан с разрывом связей решетки, а катодный — с выделением дырок. Поэтому травление с анодным контролем на разных участках происходит с различной скоростью. Там, где имеются дислокации или другие нарушения структуры, ослабляющие связи решетки, там скорость травления больше. Поэтому травители с анодным контролем применяются для выявления дислокаций на поверхности полупроводника.
 [13]

Анодный процесс при электроэкстракции совершенно иной, чем при электролитическом рафинировании — он проводится с нерастворимыми ( преимущественно свинцовыми) анодами.
 [14]

Анодный процесс сопровождается образованием шлама. Количество шлама достигает 2 — 5 % от веса растворившихся анодов. Шлам состоит из содержащихся в анодах сульфидов, окислов, шлаковых и других включений, а также содержит металлы платиновой группы, которые, являясь значительно более электроположительными, чем никель, не растворяются на аноде. В шлам переходит до 1 % от содержания в анодах никеля, кобальта и железа и 5 — 20 % меди. Основными компонентами шлама являются сульфиды этих металлов. При электролизе металлических анодов содержащиеся в них примеси сульфидов почти не растворяются, поэтому переход металлов в шлам и количество последнего резко возрастают с увеличением содержания серы в металлических анодах.
 [15]

Страницы:  

   1

   2

   3

   4

   5

Электролиз растворов электролитов с инертными электродами

Напомним, что на катоде протекают процессы восстановления, на аноде — процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:
Zn2+ +2e → Zn0.

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H2:
2H2O + 2e → H20 + 2OH.
Например, в случае электролиза растворов NaNO3 или KOH.

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:
2H+ +2e → H2.
Например, в случае электролиза раствора H2SO4.

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:
2Cl – 2e → Cl2.

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды — почему? Потому что больше ничего написать и не получится: 1) H+ написать не можем, так как OH и H+ не могут стоять по разные стороны одного уравнения; 2) H2 написать также не можем, так как это был бы процесс восстановления водорода (2H+ +2e → H2), а на аноде протекают только процессы окисления.
4OH – 4e → O2 + 2H2O.

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:
2H2O – 4e → O2 + 4H+.
Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO2 и удвоение остатка углеродной цепи:
2R-COO – 2e → R-R + 2CO2.

Примеры:

1. Раствор NaCl

Расписываем диссоциацию на ионы:
NaCl → Na+ + Cl

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

К: 2Na+ (в растворе)
     2H2O + 2e → H20 + 2OH
А: 2Cl – 2e → Cl2

Коэффициент 2 перед Na+ появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

2Na+ + 2Cl + 2H2O → H20 + 2Na+ + 2OH + Cl2. Соединяем катионы и анионы:
2NaCl + 2H2O → H20 + 2NaOH + Cl2.

2. Раствор Na2SO4

Расписываем диссоциацию на ионы:
Na2SO4 → 2Na+ + SO42–

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H2O + 2e → H20 + 2OH
А: 2H2O – 4e → O20 + 4H+.

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H2O + 4e → 2H20 + 4OH
А: 2H2O – 4e → O20 + 4H+.

Складываем левые и правые части катодных и анодных процессов:
6H2O → 2H20 + 4OH + 4H+ + O20.

4OH- и 4H+ соединяем в 4 молекулы H2O:
6H2O → 2H20 + 4H2O + O20.

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H2O и получаем итоговое уравнение гидролиза:
2H2O → 2H20 + O20.

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

3. Раствор CuCl2

Расписываем диссоциацию на ионы:
CuCl2 → Cu2+ + 2Cl

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-анионы.

К: Cu2+ + 2e → Cu0
A: 2Cl – 2e → Cl2

Записываем суммарное уравнение:
CuCl2 → Cu0 + Cl2.

4. Раствор CuSO4

Расписываем диссоциацию на ионы:
CuSO4 → Cu2+ + SO42–

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Cu2+ + 2e → Cu0
A: SO42– (в растворе)
     2H2O – 4e → O2 + 4H+.

Уравниваем количество электронов на катоде и аноде. Для это умножим все коэффициенты катодного уравнения на 2. Количество сульфат-ионов также необходимо удвоить, так как в сульфате меди соотношение Cu2+ и SO42– 1:1.

К: 2Cu2+ + 4e → 2Cu0
A: 2SO42– (в растворе)
     2H2O – 4e → O2 + 4H+.

Записываем суммарное уравнение:
2Cu2+ + 2SO42– + 2H2O → 2Cu0 + O2 + 4H+ + 2SO42–.

Соединив катионы и анионы, получаем итоговое уравнение электролиза:
2CuSO4 + 2H2O → 2Cu0 + O2 + 2H2SO4.

5. Раствор NiCl2

Расписываем диссоциацию на ионы:
NiCl2 → Ni2+ + 2Cl

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться только хлорид-анионы.

К: Ni2+ + 2e → Ni0
     2H2O + 2e → H20 + 2OH
A: 2Cl – 2e → Cl2

Уравниваем количество электронов, принимаемых и отдаваемых на катоде и аноде. Для этого умножаем все коэффициенты анодного уравнения на 2:

К: Ni2+ + 2e → Ni0
     2H2O + 2e → H20 + 2OH
     Ni2+ (в растворе)
A: 4Cl – 4e → 2Cl2

Замечаем, что согласно формуле NiCl2, соотношение атомов никеля и хлора 1:2, следовательно, в раствор необходимо добавить Ni2+ для получения общего количества 2NiCl2. Также это необходимо сделать, так как в растворе должны присутствовать противоионы для гидроксид-анионов.

Складываем левые и правые части катодных и анодных процессов:
Ni2+ + Ni2+ + 4Cl + 2H2O → Ni0 + H20 + 2OH + Ni2+ + 2Cl2.

Соединяем катионы и анионы для получения итогового уравнения электролиза:
2NiCl2 + 2H2O → Ni0 + H20 + Ni(OH)2 + 2Cl2.

6. Раствор NiSO4

Расписываем диссоциацию на ионы:
NiSO4 → Ni2+ + SO42–

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Ni2+ + 2e → Ni0
     2H2O + 2e → H20 + 2OH
A: SO42– (в растворе)
     2H2O – 4e → O2 + 4H+.

Проверяем, что количество принятых и отданных электронов совпадает. Также замечаем, что в растворе есть гидроксид-ионы, но в записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор Ni2+. Так как удвоилось количество ионов никеля, необходимо удвоить и количество сульфат-ионов:

К: Ni2+ + 2e → Ni0
     2H2O + 2e → H20 + 2OH
    Ni2+ (в растворе)
A: 2SO42– (в растворе)
     2H2O – 4e → O2 + 4H+.

Складываем левые и правые части катодных и анодных процессов:
Ni2+ + Ni2+ + 2SO42– + 2H2O + 2H2O → Ni0 + Ni2+ + 2OH + H20 + O20 + 2SO42– + 4H+.

Соединяем катионы и анионы и записываем итоговое уравнение электролиза:
2NiSO4 + 4H2O → Ni0 + Ni(OH)2 + H20 + O20 + 2H2SO4.

В других источниках литературы также говорится об альтернативном протекании электролиза кислородсодержащих солей металлов средней активности. Разница состоит в том, что после сложения левых и правых частей процессов электролиза необходимо соединить H+ и OH с образованием двух молекул воды. Оставшиеся 2H+ расходуются на образование серной кислоты. В этом случае не нужно прибавлять дополнительные ионы никеля и сульфат-ионы:

Ni2+ + SO42– + 2H2O + 2H2O → Ni0 + 2OH + H20 + O20 + SO42– + 4H+.

Ni2+ + SO42– + 4H2O → Ni0 + H20 + O20 + SO42– + 2H+ + 2H2O.

Итоговое уравнение:

NiSO4 + 2H2O → Ni0 + H20 + O20 + H2SO4.

7. Раствор CH3COONa

Расписываем диссоциацию на ионы:
CH3COONa → CH3COO + Na+

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. На аноде будет происходит окисление ацетат-ионов с образованием углекислого газа и удвоением остатка углеродной цепи:

К: 2Na+ (в растворе)
     2H2O + 2e → H20 + 2OH
А: 2CH3COO – 2e → CH3-CH3 + CO2

Так как количества электронов в процессах окисления и восстановления совпадают, составляем суммарное уравнение:
2Na+ + 2CH3COO + 2H2O → 2Na+ + 2OH + H20 + CH3-CH3 + CO2

Соединяем катионы и анионы:
2CH3COONa + 2H2O → 2NaOH + H20 + CH3-CH3 + CO2.

8. Раствор H2SO4

Расписываем диссоциацию на ионы:
H2SO4 → 2H+ + SO42–

Из катионов в растворе присутствуют только катионы H+, они и будут восстанавливаться до простого вещества. На аноде будет протекать окисление воды, так как кислород содержащие кислотные остатки в растворах на аноде не окисляются.

К: 2H+ +2e → H2
A: 2H2O – 4e → O2 + 4H+

Уравниваем число электронов. Для этого удваиваем каждый коэффициент в уравнении катодного процесса:

К: 4H+ +4e → 2H2
A: 2H2O – 4e → O2 + 4H+

Суммируем левые и правые части уравнений:
4H+ + 2H2O → 2H2 + O2 + 4H+

Катионы H+ находятся в обеих частях реакции, следовательно, их нужно сократить. Получаем, что в случае растворов кислот, электролизу подвергаются только молекулы H2O:
2H2O → 2H2 + O2.

9. Раствор NaOH

Расписываем диссоциацию на ионы:
NaOH → Na+ + OH

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу, на катоде восстанавливается только водород. На аноде будут окисляться гидроксид-анионы с образованием кислорода и воды:

К: Na+ (в растворе)
     2H2O + 2e → H20 + 2OH
А: 4OH – 4e → O2 + 2H2O

Уравниваем число электронов, принимаемых и отдаваемых на электродах:

К: Na+ (в растворе)
     4H2O + 4e → 2H20 + 4OH
А: 4OH – 4e → O2 + 2H2O

Суммируем левые и правые части процессов:
4H2O + 4OH → 2H20 + 4OH + O20 + 2H2O

Сокращая 2H2O и ионы OH, получаем итоговое уравнение электролиза:
2H2O → 2H2 + O2.

Вывод:
При электролизе растворов 1) кислородсодержащих кислот;
                                                2) щелочей;
                                                3) солей активных металлов и кислородсодержащих кислот
на электродах протекает электролиз воды:
2H2O → 2H2 + O2.

Понравилась статья? Поделить с друзьями:
  • Как найти следы на месте преступления
  • Как составить цирк дома
  • Как найти длину окружности если известна диагональ
  • Как найти свой гаджет
  • Как найти партнера для свободных отношений