Математика, 3 класс
Урок №21. Площадь. Способы сравнения фигур по площади. Единица площади – квадратный сантиметр
Перечень вопросов, рассматриваемых в теме:
— что такое площадь фигуры?
— какие есть способы сравнения фигур по площади?
— что такое квадратный сантиметр?
Глоссарий по теме:
Площадь – внутренняя часть любой плоской геометрической фигуры.
Квадрат – это прямоугольник, у которого все стороны равны.
Основная и дополнительная литература по теме урока:
1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017. – с. 56-59.
2. Рудницкая В. Н. Тесты по математике:3 класс. М.:Издательство «Экзамен», 2016 с. 38-43.
3. Волкова Е. В. ВПР. Математика 3 класс Практикум по выполнению типовых заданий. ФГОС. М.: Издательство «Экзамен», 2018, с. 36-53.
Теоретический материал для самостоятельного изучения
Сравним фигуры и расставим их в порядке убывания их площади.
Фигуры расположили в следующем порядке: 4, 2, 1, 6, 5, 3.
В математике говорят: площадь – это часть плоскости, ограниченная замкнутой ломаной или кривой линией. Когда мы сравниваем площади фигур, мы выясняем, больше или меньше места занимает данная фигура на плоскости. Мы сравнивали эти фигуры способом, который называется «на глаз».
Сравним фигуры и выясним, площадь какой фигуры больше.
Способом сравнения на глаз, определить площадь какой фигуры невозможно.
Для этого существует способ сравнения: наложения.
Вывод: площадь прямоугольника больше площади круга.
Сравним две фигуры.
Изученными способами сравнить площади не получается. Есть еще один способ сравнения: подсчет количества одинаковых мерок.
Посчитаем количество мерок в фигурах: в синей фигуре содержится 6 мерок, в красной-5 мерок, следовательно, площадь синей фигуры больше площади красной, т. к. в синей фигуре 6 мерок-квадратов, а в красной — 5.
В математике мерка- квадрат. А квадрат со стороной 1 см называется квадратный сантиметр и обозначается см2..
Задания тренировочного модуля:
1.Выберите правильное высказывание:
Площадь фигуры — это…..
1. сумма длин всех сторон
2. внутренняя часть фигуры
Правильный ответ:
2. внутренняя часть фигуры
2. Выделите фигуры с одинаковой площадью.
Правильный ответ:
Инфоурок
›
Начальные классы
›Презентации›Презентация по математике на тему :»Площадь фигуры» 3 класс Школа России
Скачать материал
Скачать материал
- Сейчас обучается 57 человек из 24 регионов
- Сейчас обучается 237 человек из 56 регионов
- Сейчас обучается 44 человека из 25 регионов
Описание презентации по отдельным слайдам:
-
1 слайд
ПЛОЩАДЬ.
ЕДИНИЦЫ ПЛОЩАДИ. -
2 слайд
Организационный момент
На уроке наши глаза внимательно
Смотрят и все … (видят).
Уши внимательно слушают
И всё …(слышат).
Голова хорошо … (думает0. -
3 слайд
26 октября.
Классная работа.. -
4 слайд
5 ∙ 2 = 10 14 : 2 = 7
9 ∙ 1 = 9 16 : 8 = 2
4 ∙ 5 = 20 25 : 5 = 5
Найди число
Какие числа закрыты -
5 слайд
Сколько будет, если взять 3 раза по 4?
Сколько будет: 6 троек?
Сколько раз по 5 входит в число 10?
3 умножить на 4.Арифметический диктант
-
6 слайд
6 х
3
8
6
4
7
9
Устный счёт
18, 48, 36, 24, 42, 54. -
7 слайд
Устный счёт
8, 5, 6, 9, 3, 7.
: 7
56
35
42
63
21
49 -
8 слайд
Тема :
Площадь
фигуры
?
? -
9 слайд
Главная площадь нашей страны
-
10 слайд
ПЛОЩАДЬ —
Владимир Даль
это величина, которая указывает, сколько места занимает фигура на плоскости. -
11 слайд
Какие меры длины знаете?
мм
СМ
ДМ
М
КМ -
12 слайд
Способы измерения площади…
? -
-
14 слайд
РАБОТА С
ГЕОМЕТРИЧЕСКИМ
МАТЕРИАЛОМ
КАК МОЖНО СРАВНИТЬ ЭТИ ФИГУРЫ?
Они имеют РАВНЫЕ
ПЛОЩАДИ -
15 слайд
СРАВНИТЕ ФИГУРЫ
Что можно сказать про площадь треугольника?
ПЛОЩАДЬ
треугольника меньше ПЛОЩАДИ
квадрата -
16 слайд
СРАВНИТЕ ФИГУРЫ
Можно ли на «глаз» или наложением определить, площадь какой фигуры больше?
20
18
Площадь больше
Площадь меньше -
17 слайд
СПРАВКА
При разных мерках получается разный результат измерения.
Поэтому сравнивать, складывать и вычитать величины можно только тогда, когда они выражены одинаковыми мерками. -
18 слайд
Площадь фигуры — величина, показывающая сколько места занимает фигура на плоскости.
-
19 слайд
S — площадь фигуры
169 клеток
175 клеток
S1 < S2 -
-
21 слайд
НАЧЕРТИ
ПРЯМОУГОЛЬНИК СО СТОРОНАМИ
3 СМ И 5 СМ
ПОСЧИТАЙ СКОЛЬКО КЛЕТОЧЕК В НЕМ ПОМЕСТИЛОСЬ. -
22 слайд
ПРОВЕРЬ
60
s
= 60 клеток -
23 слайд
МЕРКА
3 + 3 + 3 + 3 = 12
11 + 11 + 11 + 11 = 44
8 + 8 + 8 + 8 = 32 -
24 слайд
В качестве общепринятой единицы измерения площадей (мерок) используют
квадрат со стороной 1 см.Это измерение называют:
квадратный сантиметр – 1 см².ЕДИНИЦЫ ИЗМЕРЕНИЯ
-
25 слайд
Какие единицы измерения площади вы знаете?
Что значит квадратный сантиметр?
1 см 2
Найдите площади данных фигур.
2.
1.
3. -
26 слайд
Это прямоугольник со сторонами 6 см и 4 см.
Разделим его на квадратные сантиметры
Ширина прямоугольника
Длина прямоугольника
Сколько полос с квадратами получилось?
Сколько квадратов в каждой полосе?
Как узнать, сколько всего квадратов?
Что такое 6?
Что такое 4?
Сделайте вывод, как найти площадь прямоугольника?
4
6
S = a · b
a
b
а-длина, b-ширина -
-
28 слайд
Площадь прямоугольника
1.Чтобы найти площадь прямоугольника, измеряют его длину и ширину (в одинаковых единицах) и находят произведение полученных чисел.2.Чтобы найти площадь прямоугольника, надо его длину умножить на ширину.
-
29 слайд
Найдите площадь прямоугольника
4 см
6 см
S=a•b
S = 6 • 4 = 24 см² -
30 слайд
Электронная физминутка для глаз «Крошка Енот»
-
-
-
33 слайд
Какими единицами пользуются
для измерения площади ?
А для чего это надо знать?
Что такое площадь фигуры?
Площадь фигуры — величина, показывающая сколько места занимает фигура на плоскости.
Какие способы сравнения площадей вы сегодня узнали? -
34 слайд
a
b
S
=
a
.
b
формула нахождения
площади прямоугольника -
35 слайд
Домашнее задание
С. 46,
Спасибо, ребята!
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 263 675 материалов в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Другие материалы
Рейтинг:
4 из 5
- 14.12.2015
- 27494
- 3747
Рейтинг:
4 из 5
- 14.12.2015
- 8625
- 687
Рейтинг:
4 из 5
- 14.12.2015
- 5227
- 59
- 14.12.2015
- 1614
- 11
- 14.12.2015
- 746
- 0
- 14.12.2015
- 2473
- 5
- 14.12.2015
- 1136
- 1
Вам будут интересны эти курсы:
-
Курс повышения квалификации «Роль педагога в реализации концепции патриотического воспитания школьников в образовательном процессе в свете ФГОС»
-
Курс повышения квалификации «Использование мини-проектов в школьном: начальном, основном и среднем общем и среднем профессиональном естественнонаучном образовании в условиях реализации ФГОС»
-
Курс повышения квалификации «Воспитание и социализация учащихся в условиях реализации ФГОС»
-
Курс повышения квалификации «Система образовательной организации в начальном общем образовании в условиях реализации ФГОС»
-
Курс профессиональной переподготовки «Организация инклюзивного обучения в сфере образования»
-
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
-
Курс повышения квалификации «Применение современных педагогических технологий в образовательном процессе в условиях реализации ФГОС»
-
Курс повышения квалификации «Продуктивность учебной деятельности младших школьников общеобразовательного учреждения в рамках реализации ФГОС НОО»
-
Курс повышения квалификации «Видеотехнологии и мультипликация в начальной школе»
-
Курс повышения квалификации «Проективные методики в начальной школе в соответствии с ФГОС»
-
Курс повышения квалификации «Методы интерактивного обучения»
-
Курс повышения квалификации «Новые методы и технологии преподавания в начальной школе по ФГОС»
-
Курс повышения квалификации «Современные тенденции цифровизации образования»
-
Курс повышения квалификации «Формирование и развитие ключевых компетенций школьников в интересах устойчивого развития региона»
-
Курс профессиональной переподготовки «Музыка: теория и методика преподавания в сфере начального общего, основного общего, среднего общего образования»
-
Скачать материал
-
14.12.2015
23190
-
PPTX
4.7 мбайт -
3589
скачиваний -
Рейтинг:
4 из 5 -
Оцените материал:
-
-
Настоящий материал опубликован пользователем Письменская Ольга Михайловна. Инфоурок является
информационным посредником и предоставляет пользователям возможность размещать на сайте
методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайтЕсли Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
сайта, Вы можете оставить жалобу на материал.Удалить материал
-
- На сайте: 8 лет и 6 месяцев
- Подписчики: 1
- Всего просмотров: 217645
-
Всего материалов:
33
- Главная
- Справочники
- Справочник по математике для начальной школы
- Основы геометрии
- Площадь фигуры
В этом разделе мы познакомимся с новым математическим понятием: с площадью фигуры.
Площадь – это часть плоскости, ограниченная замкнутой ломаной или кривой линией
Ты знаешь другие понятия, которые тоже называют словом ПЛОЩАДЬ.
Например, площадь в городе — это чаще всего красивое место с клумбами, фонтаном и памятниками.
Посевная площадь — это участок земли, предназначенный для сельскохозяйственных целей.
Сравнение площадей фигур
При сравнении площади фигур, мы узнаём, больше или меньше места занимает данная фигура на плоскости.
Например, сравним площади двух фигур: треугольника и круга.
Мы видим, что площадь треугольника больше площади круга. Это видно на глаз, то есть первый способ сравнения площадей фигур: на глазок.
Сравнение площадей способом наложения
Иногда на глаз трудно определить, площадь какой фигуры больше. Давай сравним площади двух треугольников:
Совместим фигуры так, чтобы одна фигура полностью поместилась в другой.
Мы видим, что синий треугольник поместился в красном треугольнике, значит, площадь красного треугольника больше, чем площадь синего треугольника.
Сравнение площадей заданной меркой
Иногда нельзя определить, площадь какой фигуры больше способом наложения. Давай сравним площади двух фигур:
В таком случае измерять площади фигур будем заданной меркой, а потом сравним их.
Например, меркой может быть вот такой прямоугольник :
В первой фигуре поместилось 5 мерок, во второй фигуре поместилось 5 таких же мерок. Значит, площади фигур равны.
Единицы площади
В математике измерять площади фигур математики всего мира договорились одинаковыми мерками.
Квадратный сантиметр
Квадрат, сторона которого 1 см – это единица площади – квадратный сантиметр: см²
Определим площадь данных фигур:
В синей фигуре 8 см², а в красной фигуре – 7 см².
8 > 7, значит, 8 см² > 7 см² а это значит, что площадь синей фигуры больше, чем площадь красной фигуры.
Квадратный дециметр
Квадрат, сторона которого 1 дм – это единица площади – квадратный дециметр: дм²
Вычислим, сколько квадратных сантиметров содержится в 1 квадратном дециметре:
1 дм² = ? см²
Сторона такого квадрата равна 10 см, а площадь квадрата равна произведению его сторон, то есть
10 • 10 = 100 см²
Значит, 1 дм² = 100 см²
Квадратный метр
Квадрат, сторона которого 1 м – это единица площади – квадратный метр: м²
Этой единицей мы пользуемся, когда хотим узнать площадь комнаты, класса, школьного двора или бабушкиного сада.
1 м² = 100 дм²
Квадратный километр
Квадрат, сторона которого 1 км – это единица площади – квадратный километр: км²
Этой единицей мы пользуемся, когда хотим узнать площадь города или страны. Например, площадь России составляет более семнадцати миллионов квадратных километров.
1 км² = 1000000 м²
Квадратный миллиметр
Квадрат, сторона которого 1 мм – это единица площади – квадратный миллиметр: мм²
Этой единицей мы пользуемся для измерения очень маленьких площадей.
1 см² = 100 мм²
Длина и ширина клеточки школьной тетради по математике – пять миллиметров, значит там пять рядов по пять квадратных миллиметров. 5 • 5 = 25, поэтому в одной клеточке двадцать пять квадратных миллиметров.
Для черчения и измерения фигур маленькой площади удобно использовать миллиметровую бумагу.
Ар
Ар — это площадь квадрата со стороной 10 м.
Слово «ар» при числах сокращённо записывают так:
1 а, 20 а, 97 а.
1 а2 = 100 м2, поэтому ар часто называют соткой.
Гектар
Гектар — это площадь квадрата со стороной 100 м.
Слово «гектар» при числах сокращённо записывают так:
1 га, 20 га, 530 га.
Чтобы перевести площадь из квадратных метров в гектары, необходимо число квадратных метров разделить на 10000.
Ар и гектар используются при измерении земельных участков.
Советуем посмотреть:
Площадь прямоугольника
Круг. Шар. Овал
Треугольники
Многоугольники
Угол. Виды углов
Обозначение геометрических фигур буквами
Периметр многоугольника
Окружность
Основы геометрии
Правило встречается в следующих упражнениях:
2 класс
Страница 43. Урок 17,
Петерсон, Учебник, часть 2
Страница 45. Урок 17,
Петерсон, Учебник, часть 2
Страница 58. Урок 23,
Петерсон, Учебник, часть 2
Страница 65. Урок 26,
Петерсон, Учебник, часть 2
Страница 82. Урок 34,
Петерсон, Учебник, часть 2
Страница 85. Урок 35,
Петерсон, Учебник, часть 2
Страница 33. Урок 11,
Петерсон, Учебник, часть 3
Страница 47. Урок 16,
Петерсон, Учебник, часть 3
Страница 51. Урок 17,
Петерсон, Учебник, часть 3
Страница 52. Урок 18,
Петерсон, Учебник, часть 3
3 класс
Страница 57,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 66,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 89,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 35,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 87. Урок 32,
Петерсон, Учебник, часть 1
Страница 94. Урок 35,
Петерсон, Учебник, часть 1
Страница 18. Урок 7,
Петерсон, Учебник, часть 2
Страница 88. Урок 38,
Петерсон, Учебник, часть 2
Страница 42. Урок 19,
Петерсон, Учебник, часть 3
Страница 70. Повторение,
Петерсон, Учебник, часть 3
4 класс
Страница 23,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 44,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 55,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 66,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 51,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 58. ПР 2. Вариант 1,
Моро, Волкова, Проверочные работы
Страница 52,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 64,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 107,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 64,
Моро, Волкова, Рабочая тетрадь, часть 2
Чтобы сравнить площади фигур, можно фигуры наложить друг на друга.
Пример:
Внутри квадрата полностью поместился круг.
Можно сделать вывод, что площадь круга меньше, чем площадь квадрата. И наоборот, площадь квадрата больше площади круга.
Для сравнения данных фигур можно подсчитать квадраты с одинаковой площадью, на которые разбита каждая фигура, и сравнить полученные числа.
Пример:
первая фигура состоит из (6) квадратов, а вторая фигура состоит из (9) таких же квадратов.
Значит, площадь первой фигуры меньше, чем площадь второй фигуры.
Определим площадь прямоугольника со сторонами (2) см и (4) см.
Фигура составлена из (8) квадратов площадью (1) см(²).
Чтобы найти площадь прямоугольника, надо найти произведение длин его сторон.
2 см⋅4 см=8 см2
.
Длина и ширина прямоугольника должны быть выражены (записаны) в одинаковых единицах длины.
Как найти площадь четырехугольника 3 класс?
Что такое площадь для 3 класса?
Площадь – внутренняя часть любой плоской геометрической фигуры. Квадрат – это прямоугольник, у которого все стороны равны. . Квадратный сантиметр – квадрат со стороной 1 сантиметр.
Какая формула у площади квадрата?
S = a × a = a 2 , где S — площадь, a — сторона. Эту формулу проходят в 3 классе.
Что такое площадь как ее найти?
Когда известно значение длины и ширины фигуры
Для вычисления необходимо умножить их друг на друга. S = a × b, где S — площадь; a, b — длина и ширина. Проверить полученный результат поможет онлайн-калькулятор площади прямоугольника.
Как найти площадь прямоугольного треугольника в 3 классе?
Вывод: чтобы найти площадь прямоугольного треугольника, нужно катеты перемножить и произведение разделить на 2.
.
закреплять материал, изученный на предыдущих уроках:
- нахождение части от числа и числа от части,
- нахождение площади прямоугольника,
- нахождение процентов.
Площадь четырехугольника
Площадь произвольного четырехугольника, формулы и калькулятор для вычисления в режиме онлайн. Для вычисления площади произвольного четырехугольника применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор, который поможет вычислить площадь произвольного четырехугольника или проверить уже выполненные вычисления.
В окончании статьи приведены ссылки для вычисления частных случаев четырехугольников: квадрата, трапеции, параллелограмма, прямоугольника, ромба.
Площадь четырехугольника по диагоналям и углу между ними
Площадь четырехугольника через стороны и углы между этими сторонами
При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:
Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты
Данная формула справедлива только для четырехугольников, вокруг которых можно описать окружность.
При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:
Площадь четырехугольника в который можно вписать окружность
Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.
При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:
Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними
Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.
Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°
Таблица с формулами площади четырехугольника
исходные данные (активная ссылка для перехода к калькулятору) |
эскиз | формула | |
1 | диагональ и угол между ними | ||
2 | стороны и углы между этими сторонами | ||
3 | стороны (по Формуле Брахмагупты) |
||
4 | стороны и радиус вписанной окружности | ||
5 | стороны и углы между ними |
Площадь частных случаев четырехугольников
Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:
Определения
Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.
Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.
Площадь четырехугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.
Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.
Формулы вычисления площади произвольного четырёхугольника
В школьных математических заданиях часто требуется определить площадь четырёхугольника. Все довольно просто, если задан частный случай фигуры — квадрат, ромб, прямоугольник, трапеция, параллелограмм, ромбоид. В случае же произвольного четырёхугольника все несколько сложнее, но также вполне доступно для среднего школьника. Ниже мы изучим различные методы расчётов площади произвольных четырёхугольников, запишем формулы и рассмотрим различные вспомогательные примеры.
Определения и соглашения
В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.
- Четырёхугольник — это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
- Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
- Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
- Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
- Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.
- Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
- Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
- Угол между сторонами a и b будем обозначать следующей записью (a,b).
Нахождение площади четырёхугольника различными способами и методами
Узнаем как найти площадь четырёхугольника когда даны его диагонали и образуемый при их пересечении острый угол. Тогда площадь четырёхугольника будет вычисляться по формуле: S = 1/2*d1*d2*sin(d1,d2).
Рассмотрим пример. Пусть d1 = 15 сантиметров, d2 = 12 сантиметров, и угол между ними 30 градусов. Определим S. S = 1/2*15*12*sin30 = 1/2*15*12*1/2 = 45 сантиметров квадратных.
Теперь пусть даны стороны и противолежащие углы четырёхугольника.
Пусть a, b, c, d известные стороны многоугольника; p — его полупериметр. Корень квадратный выражения условимся обозначать как rad (от латинского radical). Формула площади четырёхугольника будет находиться по формуле: S = rad(( p − a ) ( p − b ) ( p − c ) ( p − d ) − a b c d ⋅ c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d).
На первый взгляд, формула кажется очень сложной и вычурной. Однако ничего сложного здесь нет, что мы и докажем, рассмотрев пример. Пусть данные нашего условия следующие: a = 18 миллиметров, b = 23 миллиметра, c = 22 миллиметра, d = 17 миллиметров. Противолежащие углы будут равны (a,b) = 0,5 градуса и (c,d) = 1,5 градуса. Для начала находим полупериметр: p = 1/2*(18 + 23 + 22 + 17) = 1/2*80 = 40 миллиметров.
Теперь найдём квадрат косинуса полусуммы противолежащих углов: c o s^2( (a,b) + (c,d))/2) = c o s^2(0,5 + 1,5)/2 = c o s1*c o s1 = (1/2)*(1/2) = 0,9996.
Подставим полученные данные в нашу формулу, получим: S = rad((40 — 18)*(40 — 23)*(40 — 22)*(40 — 17) — 18*23*22*17*0,97) = rad(22*17*18*23 — 18*23*22*17*1/4) = rad((22*17*18*23*(1 — 0,9996)) = rad(154836*0,0004) = rad62 = 7,875 миллиметра квадратного.
Разберёмся как находить площадь с помощью вписанной и описанной окружностей. При решении задач данной темы имеет смысл сопровождать свои действия вспомогательным рисунком, хотя это требование и не является обязательным.
Если есть вписанная окружность и нужно найти площадь четырёхугольника формула имеет вид:
Снова возьмём на рассмотрение пример: a = 16 метров, b = 30 метров, c = 28 метров, d = 14 метров, r = 6 метров. Подставим аши значения в формулу, получим:
S = ((16 +30 + 28 + 14)/2)*6 = 44*6 = 264 метров квадратных.
Теперь займёмся вариантом когда окружность описана вокруг четырёхугольника. Здесь мы сможем воспользоваться следующей формулой:
S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине длины периметра. Пускай в нашем случае стороны имеют следующие значения a = 26 дециметров, b = 35 дециметров, c = 39 дециметров, d = 30 дециметров.
Первым делом определим полупериметр, p = (26 + 35 + 39 + 30)/2 = 65 дециметров. Подставим найденное значение в нашу формулу. Получим:
S = rad((65 — 26)*(65 — 35)*(65 — 39)*(65 — 30)) = rad(39*30*26*35) = 1032 (округлённо) дециметров квадратных.
Заключение
Внимательно изучив все вышеизложенное, можно сделать вывод — определение площади произвольного четырёхугольника с разными сторонами сложнее, чем у них же специальных видов — квадрата, прямоугольника, ромба, трапеции, параллелограмма. Однако внимательно изучив все приведённые методы, можно с лёгкостью решать задачи необходимые для школьников. Сведём все наши формулы в одну таблицу:
- S = 1/2*d1*d2*sin(d1,d2);
- S = rad(( p − a )*( p − b )*( p − c )*( p − d ) − a*b*c*d*c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d);
- S = ((a + b+ c + d)/2)*r
S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине периметра.
Таким образом, реально сложной является только формула номер 2, но и она вполне доступна, при условии хорошего понимания данных в статье определений и соглашений.
Видео
Разобраться в этой теме вам поможет видео.
http://doza.pro/art/math/geometry/area-tetragon
http://liveposts.ru/articles/education-articles/matematika/formuly-vychisleniya-ploshhadi-proizvolnogo-chetyryohugolnika