Цикл карно как найти количество теплоты

Просмотров 1.8к. Опубликовано 30.12.2022

Большинство современных двигателей преобразуют внутреннюю энергию углеводородного топлива в механическую энергию. То есть являются тепловыми машинами. Первым ученым, который задался вопросом о создании самой эффективной тепловой машины стал французский физик Сади Карно. В 1824 в его работе – «Размышления о движущей силе огня и о машинах, способных развивать эту силу», предложен идеальный термодинамический цикл тепловой машины. Цикл, позволяющий получить максимальный теоретический КПД, затем назвали именем Карно. 

Цикл Карно: кратко и понятно

Главной характеристикой, на которую обращают внимание при проектировании любого двигателя является коэффициент полезного действия или КПД. Коэффициент КПД показывает, насколько эффективно протекает трансформация тепловой энергии в системе в полезную механическую работу. КПД любого цикла вычисляется путем отношения полезной работы к затраченной энергии (которую передают системе).

  • Полезная работа – та, которую получаем на выходе системы в результате выполнения цикла.
  • Затраченная энергия – та, что была подведена к системе за цикл.

Термодинамические процессы и циклы.

Цикл Карно состоит из двух изотермических и двух адиабатных процессов. Чтобы понять, что из себя представляют эти процессы, обратимся к первому закону термодинамики:

∆U = A + Q,

где ∆U – внутренняя энергия рабочего тела или системы,

A – совершаемая в цикле работа,

Q – количество теплоты, переданное за цикл, системе.

Формулировка первого закона термодинамики: при переходе системы из одного состояния в другое, изменение внутренней энергии системы равно сумме количества теплоты, переданного системе, и работы внешних сил.

Что такое изотермический и адиабатный процессы?

Изотермический процесс

Изотермический процесс – процесс, перехода рабочего тела из одного состояния в другое без изменения температуры ∆T=0.  

Цикл Карно: кратко и понятно

Например, изменение объёма и давления газа при неизменной температуре.

При постоянной температуре изменение внутренней энергии газа ∆U будет равно нулю, так как ∆T = 0.

Тогда, согласно первому закону термодинамики: Q = A.  Это значит:

  • получая теплоту, газ будет расширяться, совершая положительную работу. При этом всё количество тепла будет потрачено на совершение работы.
  • и наоборот, при отдаче теплоты объем газа будет уменьшаться.

Адиабатный процесс

Адиабатный процесс – такой процесс, который протекает без передачи или получения тепла Q от окружающей среды. То есть, процесс протекает в теплоизолированной системе или с бесконечно большой скоростью, при которой теплообменом можно пренебречь Q = 0.

Согласно первому закону термодинамики: A = -∆U.

Это значит:

  • работу газ совершает за счет уменьшения внутренней энергии;
  • и наоборот, приложенная к системе работа, затрачивается только на повышение внутренней энергии.
Цикл Карно: кратко и понятно

Из каких процессов состоит цикл Карно

Главная особенность всех круговых процессов или циклов состоит в том, что их работа невозможна, если приводить рабочее тело в контакт только с одним источником теплоты. Любой тепловой двигатель устроен таким образом, что за счет теплообмена между двумя источниками теплоты он способен преобразовать тепло в механическую работу. Температуры этих источников должны отличаться, но, при этом, быть постоянными.

Чтобы понять, как работает цикл Карно, нужно представить простой тепловой двигатель, например цилиндр с поршнем, внутри которого находится газ. К газу может подводиться и отводится тепло. Источники тепла, при этом, называются:

  • нагреватель – источник, имеющий высокую постоянную температуру TН
  • холодильник – с постоянной низкой температурой TХ.

Цикл Карно имеет четыре обратимых процесса – два изотермических, и два – адиабатных.

Цикл Карно: кратко и понятно

Изотермические процессы протекают при постоянной температуре T. Адиабатные процессы – при постоянной энтропии S, без теплообмена с окружающей средой.

Для удобства, цикл Карно представляют в:

  • T-S координатах – зависимость энтропии S от температуры T.
  • p-V координатах – зависимость давления p от удельного объёма V.
Цикл Карно: кратко и понятно

Изотермическое расширение

Изотермическое расширение или изотермический подвод тепла – показано процессом AB. В начале рабочее тело находится в точке A. На данном этапе рабочее тело или газ имеет начальную температуру TН. Затем, к телу подводится энергия в виде теплоты Q1. Снижение температуры при расширении отсутствует, так как подводится теплота Q1, от нагревателя. Увеличения температуры тоже не будет, так как совершается работа A1=Q1. Поэтому, при расширении рабочего тела его температура остается постоянной – изотермическое расширение TН=const. При этом, энтропия рабочего тела увеличивается, из-за увеличения его объема. Происходит это за счет совершения механической работы.

изотермическое расширение

Адиабатическое расширение

Адиабатическое расширение показано процессом BC. После окончания изотермического подвода тепла газ находится в состоянии, характеризуемом точкой B. Далее следует адиабатическое расширение рабочего тела. На этом этапе газ в двигателе изолирован от обоих тепловых источником – как от горячего, так и от холодного. Поэтому ни источники, ни рабочее тело получают и не теряют тепло. Такой процесс называется адиабатическим. Из-за отсутствия теплообмена с окружающей средой Q=0 энтропия рабочего тела остается постоянной S=const. Работа осуществляется только за счет внутренней энергии A = -∆U. Поэтому происходит снижение температуры газа.

Адиабатическое расширение

Рабочее тело, расширяясь, заставляет поршень двигаться вверх. Давление газа под поршнем постепенно снижается. Выталкивая подвижный поршень вверх, рабочее тело совершает механическую работу, в результате чего теряет определенное количество внутренней энергии. Количество этой энергии равно проделанной работе A = -∆U. В процессе расширения рабочего тела его температура уменьшается и становится равной TХ.

Изотермическое сжатие

Изотермическое сжатие – процесс CD. На данном этапе рабочее передаёт тепло холодному источнику при температуре TХ. К газу подводится работа сжатия путем перемещения поршня вниз. В результате этого процесса, рабочее тело передает холодильнику количество теплоты равное подводимой работе Q22. Изменения внутренней энергии не будет ∆U=0. Поэтому, этот процесс считается изотермическим сжатием TХ=const. Энтропия газа уменьшается.

Изотермическое сжатие

Адиабатическое сжатие

Адиабатическое сжатие – процесс DA. После завершения отвода тепла, газ находится в состоянии, характеризуемом точкой D. На последней стадии цикла рабочее тело снова остается изолированным обоих источников Q=0. Предполагается, что поршень движется без трения, а процесс является обратимым. Работа продолжает подводиться и поршень движется вниз, сжимая газ. В результате этого внутренняя энергия газа возрастает A = +∆U. Под давлением поршня температура рабочего тела поднимается до температуры нагревателя TН, но энтропия остается неизменной. Итогом этого этапа является то, что рабочее тело возвращается к своему изначальному состоянию в точку А.

Адиабатическое сжатие

Поскольку цикл Карно идеальный, то принято допущение, что температуры рабочего тела в процессах AB и CD равна температуре горячего и холодного источника или отличаются на бесконечно малую величину.

Формула расчета цикла Карно

Коэффициент КПД показывает, насколько совершенен цикл и входящие в него термодинамические процессы. Термический КПД любого термодинамического цикла рассчитывается по формуле:

Цикл Карно: кратко и понятно

Где Q1 – тепло, подведенное к рабочему телу от нагревателя;

Q2 – тепло, отведенное от рабочего тела к холодильнику.

Применительно для расчета КПД цикла Карно используется формула:

Цикл Карно: кратко и понятно

Где TН -температура горячего источника;

TХ -температура холодно источника.

Температура формуле вычисления КПД цикла Карно в кельвинах [К].

Обратный цикл Карно

Описанный выше цикл теплового двигателя Карно полностью обратим. Это значит, что можно пройти все процессы в обратном направлении:

  • процесс отвода тепла станет процессом подвода тепла
  • процесс сжатия – расширением.

При проходе процессов в обратном направлении получим циклом холодильной машины Карно или теплового насоса. Диаграммы остаются абсолютно такими же, измениться лишь направление процессов.

Единственное отличие обратного цикла Карно — это противоположные направления всех четырёх термодинамических процессов.

Цикл Карно: кратко и понятно

Тепло в обратном цикле Карно будет поглощаться из холодильника, и далее отводиться к нагревателю. Чтобы это осуществить, в соответствии со вторым законом термодинамики, необходимо затратить работу. Работа затрачивается на сжатие газа.

В результате того, что к данной системе прикладывается работа, тепло перемещается от холодного источника к горячему.

Подробнее про обратный цикл Карно и холодильные машины рекомендуем прочитать в статье.

Теорема Карно

Теорема Карно – это теорема, выявляющая некоторые ограничения для предела КПД реальных тепловых машин. Описал ее Сади Карно в своем труде о движущей силе огня. Но некоторые из современных авторов считают, что рассуждения Карно позволяют сформулировать сразу две теоремы. Звучат они так:

  1. КПД любого обратимого теплового двигателя, работающего по циклу Карно, не зависит от природы рабочего тела и конструкции самой машины, а является лишь функцией температур нагревателя и холодильника:

Из этой теоремы можно сделать вывод, что самую большую роль, определяющую КПД тепловой машины, играет разница температур горячего и холодного источников.

  1. КПД любого теплового двигателя, работающего по необратимому циклу, должен быть меньше КПД двигателя с обратимым циклом Карно, при условии равных температур нагревателей и холодильников.

Эта трактовка теоремы дает понять, что реальные двигатели неидеальны, в отличии от теоретической модели Карно. Поэтому, из-за наличия неизбежных потерь энергии, КПД реального двигателя будет снижаться в зависимости от объема этих потерь.

Исходя из этого, уравнение расчета КПД цикла Карно показывает максимальную эффективность работы для любого двигателя, в котором задействованы соответствующие температурные параметры.

Следствие теоремы Карно – все обратимые двигатели, которые работают между идентичными источниками тепла, имеют одинаковую эффективность.

Цикл Карно: кратко и понятно

Отсюда можно сделать вывод: понижение температуры холодного резервуара сильнее влияет на максимальный КПД тепловой машины, чем увеличение температуры горячего резервуара на такую же величину. На практике добиться этого довольно сложно, так как чаще всего источником для охлаждения является окружающая среда со своей температурой.

Максимальный КПД достигается только в том случае, когда значение энтропии не изменяется в течение цикла. Например, в течение цикла энтропия может изменяться при наличии трения, в результате которого при механической работе выделяется тепло. В данной ситуации цикл нельзя назвать обратимым.

Обобщенный цикл Карно

Согласно описанной ранее теореме Карно, КПД абсолютно любого реального цикла не может быть выше КПД в цикле Карно при идентичных температурных параметрах. Несмотря на это существуют примеры, термический КПД которых, при определенных условиях, равен циклу Карно. Такие циклы имеют отличия в изображении на T-S диаграмме. В данных циклах используется регенерация теплоты, поэтому они называются регенеративными.

Термодинамический цикл с регенерацией теплоты

Происходит процесс регенерации следующим образом. Доля тепла, отдаваемая рабочим телом холодильнику, переходит обратно к рабочему телу для его нагревания. Такой метод повышает термический КПД рабочего цикла, позволяя сделать расход теплоты более выгодным, и используется в теплосиловых устройствах. Например, в современных тепловых электрических станциях.

Рассмотрим T-S диаграмму регенеративного цикла.

Цикл Карно: кратко и понятно

Данный цикл состоит из двух изотермических (1-2) и (3-4) и двух политропных (произвольных) (2-3) и (4-1) обратимых и эквидистантных процессов.

  1. Горячий источник (нагреватель), имея начальную температуру T1, по изотерме (1-2) передает теплоту рабочему телу.
  2. В точке 2 начинается расширение рабочего тела в направлении (2-3) – политропный процесс. На данной кривой происходит отвод теплоты регенерации qрег.
  3. Точка 3 на диаграмме находится левее, чем в диаграмме для идеального цикла Карно, поскольку вследствие отвода теплоты регенерации уменьшается энтропия рабочего тела.
  4. Далее, на изотермической прямой (3-4) происходит сжатие рабочего тела и отведение теплоты к холодному источнику с температурой T2 (холодильник).
  5. В точке 4 начинается политропный процесс сжатия по кривой (4-1). Одновременно с этим к рабочему телу подводится теплота qрег.

Рабочее тело принимает и отдает равное количество теплоты qрег, значит в данном процессе происходит перенос теплоты из одной части цикла в другую, это и называется процессом регенерации.

Термический КПД регенеративного цикла

Термический КПД регенеративного цикла будет равен термическому КПД Карно при идентичных параметрах температуры. Поэтому такой регенеративный цикл так же называют обобщенным циклом Карно (только если он обратим). Подобные явления находят массовое практическое применение на различных промышленных объектах и предприятиях.

К примеру, по принципу регенерации происходит подогрев воды в паровых турбинах и подогрев воздуха в газовых турбинах. 

Говоря об обобщенном цикле Карно, стоит отметить, что его реализация в идеальном виде невозможна. Обусловлено это тем, что в идеале такая система должна содержать бесконечно большое количество промежуточных регенераторов. При этом, для каждого из них температура отводимой и подводимой теплоты должна быть определенной. Любые методы регенерации, которые используются на практике, являются в определенной мере приближенными к идеальному циклу.

Эффективность реальных тепловых двигателей.

Обратимые двигатели в реальности невозможны. Реальные машины имеют еще меньший КПД, чем КПД машины Карно. Помимо этого, реальные двигатели, работающие по принципу Карно, можно встретить крайне редко. Несмотря на это, данное уравнение не теряет своей актуальности для определения максимального КПД, который можно спрогнозировать для определенной пары источников теплоты. Двигатель, работающий по принципу Карно должен рассматриваться как теоретическая модель тепловых двигателей.

Цикл Карно: кратко и понятно

Важнейшей технической задачей является повышение КПД тепловых двигателей и приближение этого значение к максимально возможному. Сравним значения термических КПД некоторых тепловых двигателей:

  • Паровой двигатель – 8%
  • Газотурбинная установка – 25-38%
  • Паротурбинная установка – 40-50%

Начальные и конечные температуры пара для паровой турбины имеют такие приблизительные значения: Tн = 800 К, Tх = 300 К. Максимальное теоретическое значение КПД при данных температурах – 62%. Но, вследствие различных потерь энергии, в реальности экономичность достигает 45%.

На сегодня, КПД самых экономичных паротурбинных блоков на сверхперегретом паре с развитой системой регенерации и промежуточным перегревом пара достигает 52%.

Цикл Карно: кратко и понятно

Заключение

Модель работы идеального теплового двигателя, предложенная Сади Карно почти 200 лет назад, хоть и нереализуема на практике, но определенно остается актуальной и в нынешнее время.

Цикл Карно – теоретический инструмент, позволяющий рассчитать максимальную эффективность для любого теплового двигателя, что является немаловажной задачей для каждого инженера, занимающегося разработкой и моделированием термодинамических систем.

4.9 Циклы. Цикл
Карно.

Важным прикладным
приложением термодинамики являются
тепловые машины.

Под
тепловой
машиной

понимают устройство, преобразующее
некоторую часть внутренней энергии
рабочего тела в механическую работу.

Тепловые
машины делят на два класса: машины
одноразового действия (ракета, пушка и
т.п.) и циклические машины (паровые
машины, двигатели внутреннего сгорания).
В циклических машинах процессы
преобразования теплоты в работу
периодически повторяются. Для этого
нужно, чтобы рабочее тело после получения
теплоты от источника, совершив работу,
вернулось в исходное состояние, чтобы
снова начать такой же круговой процесс.

Циклом
называется процесс, начало и конец
которого — совпадают. Примером циклического
процесса является процесс, изображённый
на рис.4.6. Работа цикла складывается из
работы самой системы (участок1L12)
и работы над системой (участок 2L21):

.
Работа
цикла

численно равна площади фигуры, ограниченной
кривой, изображающей цикл. Газ совершает
работу на участке 1L12
за счёт полученного от нагревателя
количества теплоты, а на участке 2L21
над газом совершается работа внешними
силами. Чтобы работа внешних сил была
меньше работы газа, необходимо её
совершать при более низкой температуре,
а, следовательно, некоторое количество
теплоты должно перейти от рабочего
тела
–газа
— к менее нагретому телу – холодильнику.

Утверждение
о том, что для совершения полезной работы
в циклической машине необходимо участие
двух тел с различной температурой,
называется принципом
Карно
.

Схема
работы тепловой машины приведена на
рис. 4.7.

Цикл,
при помощи которого количество теплоты,
отнятое от какого-нибудь тела, можно
наилучшим образом преобразовать в
механическую работу, называется циклом
Карно
. В
качестве рабочего тела здесь выступает
идеальный газ. Цикл Карно состоит из
двух изотерм и двух адиабат (рис.4.8). На
участке 1-2 рабочее тело контактирует с
нагревателем (телом с большой теплоёмкостью)
и получает от него количество теплоты
Qн
. При этом
реализуется изотермическое расширение
газа (из-за большой теплоёмкости
нагревателя его температура не
изменяется). Это самый выгодный однократный
процесс, при котором всё полученное
количество теплоты переходит в
механическую работу, согласно первому
началу термодинамики:


(4.41)

Участок
2-3 соответствует адиабатному расширению
идеального газа. На этом этапе разорван
контакт с нагревателем и рабочее тело
не обменивается количеством теплоты с
другими телами. Это тоже выгодно,
поскольку в этом случае газ совершает
работу за счёт собственной внутренней
энергии, вследствие чего она уменьшается,
температура газа становится равной Т2
. Согласно
первому началу термодинамики,


(4.42)

На
участке 3-4 рабочее тело приводится в
тепловой контакт с холодильником,
имеющим большую теплоёмкость и температуру
Т2.
Здесь при более низкой температуре газ
сжимают изотермически, совершая над
ним работу, численно равную отданному
холодильнику количеству теплоты, работа
же самого газа, так же, как и отданное
количество теплоты, отрицательна:


(4.43)

При
более низкой температуре, когда внутренняя
энергия меньше первоначальной, газ
сжимать легче, поэтому работа А34
меньше работы А12.
Изотермическое сжатие опять-таки
является самым выгодным, поскольку не
нужно изменять внутреннюю энергию газа,
затрачивая на это дополнительную работу
внешних сил. На последнем участке цикла
Карно необходимо вернуть газ в
первоначальное состояние наивыгоднейшим
образом, то есть адиабатно сжать его.
При адиабатном сжатии нет теплового
контакта рабочего тела с холодильником,
а работа внешних сил полностью идёт на
увеличение внутренней энергии газа:


(4.44)

Полезная
работа за цикл равна алгебраической
сумме работ каждого участка цикла Карно:
.
Сравнение формул (4.41) и (4.44) позволяет
заключить, что работа газа на участке
2-3 по величине равна работе газа на
участке 4-1, но противоположна по знаку,
следовательно, алгебраическая сумма
работ на этих участках равна нулю, а
работа за цикл будет определяться суммой
работ участков 12 и 34:


(4.45)

Для
дальнейшего преобразования полезной
работы рассмотрим уравнения адиабаты
на участках 2-3 и 4-1, записанные через
объём и температуру:

и
.
Поделим второе уравнение на первое и
получим:
или
.
Учитывая это равенство, можно вынести
за скобки натуральный логарифм отношения
объёмов в формуле (4.45) и получить выражение
для полезной работы за цикл Карно:


(4.46)

Эффективность работы
тепловых машин характеризуют коэффициентом
полезного действия
,
определяемым как отношение полезной
работы, произведённой за цикл, к количеству
теплоты, полученному от нагревателя за
цикл:


(4.47)

Подставим в эту формулу
полезную работу, произведённую за цикл
Карно, определяемую по формуле (4.46), и
количество теплоты, полученное от
нагревателя, определяемое по формуле
(4.41), после преобразования получим
выражение для расчёта коэффициента
полезного действия (КПД) цикла Карно:


(4.48)

Эта формула пригодна
только для расчёта КПД цикла Карно. КПД
других циклов рассчитывают, используя
общую формулу (4.47). В случае, когда имеется
несколько нагревателей, можно рассчитать
полученное количество теплоты, суммируя
количества теплоты от каждого нагревателя,
по формуле:
.

Анализируя цикл,
реализуемый в идеальной тепловой
машине, Карно доказал два важных
положения, известных как теоремы
Карно
.

Первая теорема
Карно
: КПД идеального цикла Карно
не зависит от рода рабочего тела.

Вторая теорема
Карно
: цикл Карно обладает наибольшим
КПД по сравнению со всеми другими циклами
в том же интервале температур.

Доказательство
теорем Карно см. в [1-3].

4.10 Цикл Отто

Цикл
Отто

реализован в карбюраторных двигателях,
использующих высокосортные быстро
сгорающие сорта бензинов. Он изображён
на рис.4.9.

Реальные
машины используют порцию горючего за
один цикл, затем отработанное топливо
должно быть выброшено, а цилиндр двигателя
– пополнен новой порцией горючего.
Всасывание топлива происходит на участке
0-1 цикла Отто (рис.4.9), а выброс – на
участке 1-0.

Участок
1- 2 диаграммы соответствует адиабатному
(быстрому) сжатию топлива. При адиабатном
сжатии внутренняя энергия паров бензина
повышается, повышается температура и
в состоянии 2 горючее воспламеняется
при помощи искры. Так как оно сгорает
быстро, процесс 2-3 можно считать
изохорическим, поскольку объём не
успевает измениться, а давление
возрастает. На этом этапе за счёт сгорания
топлива к рабочему телу поступает
количество теплоты QН
, которое определяется по формуле:


(4.49)

На
участке 3-4 газ быстро адиабатно расширяется
(рабочий ход поршня). При этом его
внутренняя энергия, а, следовательно,
и температура уменьшается. Дальнейшее
охлаждение газа до первоначальной
температуры происходит изохорически
(участок 4-1). При этом часть количества
теплоты, полученной от нагревателя,
отдаётся холодильнику. Холодильником
для двигателей внутреннего сгорания
обычно является атмосфера. Количество
теплоты, отданное холодильнику, согласно
первому началу термодинамики для
изохорического процесса, определяется
по формуле:


(4.50)

Поскольку
в данном цикле только на одном участке
2-3 тепло поступает к рабочему телу и на
одном участке 4-1 отдаётся холодильнику,
полезная работа такого цикла может быть
определена из формулы:

. Тогда КПД такого цикла может быть
рассчитан по формуле (4.47). С учётом (4.49)
и (4.50) КПД цикла Отто равен:


(4.51)

Из
уравнений Пуассона для адиабат и

и

найдём
,
а отсюда
.
После учёта этого формула (4.51) примет
вид:


(4.52)

Из
этой формулы видно, что увеличение
степени сжатия
,
увеличивает КПД цикла, а также видно,
что КПД зависит от числа степеней свободы
вещества топлива. Следует отметить, что
минимальной температурой в данном цикле
является температура Т1
, а максимальной – Т3.
В формулу (4.52) входит температура Т2,
которая меньше, чем Т3.
Поэтому КПД цикла Отто меньше КПД цикла
Карно при том же интервале температур:

.

4.11 Цикл Дизеля

Цикл
Дизеля

реализован в двигателях, работающих на
низкосортном, относительно медленно
сгорающем топливе. Он изображён на
рис.4.10. На участке 0-1 цикла Дизеля
происходит впрыскивание горючего, а
выброс – на участке 1-0. Участок 1-2
соответствует адиабатному сжатию, при
котором, как известно, повышается
температура. В состоянии 2 горючее
самовоспламеняется и относительно
медленно сгорает, так, что поршень
успевает прийти в движение. Поэтому
участок 2-3 можно считать изобарическом
процессом, причём за счёт сгорания
топлива, в систему поступает количество
теплоты QН
. Согласно первому началу термодинамики,
оно идёт на совершение поршнем работы
и на увеличение внутренней энергии
рабочего тела. Количество теплоты можно
выразить через теплоёмкость изобарического
процесса :


(4.53)

Участок 3-4 соответствует
быстрому расширению рабочего тела, то
есть адиабатному расширению. Рабочее
тело совершает работу за счёт собственной
внутренней энергии, при этом его
температура уменьшается. Охлаждение
рабочего тела до первоначальной
температуры происходит изохорически
(участок 4-1), при этом холодильнику
отдаётся количество теплоты:


(4.54)

КПД цикла Дизеля может
быть рассчитан по формуле (4.47), с учётом
формул (4.53) и (4.54), получим:


(4.55)

КПД цикла Дизеля также
меньше, чем КПД цикла Карно в том же
температурном интервале. КПД тепловых
двигателей невысок и при часто используемых
температурах нагревателя и холодильника
он равен 30 ÷ 40%.

Вопрос о создании эффективной тепловой машины впервые поднял и решил французский ученый Н. Л. С. Карно. В работе «Рассуждение о движущей силе огня», опубликованной в 1824, он проанализировал работу идеальной тепловой машины (позже ее цикл назвали циклом Карно) и определил коэффициент ее полезного действия.

Карно доказал, что даже в идеальных условиях не может быть такой периодически действующей машины, которая, получая теплоту от нагревателя (более горячего тела), полностью превращала бы ее в механическую работу – обязательным условием в данном случае является передача части этой теплоты холодильнику (более холодному телу).

Схема Б. К. Млодзиевского

Рассмотрим подробнее цикл Карно на примере схемы Б. К. Млодзиевского. Рабочим телом в машине Карно является идеальный газ. Цикл осуществляется в цилиндре, стенки и поршень которого нетеплопроводные, дно цилиндра теплопроводное. Именно по дну цилиндра производится тепловой контакт газа с нагревателем и холодильником:

Цикл Карно.png

Последние являются телами очень большой теплоемкости, поэтому во время цикла их температура остается постоянной: нагревателя – T1 холодильника – T2. Дно цилиндра можно сделать нетеплопроводным, поставив цилиндр на адиабатическую подставку.

Описание цикла

Цикл Карно состоит из двух изотермических и двух адиабатических процессов идеального газа:

Цикл Карно2.png

Конечно, речь идет о равновесных процессах, которые, например, можно осуществить снятием песчинок с нагруженного поршня на боковые полки или переносом песчинок с полок на поршень (схема Б. К. Млодзиевского).

На участке 1-2 происходит изотермическое расширение газа. При этом цилиндр находится в контакте с нагревателем (схема а), с поршня песчинки переносятся на полку. Газ выполняет работу благодаря теплоте Q1, которую он получает от нагревателя (условия идеальные) на этом участке вся теплота превращается в механическую работу.

На участке 2-3 происходит адиабатическое расширение газа. Цилиндр находится на адиабатической подставке, песчинки переносятся с поршня на полку (схема б). Газ выполняет работу благодаря внутренней энергии, поэтому его температура снижается до Т2.

На участке 3-4 осуществляется изотермическое сжатие газа. Цилиндр находится в контакте с холодильником Т2, песчинки переносятся с полок на поршень (схема в). Работа выполняется над газом, газ передает количество теплоты Q2 холодильнику; поэтому температура газа остается неизменной – Т2.

На участке 4-1 осуществляется адиабатическое сжатие газа. Цилиндр находится на адиабатической подставке, песчинки переносятся с полок на поршень (схема г). Работа выполняется над газом, благодаря ей внутренняя энергия газа увеличивается, температура газа повышается от Т2 до T1. Газ переходит в исходное состояние.

Итак, работа, выполненная газом на участках 1-2 и 2-3, больше чем работа, затраченная на сжатие газа на участках 3-4 и 4-1.

Теплота, забранная у нагревателя, больше, чем отданная холодильнику. Разница Q1 — Q2 определяет то количество теплоты, которая превратилась в работу цикла. Признаком этой работы является песок, оставшийся на полках над поршнем.

Аналогично можно осуществить цикл Карно в обратном направлении: 1-4-3-2-1. В результате от холодильника было бы получена теплота Q2, а нагревателю передана теплота Q1 (Q1 > Q2). Благодаря работе, выполненной над газом, нагреватель получил бы теплоты на Q1 — Q2 больше, чем забрали от холодильника. Итак, теплоту также можно передавать от холодного к горячему телу, но для этого надо затрачивать определенную работу. На этом основывается работа холодильной машины.

После осуществления прямого и обратного циклов Карно в природе не осталось никаких следов (весь песок был бы на поршне, а полки были бы чистые). Цикл Карно является обратимым, то есть состоит из обратимых процессов.

Тест по теме «Цикл Карно»

Понравилась статья? Поделить с друзьями:
  • Как мне найти старого знакомого
  • Безопасный ssl как исправить
  • Как составить акт когда работник не выходит на работу
  • Как найти витамин а на айхерб
  • Как найти минимальную цену формула