Как находить периметр геометрических фигур (треугольник, четырёхугольник, многоугольник) по известным координатам вершин? Какая формула должна использоваться? Формула для вычисления длины стороны АВ по известным координатам: Аналогичным образом высчитываются остальные стороны, а затем полученные величины суммируются. автор вопроса выбрал этот ответ лучшим Ксарфакс 4 года назад Периметр по координатам Периметр фигуры — это сумма длин всех её сторон. Чтобы в нашем случае найти длины сторон, нужно воспользоваться формулой длины отрезка по заданным координатам (x1; y1) и (x2; y2): Последовательно складываем все полученные значения и получаем периметр. Если в задаче вид фигуры (квадрат, прямоугольник, равносторонний треугольник и т.п.) оговаривается заранее, то находить все длины может и не понадобиться. Например, периметр квадрата ABCD будет равен 4 * AB, так как у этой фигуры все стороны равны. То есть будет достаточно вычислить, чему равна сторона AB и умножить её на 4. Рассмотрим несколько примеров. 1) Треугольник ABC имеет координаты A(1,1); B(1,3); C(2,1). P(ABC) = AB + AC + BC. AB = √(0 + 2²) = √4 = 2. AC = √(1² + 0) = √1 = 1. BC = √(1² + (-2)²) = √5 ≈ 2,24. Таким образом, P(ABC) ≈ 2 + 1 + 2,24 = 5,24. 2) Прямоугольник ABCD имеет координаты A(2,1); B(2,4); C(3,4); C(3,1). P(ABCD) = 2AB + 2BC (так как по определению прямоугольника AB = CD и BC = AD). AB = √(0 + 3²) = √9 = 3. AC = √(1² + 0) = √1 = 1. Таким образом, P(ABC) = 3 * 2 + 1 * 2 = 8. ** Найти периметр по координатам можно и без использования формулы длины отрезка. Порядок действий такой:
Sadness 4 года назад Так как координаты вершин нам известны, то, для нахождения периметра, остаётся просто вычислить длину каждой стороны и сложить их. Длина отрезка вычисляется так:l=sqrt((x2 — x1)^2 + (y2 — y1)^2); Важно: вычитаем всегда начало из конца. Нахождение на примере:Найдём длины всех трёх сторон и сложим. AB=sqrt((x2 — x1)^2 + (y2 — y1)^2)=sqrt((12 — 1)^2 + ((-5) — 8)^2)=sqrt(121 + 169)=sqrt(290); BC=sqrt((x2 — x1)^2 + (y2 — y1)^2)=sqrt((-2 — 12)^2 + (1 — -(5))^2)=sqrt(196 + 36)=sqrt(232); CA=sqrt((1 — (-2))^2 + (8 — 1)^2)=sqrt(9 + 49)=sqrt(58); Далее просто складываем полученные результаты: P=AB+BC+CA; Ну вот и всё, так просто находится периметр по заданным координатам(для любой фигуры). P.s извиняюсь за плохо подобранные координаты. Давайте сначала вспомним, что такое периметр фигуры и как его вычислить. Периметром называется сумма длин всех сторон данной фигуры. Таким образом, для вычисления периметра какой-либо фигуры нужно знать длину всех ее сторон. Затем дело останется за малым — просто сложить длины. По сути, сторона любого многоугольника ( треугольника, четырехугольника, пятиугольника и так далее ) представляется собой отрезок. Для вычисления длины отрезка по координатом его концов используется следующая формула: , где х1 и х2 — координаты концов отрезка по оси х, а y1 и y2 — координаты по оси у. Подставляем в формулу значения, проводим вычисления. Находим длину каждой из сторон. Суммируем все длины. Hamster1337 2 года назад Периметр геометрических фигур по координатам вершин можно найти при помощи формулы Где x1,x2 это первая координата, y1,y2 это вторая координата. Данную формулу нужно применять к каждой паре соседних вершин многоугольника. После обхода и суммирования всех длин будет получен периметр. Алиса в Стране 3 года назад Любая геометрическая фигура это совокупность отрезков, составляющих ее стороны, и вершин а ее периметр — сумма длин этих отрезков, сумма сторон, поэтому если мы найдем длины всех сторон и сложим их, то получим как раз периметр фигуры. Для того, чтобы найти длину отрезка АВ, зная его координаты, есть такая вот формула: где точка А имеет координаты (x1; y1), а точка В — координаты (x2; y2). Итак, длину отрезка мы находить научились. Допустим теперь, что у нас есть треугольник АВС, мы знаем координаты его вершин, по указанной выше формуле мы находим длины отрезков АВ, ВС, АС и складываем их, получая периметр этого треугольника АВС: АВ + ВС + АС. габбас 4 года назад Периметр любого многоугольника вычисляется как сумма длин всех его сторон. Значит задача сводится к нахождению длины отрезка по координатам его концов. А это известная формула из курса геометрии основной школы. Итак, длина отрезка d = sqrt(x2^2 — x1^2) + (y2^2 — y1^2), х1 и у1 координаты начала, х2,у2 — координаты конца отрезка. Таким образом находим длины всех сторон многоугольника и суммируем эти значения. Лара Изюминка 3 года назад Во-первых, вспомним, что такое периметр — это сумма длин сторон. То есть нам нужны длины сторон многоугольника. Чтобы их найти, зная координаты точек, воспользуемся формулой из геометрии для нахождения расстояния между двумя точками на плоскости: AB = √(xb — xa)2 + (yb — ya)2. То есть нужно вычислить корень квадратный из суммы квадратов разницы координат по х и по у. Если фигура в пространстве, то добавится еще разница координат по z. AB = √(xb — xa)2 + (yb — ya)2 + (zb — za)2 Когда длины всех отрезков найдем остается их только сложить. Периметром фигуры зовется сумма длин всех сторон. Для поиска длинны сторон воспользуйтесь формулой длинны отрезка согласно координатам, которые заданы. (x1; y1) и (x2; y2): Так, если вы последовательно сложите значения, которые получите, то сможете получить периметр. Что касается примеров, при условии наличия координат по точкам А (4;2), В(-6;-3), С(0;8) Следует сложить — получить. Бекки Шарп 3 года назад Если геометрическая фигура находится в системе координат и координаты ее вершин известны, то длину сторон будем искать по такой формуле: У нас есть треугольник. Координаты его точек- А (4;2), В(-6;-3), С(0;8) Находим длины отрезков АВ, ВС и АС по формуле. Складываем полученные результаты и получаем периметр. Бархатные лапки 3 года назад Существует формула, по которой можно вычислить длину отрезка, если известны координаты. Делим нашу геометрическую фигуру на отрезки, считаем длину каждого отрезка и затем все значения длин складываем. Таким образом мы получаем периметр. Знаете ответ? |
Подождите!
Не закрывайте страницу. Нейросеть пишет ответ. Он появится тут.
Этот ответ написан нейросетью.
Искуственный интеллект во многом преуспевает, но в некоторых областях может давать неточные ответы.
Если вам не понравился ответ, попробуйте задать его более развёрнуто и конкретно, используя точные параметры.
Ответ нейросети:
Для нахождения периметра треугольника, заданного координатами своих вершин, можно воспользоваться формулой расстояния между двумя точками на плоскости. Для этого мы должны найти длины всех сторон треугольника, а затем просуммировать их.
Для начала, создадим структуру для хранения координат точек:
struct Point { public double X { get; set; } public double Y { get; set; } }
Мы можем использовать массив из трех точек, чтобы представить треугольник:
Point[] triangle = new Point[3]; for (int i = 0; i < 3; i++) { triangle[i] = new Point(); }
Затем необходимо заполнить массив точками треугольника. Например, можно считать координаты из консоли:
for (int i = 0; i < 3; i++) { Console.Write($"Введите координаты точки {i + 1}: "); string[] input = Console.ReadLine().Split(); triangle[i].X = double.Parse(input[0]); triangle[i].Y = double.Parse(input[1]); }
Теперь мы можем вычислить длины всех трех сторон:
double[] sides = new double[3]; for (int i = 0; i < 3; i++) { int j = (i + 1) % 3; sides[i] = Math.Sqrt(Math.Pow(triangle[i].X - triangle[j].X, 2) + Math.Pow(triangle[i].Y - triangle[j].Y, 2)); }
В этом цикле мы берем каждую вершину треугольника и вычисляем расстояние до следующей вершины (с индексом i+1), используя формулу расстояния между двумя точками на плоскости:
«`
AB = √( (x2 — x1)^2 + (y2 — y1)^2 )
«`
Наконец, мы можем просуммировать длины всех сторон, чтобы найти периметр треугольника и вывести результат на экран:
double perimeter = sides.Sum(); Console.WriteLine($"Периметр треугольника: {perimeter}");
Вот полный код программы:
using System; using System.Linq; namespace TrianglePerimeter { struct Point { public double X { get; set; } public double Y { get; set; } } class Program { static void Main(string[] args) { Point[] triangle = new Point[3]; for (int i = 0; i < 3; i++) { triangle[i] = new Point(); } for (int i = 0; i < 3; i++) { Console.Write($"Введите координаты точки {i + 1}: "); string[] input = Console.ReadLine().Split(); triangle[i].X = double.Parse(input[0]); triangle[i].Y = double.Parse(input[1]); } double[] sides = new double[3]; for (int i = 0; i < 3; i++) { int j = (i + 1) % 3; sides[i] = Math.Sqrt(Math.Pow(triangle[i].X - triangle[j].X, 2) + Math.Pow(triangle[i].Y - triangle[j].Y, 2)); } double perimeter = sides.Sum(); Console.WriteLine($"Периметр треугольника: {perimeter}"); } } }
⚠️Зарепортить пост!
Как найти периметр треугольника, заданного координатами своих вершин
Периметр — это длина линии, ограничивающей занимаемую плоской геометрической фигурой площадь. Для треугольника, как и всех других многоугольников, это ломаная линия, составленная из его всех его сторон. Поэтому задача вычисления периметра треугольника, заданного координатами его вершин, сводится к вычислению длины каждой из сторон с последующим суммированием полученных величин.
Инструкция
Чтобы вычислить длину стороны, рассмотрите вспомогательный треугольник, составленный из самой стороны и двух ее проекций на оси абсцисс и ординат. В этой фигуре две проекции будут образовывать прямой угол — это вытекает из определения прямоугольных координат. Это означает, что они будут катетами в прямоугольном треугольнике, где гипотенузой будет сама сторона. Ее длину можно вычислить по теореме Пифагора, надо лишь найти длины проекций (катетов). Каждая из проекций представляет собой отрезок, начальная точка которого определена меньшей координатой, конечная — большей, а их разница и будет длиной проекции.
Рассчитайте длину каждой стороны. Если обозначить координаты точек, определяющих треугольник, как A(X₁,Y₁), B(X₂,Y₂) и C(X₃,Y₃), то для стороны АВ проекции на оси абсцисс и ординат будут иметь длины X₂-X₁ и Y₂-Y₁, а длина самой стороны в соответствии с теоремой Пифагора будет равна АВ = √((X₂-X₁)² + (Y₂-Y₁)²). Длины двух других сторон, рассчитанные через их проекции на оси координат, можно записать так: ВС = √(( X₃-X₂)² + (Y₃-Y₂)²), СА = √((X₃-X₁)² + (Y₃-Y₁)²).
При использовании трехмерной системы координат в подкоренное выражение, полученное на предыдущем шаге, добавьте еще одно слагаемое, которое должно выражать квадрат длины проекции стороны на ось аппликат. В этом случае координаты точек можно записать так: A(X₁,Y₁,Z₁), B(X₂,Y₂,Z₂) и C(X₃,Y₃,Z₃). А формулы расчета длин сторон примут такой вид: АВ = √((X₂-X₁)² + (Y₂-Y₁)² + (Z₂- Z₁)²), ВС = √(( X₃-X₂)² + (Y₃-Y₂)² + (Z₃-Z₂)²) и СА = √((X₃-X₁)² + (Y₃-Y₁)² + (Z₃-Z₁)²).
Рассчитайте периметр (Р) треугольника, сложив полученные на предыдущих шагах длины сторон. Для плоской Декартовой системы координат формула в общем виде должна выглядеть так: Р = АВ + ВС + СА = √((X₂-X₁)² + (Y₂-Y₁)²) + √(( X₃-X₂)² + (Y₃-Y₂)²) + √((X₃-X₁)² + (Y₃-Y₁)²). Для трехмерных координат эта же формула должна иметь такой вид: Р = √((X₂-X₁)² + (Y₂-Y₁)² + (Z₂- Z₁)²) + √(( X₃-X₂)² + (Y₃-Y₂)² + (Z₃-Z₂)²) + √((X₃-X₁)² + (Y₃-Y₁)² + (Z₃-Z₁)²).
Источники:
- площадь треугольника заданного координатами вершин
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Примечание: дробные числа записывайте
через точку, а не запятую.
Округлять до -го знака после запятой.
Периметр многоугольника по его координатам
Координаты многоугольника, разделенные пробелами в формате x+iy |
В данной статье мы окажем помощь в расчете периметра многоугольника, заданного координатами его вершин. Несмотря на то, что сам принцип расчета прост, при большом количестве вершин, Вам придется делать несколько раз одни и те же вычисления, то есть выполнять рутинную операцию. А я страсть как не люблю рутину и Вам ей заниматься не советую.
Формула которая используется проста:
Если извеcтны две точки с координатами (x1,y1) и (x2,y2) то расстояние между ними
эту формулу необходиом применить к каждой паре координат соседних вершин многоугольника. И как только мы закончим обход и просуммировав все длины мы получим наш периметр.
Теперь что касается ввода данных. В предыдущем материале Площадь многоугольника по координатам онлайн ввод координат осуществляется через двоеточие и пробел, что не совсем удобно.
В этой статье, для упрощения и для обощения ( на комплексное представление) коодинаты будут задаватся в виде комплексных чисел.
Для тех кто с комплексными числами никогда не сталкивался, хочу успокоить — ничего страшного.
И если Вы координату раньше представляли как (x,y), то в комплексном представлении эта же координата видится уже как x+iy
Для ввода это немного проще, так как в дальнейшем при написании статьи про линейные преобразования фигуры на плоскости, это форма ввода нам пригодится, да и понимать ту статью Вам будет уже намного проще.
Теперь немного примеров:
Определим периметр многоугольника заданного координатами А (0; 0); В (8; 2); С (–2; 6).
Так как три вершины то это треугольник.
Введем данные в поле ввода( разделяя каждую координату вершины пробелом) в таком формате 0+0i 8+2i -2+6i
Решение задач. День третий. Задачи Begin21-30
Здравствуйте, дорогие читателинашего сайта. На этой недели счетчик посещаемости наконец-то сдвинулся с мертвой точки. Это не может не радовать. Если вы новоиспеченный постоянный посетитель этого сайта, оставьте комментарий к любому посту, чтобы мы не думали, что на нашем сайте обитают только боты 🙂 Ну что ж, приступим к решению задач Begin21-30.
Begin21. Даны координаты трех вершин треугольника: (x1, y1), (x2, y2), (x3, y3). Найти его периметр и площадь, используя формулу для расстояния между двумя точками на плоскости (см. задание Begin20). Для нахождения пло щади треугольника со сторонами a, b, c использовать формулу Герона: S = √(p ⋅ ( p − a) ⋅ ( p − b) ⋅ ( p − c)), где p — полупериметр.
На первый взгляд задача может показаться весьма и весьма трудной, и для того, чтобы не заблудиться в решении, составим план наших действий:
- Для того, чтобы найти периметр треугольника, находим расстояния между всеми вершинами (ведь расстояния между вершинами это и есть стороны) по формуле √((x2 — x1) 2 +(y2 — y1) 2 ), а затем суммируем их.
- Для того, чтобы найти площадь, используем формулу Герона.
Begin22°. Поменять местами содержимое переменных A и B и вывести новые значения A и B.
Эта классическая задача является основой более сложных алгоритмов. Представьте, у Вас есть два кувшина: первый наполнен водой, второй — соком. Требуется поменять жидкости местами, то есть, перелить воду во второй кувшин, а сок — в первый. Как Вы решите данную проблему? Скорее всего, Вы возьмете третий кувшин и временно перельете в него содержимое одного из кувшинов. Так и в Паскале: сначала мы присваиваем значение любой из двух переменных третьей, а уже потом перемещаем значения переменных.
Вода и персиковый сок
Begin23. Даны переменные A, B, C. Изменить их значения, переместив содер жимое A в B, B — в C, C — в A, и вывести новые значения переменных A, B, C.
И снова мы используем дополнительную переменную.
Begin24. Даны переменные A, B, C. Изменить их значения, переместив содержимое A в C, C — в B, B — в A, и вывести новые значения переменных A, B, C.
Задача, противоположная предыдущей.
Begin25. Найти значение функции y = 3·x 6 – 6·x 2 – 7 при данном значении x.
И снова мы прибегаем к помощи функций power и sqr .
Begin26. Найти значение функции y = 4·(x–3) 6 – 7·(x–3) 3 + 2 при данном значе нии x.
Begin27°. Дано число A. Вычислить A 8 , используя вспомогательную перемен ную и три операции умножения. Для этого последовательно находить A 2 , A 4 , A 8 . Вывести все найденные степени числа A.
В данной задачи требуется использовать вспомогательную переменную и три операции умножения, поэтому мы не можем использовать функцию power.
Begin28. Дано число A. Вычислить A 15 , используя две вспомогательные пере менные и пять операций умножения. Для этого последовательно находить A 2 , A 3 , A 5 , A 10 , A 15 . Вывести все найденные степени числа A.
Эта задача аналогична предыдущей, но немного сложнее .
Begin29. Дано значение угла α в градусах (0 этого же угла в радианах, учитывая, что 180° = π радианов. В качестве зна чения π использовать 3.14.
Две следующие задачи является актуальными для нас. Ведь функции sin, cos, arctan работают только с радианами. И программа, которая быстро переводит градусы в радианы или радианы в градусы, очень ценна. А теперь формула: Радианы = Градусы * pi / 180.
Begin30. Дано значение угла α в радианах (0 этого же угла в градусах, учитывая, что 180° = π радианов. В качестве зна чения π использовать 3.14.
Формула нахождения градусов следует из предыдущей формулы : Градусы = Радианы * 180 / pi. Кстати, в решении данной задачи я использую стандартное значение Pi = 3.14159265358979
На сегодня все! Мы с вами решили целых десять задач. Конечно, они не очень сложные, но ведь цель этих задач познакомить вас с основными функциями, вводом и выводом и показать вам то, как легко и интересно программировать на любом из языков программирования.
http://abakbot.ru/online-2/332-perimetr
http://learnpascal.ru/reshenie-zadach/begin/begin21-30.html
Как найти периметр треугольника, заданного координатами своих вершин
Периметр — это длина линии, ограничивающей занимаемую плоской геометрической фигурой площадь. Для , как и всех других многоугольников, это ломаная линия, составленная из его всех его сторон. Поэтому задача вычисления периметра треугольника, заданного координатами его вершин, сводится к вычислению длины каждой из сторон с последующим суммированием полученных величин.
Чтобы вычислить длину стороны, рассмотрите вспомогательный треугольник, составленный из самой стороны и двух ее проекций на оси абсцисс и ординат. В этой фигуре две проекции будут образовывать прямой угол — это вытекает из определения прямоугольных координат. Это означает, что они будут катетами в прямоугольном треугольнике, где гипотенузой будет сама сторона. Ее длину можно вычислить по теореме Пифагора, надо лишь найти длины проекций (катетов). Каждая из проекций представляет собой отрезок, начальная точка которого определена меньшей координатой, конечная — большей, а их разница и будет длиной проекции.
Рассчитайте длину каждой стороны. Если обозначить координаты точек, определяющих треугольник, как A(X₁,Y₁), B(X₂,Y₂) и C(X₃,Y₃), то для стороны АВ проекции на оси абсцисс и ординат будут иметь длины X₂-X₁ и Y₂-Y₁, а длина самой стороны в соответствии с теоремой Пифагора будет равна АВ = √((X₂-X₁)² + (Y₂-Y₁)²). Длины двух других сторон, рассчитанные через их проекции на оси координат, можно записать так: ВС = √(( X₃-X₂)² + (Y₃-Y₂)²), СА = √((X₃-X₁)² + (Y₃-Y₁)²).
При использовании трехмерной системы координат в подкоренное выражение, полученное на предыдущем шаге, добавьте еще одно слагаемое, которое должно выражать квадрат длины проекции стороны на ось аппликат. В этом случае координаты точек можно записать так: A(X₁,Y₁,Z₁), B(X₂,Y₂,Z₂) и C(X₃,Y₃,Z₃). А формулы расчета длин сторон примут такой вид: АВ = √((X₂-X₁)² + (Y₂-Y₁)² + (Z₂- Z₁)²), ВС = √(( X₃-X₂)² + (Y₃-Y₂)² + (Z₃-Z₂)²) и СА = √((X₃-X₁)² + (Y₃-Y₁)² + (Z₃-Z₁)²).
Рассчитайте периметр (Р) треугольника, сложив полученные на предыдущих шагах длины сторон. Для плоской Декартовой системы координат формула в общем виде должна выглядеть так: Р = АВ + ВС + СА = √((X₂-X₁)² + (Y₂-Y₁)²) + √(( X₃-X₂)² + (Y₃-Y₂)²) + √((X₃-X₁)² + (Y₃-Y₁)²). Для трехмерных координат эта же формула должна иметь такой вид: Р = √((X₂-X₁)² + (Y₂-Y₁)² + (Z₂- Z₁)²) + √(( X₃-X₂)² + (Y₃-Y₂)² + (Z₃-Z₂)²) + √((X₃-X₁)² + (Y₃-Y₁)² + (Z₃-Z₁)²).