Давление насыщения при температуре как найти

Насыщенный пар

Это пар, находящийся в термодинамическом равновесии с жидкой (или твёрдой) фазой одного и того же вещества.

Одним из параметров, характеризующим насыщенный пар, является его давление.

Давление насыщенного пара зависит от температуры и не зависит от объема.

Разберемся подробнее, почему так происходит.

Почему давление насыщенного пара не зависит от объема?

Рассмотрим этот вопрос на примере дистиллированной воды.

Возьмем цилиндр с поршнем, в полости которого находится дистиллят в термодинамическом равновесии с паром. Начинаем двигать поршень вниз, объем цилиндра начинает уменьшаться, происходит сжатие насыщенного пара, при этом мы поддерживаем постоянную температуру.

давлените пара.jpg

Система начнёт выходить из равновесия, плотность пара будет увеличиваться, и из газообразной фазы в жидкую будет переходить молекул больше, чем из жидкой в газообразную.

Другими словами, мы будем наблюдать процесс превращения насыщенного пара обратно в жидкость, этот процесс называется конденсация.

Если мы начнем поднимать поршень, объем полости увеличится, концентрация водяных паров над жидкостью начнет уменьшаться, вследствие чего, вода в сосуде начнет испаряться до тех пор, пока давление и концентрация насыщенного пара над жидкостью не придет в исходное состояние, то есть пока не наступит термодинамическое равновесие.

Из выше сказанного мы делаем вывод, что концентрация молекул насыщенного пара над жидкостью при постоянной температуре не зависит от его объема.

Уравнение, описывающее давление насыщенного пара

P=nkT,P=nkT,

где PP – давление пара (Па), nn – концентрация молекул пара (м-3), kk – постоянная Больцмана (равна 1,380649 Дж/К), ТТ – температура (К).

Из приведенной формулы мы видим, что давление насыщенного пара прямо пропорционально концентрации молекул и температуре паров над жидкостью (или твердым веществом) и, следовательно, не зависит от занимаемого им объема.

Как давление насыщенного пара зависит от температуры?

Из формулы, приведенной выше, мы наблюдаем, что давление насыщенного пара прямо пропорционально температуре термодинамической системы.
Несмотря на это, экспериментальная зависимость отличается от описанной уравнением, и давление пара увеличивается с большей скоростью с повышением температуры, нежели по линейному закону. Почему так происходит?

Всё дело в том, что во время увеличения подведенной температуры растёт и скорость испарения жидкости (или сублимации твёрдого вещества), вследствие этих факторов, увеличивается и концентрация испарённых (или сублимированных) молекул в газообразном состоянии над жидкой (или твёрдой) фазой. Поэтому и давление насыщенных паров изменяется быстрее. Плотность пара будет возрастать до тех пор, пока термодинамическое равновесие для данной температуры вновь не восстановится.

давление пара2.png

На участке 1-2 мы как раз видим влияние двух факторов – увеличение температуры и концентрации паров. В точке 2 вся жидкость испаряется (или твердое вещество сублимируется) и пар становится ненасыщенным, тогда давление начинает расти по линейному закону, что видно на участке 2-3.

Значения давления насыщенного пара для воды и других веществ при различных температурах получены эмпирическим методом. Эти данные можно найти в справочных материалах.

Тест по теме «Давление насыщенного пара»

Насыщенный пар имеет несколько важных параметров, одним из которых является температура.

В статье подробно описана эта характеристика, приведены зависимости различных параметров пара от его температуры, рассказывается о расчете.

Содержание

  • Что это за параметр, как он обозначается?
  • От чего зависит?
  • При какой t° водяной пар станет насыщенным?
  • Какова максимальная и минимальная?
  • Таблица зависимости
  • Как найти температуру насыщения водяного пара
    • Формула и правила расчета
    • Несколько примеров
  • Параметры, которые зависят от температуры НП
    • Масса
    • Упругость
    • Давление
    • Плотность
  • Применение знаний на практике
  • Видео по теме статьи
  • Заключение

Что это за параметр, как он обозначается?

Температурой является скалярная величина, обозначающая степень нагретости тела или газа.

Для насыщенного пара свойственна степень нагретости, величина которой зависит от температуры воды. Это связано с основной характеристикой насыщенного пара – термодинамическим равновесием со своей водой.

Температура насыщенного пара равна температуре жидкости. В физике, единицей измерения температуры насыщенного пара принято считать Цельсий. В формулах и описании различных характеристик она обозначается буквой «t» или значком «°C».

Температура насыщенного пара также может рассчитываться в Кельвинах. При этом данный параметр обозначается буквой «К». При расчетах стоит учитывать, что 1°C = 274 К.

От чего зависит?

На температурный параметр насыщенного пара воздействуют различные факторы:

  1. Химическое свойство вещества. Различные химические элементы имеют отличные параметры нагретости для кипения. Например, водород закипает при -253 градусах, а вода при 100°C.
  2. Величина атмосферного давления. С увеличением давления повышается температура парообразования.
  3. Плотность. Зависимость прослеживается недолгое время. При низкой плотности, между молекулами пара остается воздушное пространство с разностью температуры. Часть нагретости пара отдается воздуху, что снижает температуру самого пара. При увеличении плотности температура стабилизируется.
  4. Степень насыщения жидкостью. Эта зависимость прослеживается на момент дисбаланса термодинамического равновесия и до появления конденсации. Также существует зависимость температуры пара от внешней температуры. Чем она ниже, тем выше конденсация.

График:

foto47514-2

При какой t° водяной пар станет насыщенным?

Насыщенным водяной пар становится при достижении термодинамического равновесия со своей водой. Нижним порогом считается +1°C в закрытом сосуде, а верхний – при +100°C. Тут прослеживается зависимость от давления.

Величина атмосферного давления в 100 кПа позволяет доводить воду до кипения при 100 °C. Образование насыщенного пара при высокой температуре зависит от интенсивности подвода тепла к жидкости.

Насыщенный пар может образовываться и при +1. В этом случае образование насыщенного пара зависит от отвода тепла от жидкости.

И в том и в другом случае, вода и образованный пар должны находится в закрытом сосуде и в термодинамическом равновесии между собой.

Какова максимальная и минимальная?

Максимальной температурой насыщенного пара может быть значение, равное температуре кипения его жидкости. Если данный параметр пара превышает температуру кипения жидкости, пар переходит в состояние перегретого.

Например:

  1. Нижний порог образования, насыщенного водяного пара составляет +1 градус в закрытом сосуде. При 0 градусов осуществляется фазовый переход воды из жидкого состояния в твердое. С поверхности льда также может образоваться насыщенный пар, но уже в температурном равновесии со льдом.
  2. Верхней температурной точкой является значение 100 градусов в Земном атмосферном давлении. Повышение температуры пара приведет к дисбалансу термодинамического равновесия и переходу в состояние перегретого пара.

При измерении верхней и нижней температурной точки образования насыщенного пара стоит учитывать свойства и химическую структуру самого вещества, а также параметры давления.

Таблица зависимости

Зависимость различных параметров насыщенного пара от его температуры приведена ниже.

 °C ABS — кгс/см2 U — м3/кг P — кг/м3 hf-кДж/кг h — кДж/кг L — кДж/кг
0 0,006 206 0,004 0 2493 2493
5 0,008 147 0,006 20 2502 2481
10 0,01 106 0,009 41 2512 2470
20 0,02 57 0,01 83 2532 2448
30 0,04 32 0,03 125 2551 2425
40 0,07 19 0,05 167 2570 2403
50 0,12 12 0,08 209 2589 2380
60 0,20 7,6 0,13 251 2608 2356
70 0,31 5, 0,19 293 2626 2333
80 0,48 3,41 0,2 335 2644 2310
90 0,71 2,3 0,4 377 2662 2285
100 1,03 1,6 0,5 419 2679 2260
374 225 0,0031 332 2100 2100 0

Согласно таблице, можно проследить следующие зависимости от температурного параметра:

  • рост абсолютного давления пара (ABS);
  • снижение его объема (U);
  • увеличение плотности (P);
  • увеличение энтальпии жидкости (hf) и энтальпии пара (h);
  • снижение удельной теплоты парообразования (L).

Исключением является температурный порог сверхкритической воды 374 градуса. При такой температуре прослеживается: равенство энтальпии пара и воды, полное отсутствие удельной теплоты парообразования.

Как найти температуру насыщения водяного пара

Расчет температуры насыщенного водяного пара помогает определить множество параметров при проектировании различных паровых систем и оборудования.

Формула и правила расчета

Расчет температуры насыщенного пара выполняется по формуле:

foto47514-3

Выражение состоит из следующих значений:

  • «T» — температура насыщенного пара.
  • «P» — давление.
  • «V» — общий объем.
  • «v» — количество полученного вещества.
  • «R» — значение газовой постоянной.

Данное выражение является производным из формулы Менделеева-Клапейрона для идеальных газов.

Несколько примеров

Задача:

  1. Давление 8000 Па.
  2. Объем пара 5,3 М3.
  3. Количества вещества 6 моль.
  4. Газовая постоянная 8,31 кДж.
  5. Температура пара в Кельвинах (К) неизвестна.

Решение:

foto47514-4

Температура пара будет равна 850 градусов Кельвина.

Задача:

  1. Давление 500 кПа.
  2. Объем пара 9,7 М3.
  3. Количество вещества 9 моль.
  4. Газовая постоянная 8,31 кДж.
  5. Температура неизвестна.

Решение:

foto47514-5

Температура насыщенного пара, при данных параметрах 65 градуса Цельсия.

Параметры, которые зависят от температуры НП

Рассмотрим, какое влияние оказывает температура насыщенного пара на различные параметры.

Масса

С повышением температуры масса пара снижается. При термодинамическом равновесии, это происходит за счет процесса конденсации. Часть пара возвращается обратно в воду. При перегреве, вода из пара полностью выпаривается, что приводит также к уменьшению массы.

Упругость

При повышении температуры заметно увеличивается упругость пара. Это связано с увеличением плотности и степени насыщения. Также упругость зависит от величины капель конденсации. Чем они больше, тем больше упругость.

Давление

С повышением температуры давление возрастает, так как ускоряется процесс парообразования и скорость движения молекул. Чем выше температура, тем скорость движения выше.

Плотность

Она увеличивается при нагревании и уменьшается при охлаждении. Связано это также с увеличением скорости парообразования при нагревании.

Применение знаний на практике

Знания о влиянии температуры на характеристики насыщенного пара используются в промышленности. Например, системы отопления регулируются за счет изменения температуры, что позволяет контролировать массу и давление пара.

Также эти знания используются при работе с химически вредными жидкостями. Зная температуру испарения, можно значительно снизить время и затраты при очистке или разделении веществ лабораторным путем.

Видео по теме статьи

Зависимость давления насыщенного пара от температуры рассмотрена в видео:

Заключение

Температура насыщенного пара всегда должна быть равной температуре жидкости. От этого зависит степень насыщения и термодинамическое равновесие пара и жидкости. Только такие условия сохраняют пар в насыщенном состоянии.

Калькулятор определяет парциальное давления водяного пара в зависимости от температуры.

Определение парциального давления водяного пара.

Примечание.

Расчет выполнен на основании п.8.6. СП 50.13330.2012 «Тепловая защита зданий». Парциальное давление насыщенного водяного пара  по данной формуле определяется в пределах температур от минус 40 °С  до плюс 45 °С.

Для внутреннего воздух помещения парциальное давления рассчитывается с учетом относительной влажности:

Расчет парциального давления насыщенного водяного пара внутреннего воздуха.

Для наружного воздух парциальное давление определяется согласно таблицы 7 СП 131.13330.2018 «Строительная климатология. Актуализированная редакция СНиП 23-01-99*»:

Строительная климатология онлайн. Данные из СП 131.13330.2018 (СП 131.13330.2012).

В комментарии приветствуются пожелания, замечания и рекомендации по улучшению программы.

Поделиться ссылкой:

Свойства пара

СВОЙСТВА НАСЫЩЕННОГО ПАРА

Что это такое и как им пользоваться

Численные значения параметров теплоты, а также взаимосвязь между температурой и давлением, приведенные в настоящем Руководстве, взять из Таблицы «Свойства насыщенного пара».

Определение применяемых терминов:

Насыщенный пар

Чистый пар, температура которого соответствует температуре кипения воды при данном давлении.

Абсолютное давление

Абсолютное давления пара в барах (избыточное плюс атмосферное).

Зависимость между температурой и давлением

Каждому значению давления чистого пара соответствует определенная температура. Например: температура чистого пара при давлении 10 бар всегда равна 180°С.

Удельный объём пара

Масса пара, приходящаяся на единицу его объёма, кг/м3.

Теплота кипящей жидкости

Количество тепла, которое требуется чтобы повысить температуру килограмма воды от 0°С до точки кипения при давлении и температуре, указанных в Таблице. Выражается в ккал/кг.

Скрытая температура парообразования

Количество тепла в ккал/кг, необходимое для превращения одного килограмма воды при температуре кипения в килограмм пара. При конденсации одного килограмма пара в килограмм воды высвобождает такое же самое количество теплоты. Как видно из Таблицы, для каждого сочетания давления и температуры величина этой теплоты будет разной.

Полная теплота насыщенного пара

Сумма теплоты кипящей жидкости и скрытой теплоты парообразования в ккал/кг. Она соответствует полной теплоте, содержащейся в паре с температурой выше 0°С.

Как пользоваться таблицей

 Кроме определения зависимости между давлением и температурой пара, Вы, также, можете вычислить количество пара, которое превратится в конденсат в любом теплообменнике, если известно передаваемое им количество теплоты в ккал. И наоборот, Таблицу можно использовать для определения количества переданной теплообменником теплоты если известен расход образующегося конденсата.

1

2

3

4

5

6

7

Абсолют.

Давление

бар

Температ

пара

°C

Уд.объем

пара

м3/кг

Плотность

пара

кг/м3

Теплота

жидкости

ккал/кг

Скрытая

теплота

парообра-

зования

ккал/кг

Полная

теплота

пара

P

t

V

7

q

r

X=q+r

0,010

7,0

129,20

0,007739

7,0

593,5

600,5

0,020

17,5

67,01

0,01492

17,5

587,6

605,1

0,030

24,1

45,67

0,02190

24,1

583,9

608,0

0,040

29,0

34,80

0,02873

28,9

581,2

610,1

0,050

32,9

28,19

0,03547

32,9

578,9

611,8

0,060

36,2

23,47

0,04212

36,2

577,0

613,2

0,070

39,0

20,53

0,04871

39,0

575,5

614,5

0,080

41,5

18,10

0,05523

41,5

574,0

615,5

0,090

43,8

16,20

0,06171

43,7

572,8

616,5

0,10

45,8

14,67

0,06814

45,8

571,8

617,6

0,20

60,1

7,650

0,1307

60,1

563,3

623,4

0,30

69,1

5,229

0,1912

69,1

558,0

627.1

0,40

75,9

3,993

0,2504

75,8

554,0

629,8

0,50

81,3

3,240

0,3086

81,3

550,7

632,0

0,60

86,0

2,732

0,3661

85,9

547,9

633,8

0,70

90,0

2,365

0,4229

89,9

545,5

635,4

0,80

93,5

2,087

0,4792

93,5

543,2

636,7

0,90

96,7

1,869

0,5350

96,7

541,2

637,9

1,00

99,6

1,694

0,5904

99,7

539,3

639,0

1,5

111,4

1,159

0,8628

111,5

531,8

643,3

2,0

120,2

0,8854

1,129

120,5

525,9

646,4

2,5

127,4

0,7184

1,392

127,8

521,0

648,8

3,0

133,5

0,6056

1,651

134,1

516,7

650,8

3,5

138,9

0,5240

1,908

139,5

512,9

652,4

4,0

143,6

0,4622

2,163

144,4

509,5

653,9

4,5

147,9

0,4138

2,417

148,8

506,3

655,1

5,0

151,8

0,3747

2,669

152,8

503,4

656,2

6,0

158,8

0,3155

3,170

160,1

498,0

658,1

7,0

164,9

0,2727

3,667

166,4

493,3

659,7

8,0

170,4

0,2403

4,162

172,2

488,8

661,0

9,0

175,4

0,2148

4,655

177,3

484,8

662,1

10

179,9

0,1943

5,147

182,1

481,0

663,1

11

184,1

0,1774

5,637

186,5

477,4

663,9

12

188,0

0,1632

6,127

190,7

473,9

664,6

13

191,6

0,1511

6,617

194,5

470,8

665,3

14

195,0

0,1407

7,106

198,2

467,7

665,9

15

198,3

0,1317

7,596

201,7

464,7

666,4

16

201,4

0,1237

8,085

205,1

461,7

666,8

17

204,3

0,1166

8,575

208,2

459,0

667,2

18

207,1

0,1103

9,065

211,2

456,3

667,5

19

209,8

0,1047

9,555

214,2

453,6

667,8

20

212,4

0,09954

10,05

217,0

451,1

668,1

25

223,9

0,07991

12,51

229,7

439,3

669,0

30

233,8

0,06663

15,01

240,8

428,5

669,3

40

250,3

0,04975

20,10

259,7

409,1

668,8

50

263,9

0,03943

25,36

275,7

391,7

667,4

60

275,6

0,03244

30,83

289,8

375,4

665,2

70

285,8

0,02737

36,53

302,7

359,7

662,4

80

295,0

0,02353

42,51

314,6

344,6

659,2

90

303,3

0,02050

48,79

325,7

329,8

655,5

100

311,0

0,01804

55,43

336,3

315,2

651,5

110

318,1

0,01601

62,48

346,5

300,6

647,1

120

324,7

0,01428

70,01

356,3

286,0

642,3

130

330,8

0,01280

78,14

365,9

271,1

637,0

140

336,6

0,01150

86,99

375,4

255,7

631,1

150

342,1

0,01034

96,71

384,7

239,9

624,6

200

365,7

0,005877

170,2

436,2

141,4

577,6

1 ккал = 4,186 кдж

1 кдж  = 0,24 ккал

1 бар  = 0,102 МПа

ПАР ВТОРИЧНОГО ВСКИПАНИЯ

Что такое пар вторичного вскипания:

Когда горячий конденсат или вода
из котла, находящиеся под определенным давлением, выпускают в пространство, где
действует меньшее давление, часть жидкости вскипает и превращается в так
называемый пар вторичного вскипания.

Почему он имеет важное значение :

Этот пар важен потому, что в нем
содержится определенное количество теплоты, которая может быть использована для
повышения экономичности работы предприятия, т.к. в противном случае она будет
безвозвратно потеряна. Однако, чтобы получить пользу от пара вторичного
вскипания, нужно знать как в каком количестве он образуется в конкретных
условиях.

Как он образуется :

Если воду нагревать при атмосферном давлении, ее
температура будет повышаться пока не достигнет 100°С – самой высокой
температуры, при которой вода может существовать при данном давлении в виде
жидкости. Дальнейшее добавление теплоты не повышает температуру воды, а
превращает ее в пар.

Теплота, поглощенная водой в
процессе повышения температуры до точки кипения, называется физической теплотой
или тепло-содержанием. Теплота, необходимая для превращения воды в пар, при
температуре точки кипения, называется скрытой теплотой парообразования.
Единицей теплоты, в общем случае, является килокалория (ккал), которая равна
количеству тепла, необходимому для повышения температуры одного килограмма воды
на 1°С при атмосферном давлении.

Однако, если воду нагревать при
давлении выше атмосферного, ее точка кипения будет выше 100°С, в силу чего
увеличится также и количество требуемой физической теплоты. Чем выше давление,
тем выше температура кипения воды и ее теплосодержание. Если давление
понижается, то теплосодержание также уменьшается и температура кипения воды
падает до температуры, соответствующей новому значению давления. Это значит,
что определенное количество физической теплоты высвобождается. Эта избыточная
теплота будет поглощаться в форме скрытой теплоты парообразования, вызывая
вскипание части воды и превращение ее в пар. Примером может служить выпуск
конденсата из конденсатоотводчика или выпуск воды из котла при продувке.
Количество образующегося при этом пара можно вычислить.

Конденсат при температуре пара 179,9
°C
и
давлении 10 бар обладает теплотой в количестве 182, 1ккал/кг. См. Колонку 5
таблицы параметров пара. Если его выпускать в атмосферу, т.е. при абсолютном
давлении 1 бар, теплосодержание конденсата сразу же упадет до 99,7 ккал/кг.
Избыток теплоты в количестве 82,3 ккал/кг вызовет вторичное вскипание части
конденсата. Величину части конденсата в %, которая превратится в пар вторичного
вскипания, определяют следующим образом :

Разделите разницу между
теплосодержанием конденсата при большем и при меньшем давлениях на величину
скрытой теплоты парообразования при меньшем давлением значении давления и
умножьте результат на 100.

Выразив это в виде формулы,
получим :

% пар вторичного вскипания

q1 = теплота конденсата при
большем значении  давления до его выпуска

q2 = теплота конденсата при
меньшем значении давления, т.е. в пространстве, куда производится выпуск

r   = 
скрытая теплота парообразования пара при меньшем значении давления, при
котором производится выпуск конденсата

% пара вторичного вскипания =

График 1.

График 2.                                                                                                    

Объем пара вторичного вскипания при выпуске
одного кубического метра конденсата в систему с атмосферным давлением.

 Для упрощения
расчетов, на графике показано количество пара вторичного вскипания, которое
будет образовываться, если выпуск конденсата будет производится при разных
давлениях на выходе

Пар… основные понятия

Влияние присутствия воздуха на температуру пара

Рис. 1 поясняет, к чему приводит
присутствие  воздуха в паропроводах, а в
Таблице 1 и на Графике 1 показана зависимость снижения температуры пара от
процентного содержания в нем воздуха при различных давлениях.

Влияние присутствия воздуха на теплопередачу

Воздух, обладая отличными
изоляционными свойствами, может образовать, по мере конденсации пара,
своеобразное «покрытие» на поверхностях теплопередачи и значительно
понизить ее эффективность.

При определенных условиях, даже
такое незначительное количество воздуха в паре как 0,5% по объему может
уменьшить  эффективность тепло — передачи
на 50%. См. Рис.1

СО2 в газообразной
форме, образовавшись в котле и перемещаясь вместе с паром, может растворится в
конденсате, охлажденном ниже температуры пара, и образовать угольную кислоту.
Эта кислота весьма агрессивна и, в конечном итоге «проест»
трубопроводы и теплообменное оборудование. См. Рис.2. Если в систему попадает
кислород, он может вызвать питтинговую 
коррозию чугунных и стальных поверхностей. См. Рис. 3.

Паровая камера со 100%
содержанием пара. Общее давление 10 бар. 
Давления пара 10 бар температура пара 180°С

Рис.1. Камера, в которой
находится смесь пара и воздуха, передает только ту часть теплоты, которая
соответствует парциальному давлению пара, а не полному давлению в ее полости.

Паровая камера с содержанием
пара 90%

И воздуха 10%. Полное давление
10 бар. Давление

 Пара 9 бар, температура пара 175,4°С

Таблица 1.

Снижение температуры паро-воздушной
смеси в зависимости  от содержания
воздуха

Давление

Температура насыщ. пара

Температура паро-воздушной смеси от
к-ва воздуха в объему,°С

бар

°C

10%

20%

30%

2

120,2

116.7

113.0

110.0

4

143.6

140.0

135.5

131.1

6

158.8

154.5

150.3

145.1

8

170.4

165.9

161.3

155.9

10

179.9

175.4

170.4

165.0

Свойства пара

Теплофизические свойства воды и водяного пара (программа расчета)

Методические указания по очистке и контролю возвратного конденсата (РД 34.37.515-93)

Понравилась статья? Поделить с друзьями:
  • Как найти мой inn
  • Как составить план оповещения граждан пребывающих в запасе
  • Как найти наушник айрподс разряженный
  • Как найти номера операторов сотовой связи
  • Рдр 2 как найти вампира