Диод как найти анодное напряжение

Построение вольтамперной характеристики диода и измерения его параметров

Страницы работы

Содержание работы

Вольт-амперная характеристика и параметры вакуумного диода

Цель работы: Получить навыки построения вольтамперной характеристики диода и измерения его параметров.

1. Теоретическая часть

1.1. Эмиссия электронов с поверхности катода электровакуумной лампы

Разогретый катод обеспечивает возможность эмиссии электронов со своей поверхности в вакуумное пространство. Если на анод диода подать положительное напряже­ние по отношению к катоду, то под действием сил электрического поля электроны, эмитируемые катодом, будут перемещаться по на­правлению к аноду. Однако бла­годаря своему отрицательному заряду элек­троны, находящиеся в пространстве между катодом и анодом, создают поле, препятствую­щее движению электронов к аноду. На рис.1 по­казаны графики распределения потенциала и градиента потенциала для диода с плоскими параллельными электродами.

Рис. 1. Распределение по­тенциала U и градиента потен­циала для диода с плоскими параллельными электродами, когда ток диода ограничен пространственным зарядом

Для за­данного напряжения анод — катод пространст­венный ток между катодом и анодом увеличи­вается только до тех пор, пока тормозящее поле не превышает ускоряющее поле анода. Ток анода определяется как температурой катода, так и напряжением анода (рис. 2, 3).

Рис. 2. Зависимость анодного тока лампового диода от напряжения на аноде при различных значениях температуры (Т) катода

Рис. 3. Зависимость анодного тока диода от температуры катода при различных значениях напряжения на аноде Е

Максимальная мощность, которая может быть рассеяна анодом лампы, определяется скоростью отвода тепла от анода и максимально допустимой температурой анода. Максималь­ная температура анода ограничивается тремя факторами: количеством газа, выделяющегося из материала анода при высоких температурах, допустимой максимальной температурой стек­лянного баллона и температурой плавления материала анода. Анод отдает тепло излучением и теплоотводом по крепящим анод деталям.

1.2. Характе­ристика вакуумного диода

Свойства вакуумного диода полностью харак­теризуются графи­ком зависимости анодного тока от напряжения на аноде. Этот график называется вольт-амперной характеристикой диода. На рис. 4 изобра­жена вольт-амперная характеристика (ВАХ) диода, используемого в качестве детектора сигнала и выпрямителя напряжения.

Рис. 4. Вольт-амперная характеристика типового диода

Различают статические и рабочие характеристики диодов. Наиболее просто снять статические характеристики лампы в ре­жиме постоянного тока. Под рабочей характеристикой диода понимают зависимость анод­ного тока Iа от напряжения источника питания в анодной цепи Еa при наличии в ней сопротивления нагрузки Rа(рис. 5). Так как Uaи Еа в рабочем режиме друг другу не равны, то рабочая характеристика должна отличаться от статической. Построение рабочей характеристики осуществляют экспериментально, либо путём графического построения, если известна статическая характеристика и величина сопротивления нагрузки.

Рис. 5. Вакуумный диод с наг­рузкой в анодной цепи

Рис. 6. Статическая и рабочая характеристики диода

Для того чтобы иметь возможность сравнивать свойства различ­ных ламп между собой и характеризовать лампу как элемент электри­ческой схемы, пользуются величинами, называемыми парамет­рами лампы. В зависимости от того, какие свойства лампы нуж­но охарактеризовать, различают электрические параметры, параметры механического, климатического, теплового режимов и т. д. Электри­ческие параметры в свою очередь можно подразделить на параметры, характеризующие:

— условия токопрохождения через лампу, например, крутизну характеристики,

— рекомендуемый режим работы лампы в схеме, например, напряжение накала, анодное напряжение,

— предельно допустимый электрический режим, например, предельно допустимую мощность, рассеиваемую анодом и т. п.

Основными параметрами лампы являются параметры, характеризующие условия токопрохождения. Для характеристики этих условий используются величины, представляющие собой отношение изменений токов в цепях электродов к изменениям потенциалов электродов. При этом могут сопоставляться изменения тока и потенциала как одного и того же, так и разных электродов.

Кроме этих основных величин в случае ламп с сетками в качестве параметров широко используются еще величины, сравнивающие действие изменения потенциале двух каких-либо электродов на значение тока в цепи того или иного электрода. У ламп, где имеется только два электрода параметры этого вида отсутствуют. Следует обратить внимание на то, что параметры, характеризующие условия токопрохождения через лампу, в отличие от параметров других видов являются величинами дифференциальными и поэтому обычно называются дифференциальными параметрами ламп.

К основным электрическим параметрам вакуумного диода относятся:статическое внутреннее сопротивление, динамическое внутреннее сопротивление, крутизна характеристики диода.

Анодное напряжение Uа— это напряжение между анодом и катодом.

Анодный ток Iа — это ток, протекающий в цепи анода.

Напряжение накала Uн – лежит в пределах нескольких вольт, а для наиболее распространенных вакуумных диодов равен 6,3 В.

Допустимая мощность рассеяния на аноде Ра доп выделяется при бомбардировке его электронами и при разогревании анода до некоторой допустимой температуры. Превышение Ра доп может привести к расплавлению анода. Для современных анодов Ра доп колеблется в пределах от долей ватт до десятков ватт.

Максимальный анодный ток Ia max огра­ничен током эмиссии катода, а также перегревом ка­тода и анода. Значения Ia max обычно лежат в преде­лах от 0,01 до 1 А.

Максимальное обратное напряжение U обр max — это такое максимальное анодное напряже­ние обратной полярности, при котором еще не насту­пает пробой промежутка между анодом и катодом. Оно зависит от электрической прочности диода и ле­жит в пределах от десятков вольт до десятков кило­вольт.

Статическое внутреннее сопротивление диода Ri определяется как

[Ом] , (1.1)

где Ua – напряжение на аноде, В; Iа – анодный ток, A.

Динамическое внутреннее сопротивление диода ri определяется как величина, обратная крутизне вольт-амперной характеристики в любой точке, или отношение приращения анод­ного напряжения к приращению анодного тока на рабочем участке характеристики

[Ом] при Т = const, (1.2)

где Т – температура катода.

Для выпрямительных ламп (кенотронов) его значения достигают порядка нескольких сотен Ом.

Крутизна характеристики диода. Крутизна характеристики Sопределяется, используя рис. 4 и в соответствие с выражением (1.2), как

. (1.3)

1.4. Построение нагрузочной прямой вакуумного диода

В реальных электрических схемах кроме диода имеется активная и реактивная нагрузка. Пример упрощенной электрической схемы включения вакуумного диода с активной нагрузкой в цепи анода представлена на рис. 5.

Уравнение, выражающее зависимость между напряжением и током представлено ниже:

, (1.4)

Значения Uaи Iа можно определить, если написать уравнение вольт-амперной характеристики и одновременно решить совместно уравнения (1.1) и (1.4).

Однако графическое решение этих двух уравнений проще. На рис. 7 изображена зависимость анодного тока от напряжения на аноде диода. Это график уравнения вольт-амперной характеристики диода.

Рис.7. Построение нагрузочной прямой на характеристике диода

Источник

Диоды. For dummies

Введение

Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. (wikipedia)

Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.

В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.

Два слова о зонной теории проводимости твердых тел

Прежде, чем начать разговор о p-n переходе, стоит обговорить некоторые теоретические моменты.

Считается, что электроны в атоме расположены на различном расстоянии от ядра. Соответственно, чем ближе электрон к ядру, тем сильнее связь между ними и тем большую энергию надо приложить, чтобы отправить его «в свободное плаванье». Говорят, что электроны расположены на различных энергетических уровнях. Заполнение этих уровней электронами происходит снизу вверх и на каждом из них может находиться не больше строго определенного числа электронов (атом Бора). Таким образом, если уровень заполнен, то новый электрон не может на него попасть, пока для него не освободится место. Чтобы электрон мог перейти на уровень выше, ему нужно сообщить дополнительную энергию. А если электрон «падает» вниз, то излишек энергии освобождается в виде излучения. Электроны могут занимать в атоме только сторого определенные орбиты с определенными энергиями. Орбиты эти называются разрешенными. Соответственно, запрещенными называют те орбиты (зоны), в которых электрон находиться не может. Подробнее об этом можно почитать по ссылке на атом Бора выше, здесь же примем это как аксиому.

Самый верхний энергетический уровень называется валентным. У большинства веществ он заполнен только частично, поэтому электроны внешних подуровней других атомов всегда могут найти на нем себе место. И они действительно хаотично мигрируют от атома к атому, осуществляя таким образом связь между ними. Нижний слой, в котором могут перемещаться свободные электроны, называют зоной проводимости. Если валентная зона частично заполнена и электроны в ней могут перемещаться от атома к атому, то она совпадает с зоной проводимости. Такая картина наблюдается у проводников. У полупроводников валентная зона заполнена целиком, но разница энергий между валентным и проводящим уровнями у них мала. Поэтому электроны могут преодолевать ее просто за счет теплового движения. А у изоляторов эта разница велика, и чтобы получить пробой, нужно приложить значительную энергию.

Такова общая картина энергетического строения атома. Можно переходить непосредственно к p-n переходу.

p-n переход

Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.

Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.

В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в наибольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.

Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает потенциальный барьер, преодолеть который основные носители заряда смогут только обладая достаточной для этого энергией. А вот неосновным носителям возникшее электрическое поле наоборот помогает. Соответственно, через переход потечет ток, в противоположном диффузному направлении. Этот ток называют дрейфовым. При отсутствии внешнего воздействия диффузный и дрейфовый ток уравновешивают друг друга и перетекание зарядов прекращается.

Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.

Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.

Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.

Все, конец теории, пора перейти к ее практическому применению.

Диоды, наконец-то


Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.

Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.

Диоды имеют нелинейную вольт-амперную характеристику.

Области применения диодов

  1. Выпрямление пременного тока. Основано оно именно на свойстве диода «запираться» при обратном смещении. Диод как бы «срезает» отрицательные полуволны.
  2. В качестве переменной емкости. Эти диоды называются варикапами.

    Здесь используется зависимость барьерной емкости перехода от обратного смещения. Чем больше его значение, тем шире обедненная область p-n перехода. Ее можно представить себе как плоский конденсатор, обкладками которого явялются границы области, а сама она выступает в качестве диэлектрика. Соответственно, чем толще «слой диэлеткрика», тем ниже барьерная емкость. Следовательно, изменяя приложенное напряжение можно электрически менять емкость варикапа.
  3. Для стабилизации напряжения. Принцип работы таких диодов заключается в том, что даже при значительном увеличении внешнего падения напряжения, падение напряжения на диоде увеличится незначительно. Это справедливо и для прямого, и для обратного смещений. Однако напряжение пробоя при обратном смещении намного выше, чем прямое напряжение диода. Таким образом, если нужно поддерживать стабильным большое напряжение, то диод лучше включать обратно. А чтобы он сохранял работоспособность, несмотря на пробой, нужно использовать диод особого типа — стабилитрон.

    В прямосмещенном режиме он будет работать подобно обычному выпрямляющему диоду. А вот в обратносмещенном не будет проводить ток до тех пор, пока приложенное напряжение не достигнет так называемого напряжения стабилитрона, при котором диод сможет проводить значительный ток, а напряжение будет ограничено уровнем напряжения стабилитрона.
  4. В качестве «ключа» (коммутирующего устройства). Такие диоды должны уметь очень быстро открываться и закрываться в зависимости от приложенного напряжения.
  5. В качестве детекторов излучения (фотодиоды).

    Кванты света передают атомам в n-области дополнительную энергию, что приводит к появлению большого числа новых пар электрон-дырка. Когда они доходят до p-n перехода, то дырки уходят в p-область, а электроны скапливаются у края перехода. Таким образом, происходит возрастание дрейфового тока, а между p- и n-областями возникает разность потенциалов, называемая фотоЭДС. Величина ее тем больше, чем больше световой поток.
  6. Для создания оптического излучения (светодиоды).

    При рекомбинации дырок и электронов (прямое смещение) происходит переход последних на более низкий энергетический уровень. «Излишек» энергии выделяется в виде кванта энергии. И в зависимости от химического состава и свойств того или иного полупроводника, он излучает волны того или иного диапазона. От состава же зависит и эффективность излучения.

Немного экзотики

Не стоит забывать о том, что p-n переход — одно из явлений микромира, где правит балом квантовая физика и становятся возможными странные вещи. Например, туннельный эффект — когда частица может пройти через потенциальный барьер, обладая меньшей энергией. Это становится возможным благодаря неопределенности соотношения между импульсом и координатами частицы (привет, Гейзенберг!). Этот эффект лежит в основе туннельных диодов.

Чтобы обеспечить возможность «просачивания» зарядов, их делают из вырожденных полупроводников (содержащих высокую концентрацию примесей). В результате получают резкий p-n переход с тонким запирающим слоем. Такие диоды маломощные и низкоинерционные, поэтому их можно применять в СВЧ-диапазоне.

Есть еще одна необычная разновидность полупроводниковых диодов — диоды Шоттки.

В них используется не традиционный p-n переход, а переход металл-полупроводник в качестве барьера Шоттки. Барьер этот возникает в том случае, когда разнятся величины работы выхода электронов из металла и полупроводника. Если n-полупроводник имеет работу выхода меньше, чем контактирующий с ним металл, то приграничный слой металла будет заряжен отрицательно, а полупроводника — положительно (электронам проще перейти из полупроводника в металл, чем наоборот). Если же у нас контакт металл/p-полупроводник, причем работа выхода для второго выше, чем для первого, то получим положительно заряженный приграничный слой металла и отрицательно заряженный слой полупроводника. В любом случае, у нас возникнет разность потенциалов, с помощью которой работы выхода из обоих контактирующих веществ сравняются. Это приведет к возникновению равновесного состояния и формированию потенциального барьера между металлом и полупроводником. И так же, как и в случае p-n перехода, к переходу металл/полупроводник можно прикладывать прямое и обратное смещение с аналогичным результатом.

Диоды Шоттки отличаются от p-n собратьев низким падением напряжения при прямом включении и меньшей электрической емкостью перехода. Таким образом, повышается их рабочая частота и понижается уровень помех.

Заключение

Само собой, здесь рассмотрены далеко не все существующие виды диодов. Но надеюсь, что по написанному выше можно составить достаточно полное суждение об этих электронных компонетах.

Источник

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

обратный клапан

Диод — это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

диод 1N4007диод

А некоторые выглядят чуточку по-другому:

д226б диодд214 диод

Есть также и SMD исполнение диодов:

смд диодsmd диод

Выводы диода называются — анод и катод. Некоторые по ошибке называют их «плюс» и «минус». Это неверно. Так говорить нельзя.

На схемах диод обозначается так

диод обозначение на схеме

Он может пропускать электрический ток только от анода к катоду.

направление электрического тока через диод

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток — фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа — катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод диодакатод диодакатод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диоддиод обозначение на схеме

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

диод в цепи переменного тока

Мой генератор частоты выглядит вот так.

генератор частоты

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

цифровой осциллограф OWON

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

[quads id=1]

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»

параметры диода КД411

Для объяснения параметров диода, нам также потребуется его ВАХ

вольтамперная характеристика диода

1) Обратное максимальное напряжение Uобр — это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр — это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

вах стабилитрона

Выглядят стабилитроны точно также, как и обычные диоды:

ДиодДиод

На схемах обозначаются вот так:

стабилитрон обозначение на схеме

Светодиоды

Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

светодиодыосветительные светодиоды

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Диодсветодиодные лампочки

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

светодиодная лента

На схемах светодиоды обозначаются так:

обозначение на схеме светодиода

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

светодиоды

Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Диод

Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

таблица светодиоды напряжение

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода (УЭ). Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — Iос,ср. — среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор —  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

тиристорДиод

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

силовой тиристор

На схемах  триодные тиристоры  выглядят вот таким образом:

обозначение тиристора на схеме

Существуют также  разновидности тиристоров — динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  — одна из разновидностей диодных сборок.

маломощный диодный мостдиодные мосты

 На схемах диодный мост обозначается вот так:

диодный мост обозначение на схемедиодный мост обозначение на схеме

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Приобрести диоды можно тут.

Очень интересное видео про диод

Похожие статьи по теме «диод»

Как работает стабилитрон

Диод Шоттки

Диодный мост

Как проверить диод и светодиод мультиметром

Как проверить тиристор

Схема для проверки тиристоров

Содержание

  • 1 Общие сведения о полярности светодиода, и почему это важно
    • 1.1 Современные светодиоды, которые наиболее часто используются в работе
    • 1.2 Как определить полярность диода
    • 1.3 Как определить полярность тестером (мультиметром)
    • 1.4 Как определить полярность путем подачи питания
    • 1.5 Как определить полярность по внешнему виду
    • 1.6 Определение полярности по технической документации
    • 1.7 Определяем, где плюс зрительно
  • 2 Основные выводы

Профессионалы определяют минус и плюс у диода уже на автомате, пользуясь своими удобными методами. Чаще всего это прозвон тестером, тестирование транзисторными гнездами или подачей питания через резистор, ограничивающий силу тока. Иногда практикуется визуальное определение, если речь идет о конкретных знакомых марках и новых изделиях. Поэтому профи в советах об определении анода и катода у LED не нуждаются. А вот любителям и новичкам данная статья пригодится. Расскажем о популярных способах определить самостоятельно, где у диода анод и катод, правильности этих манипуляций и подводных камнях самостоятельного тестирования.

Полярность светодиода

Общие сведения о полярности светодиода, и почему это важно

Зачем вообще заниматься определением «+» и «-» у светодиодов, почему их нормально не промаркируют или не выработают единую систему маркировки? Сейчас LED настолько массово производятся по всему миру, и они так дешевы, что производителям ни к чему усложнять себе жизнь какой-то особой маркировкой или соблюдением правил. Сделали — и ладно! Поэтому доверять ли пиктограммам, визуальной разнице в деталях диодов — решает каждый на свой страх и риск.

Радиолюбителям и любителям «собрать ракету на коленке» приходится приспосабливаться под такие жесткие условия. Приобретая новый диод, получая выпаянный б/у, никогда со 100% гарантией не поймешь, где у него анод и катод, пока не проверишь прибором. Если подключить без тестирования, то можно пробить LED, а цепь не заработает, потому что у диода ток идет только в одну сторону (исключение — так называемые моргающие светодиоды, двухцветники и ИК). Правильная распайка выводов даст нормальную рабочую схему.

Современные светодиоды, которые наиболее часто используются в работе

Светодиоды различают по мощности, цветности, типу корпуса и т.п. Наиболее часто используются в схемах диоды в корпусе DIP и SMD с малой мощностью и диаметрами от 3.5 и 5.0 до 10.0 мм. Хотя последнее время «доноры» для LED (фонарики, ленты, светильники, элементы подсветки) увеличили мощность лампочек от 0,5 Вт до 1 Вт и выше.

В корпусе DIP светодиод представляет собой маленькую лампочку с ножками, по которым определяют полярность. Но цоколевка у разных производителей не всегда совпадает с действительностью.

В корпусе SMD определить анод и катод еще сложнее, приходится при визуальном тестировании полагаться на адекватность производителя, который помечает катод срезом/скосом на корпусе или пиктограммами. А такому способу обозначения полярности тоже нельзя довериться на 100%. Уж больно много выявляется неожиданных сюрпризов.

Как определить полярность диода

Для самостоятельного определения полярности у диода применяют несколько способов с разной степенью надежности. Методы с применением приборов:

  • проверка тестером;
  • подача тока с ограничением через резистор;
  • встречается иногда и описание подключения осциллографа для этих целей.

Они отлично работают на элементах малой и средней мощности обычного характера свечения. Самые рабочие способы по адекватности результата.

Есть еще относительно надежные методы определения:

  • по технической документации;
  • по изображению полярности диода на схеме.

Стоит упомянуть недобросовестность производителей и недоступность документации при покупке в розницу. Этот способ узнать распиновку также не гарантирует точного определения плюса и минуса.

Совсем неудачные, но широко применяемые «народные» методы:

  • определение по длине ножек;
  • по размеру деталей внутри корпуса DIP;
  • по расположению среза/скоса на корпусе SMD;
  • по маркировке от производителя на диодах SMD и т.п.

Эти способы определения грешат неточностью, а иногда и вовсе невозможностью правильно узнать, где анод, а где катод у светодиода.

Как определить полярность тестером (мультиметром)

Чтобы узнать полярность у LED с помощью тестера (официальное название прибора мультиметр) используют несколько видов тестирования. Чем современнее тестер (цифровой), тем больше возможностей точно найти анод и катод на корпусе элемента, узнать его пригодность к работе (не пробит ли) и цвет свечения. Любой годный прибор покажет плюс и минус 3 разными способами:

  • через режим «проверка сопротивления» (аналоговый тестер);
  • через режим «прозвонка, проверка диода» (цифровой прибор);
  • проверка через транзисторные гнезда отсеков PNP и NPN (любой, где они есть).

Начнем с самого простого и надежного. На современных аппаратах есть возможность проверки с помощью отсеков для тестирования PNP и NPN транзисторов. Удобно, что можно обойтись без щупов. Для определения полярности нужно взять лампочку в DIP корпусе и вставить ее в гнезда «C» и «E». Если попасть анодом в E-эмиттер, а катодом в C-коллектор, то не пробитый рабочий светодиод ярко засветится. Если нет свечения, то нужно переткнуть ножки, сменив гнезда. Если смена не помогла, значит диод неисправен. Для элементов в корпусе SMD в гнезда втыкают обычные швейные иголки или тонкие гвоздики, а затем прикладывают к корпусу, как бы добавляя к нему эти самодельные ножки. Простота и надежность результатов этого метода делает его самым востребованным у профессионалов и тех, кто часто вынужден проверять пригодность и полярность у LED.

Другие виды тестирования задействуют разные режимы мультиметра и его щупы. Если включить режим омметра, когда измеряется сопротивление, то приложив щупы к ножкам, получится замер величины. Когда все сделано верно, и красный щуп попадет на анод, а черный на катод, то измерительная стрелка прибора скакнет до значений 1,7-1,8 кОм. Это диагностирует не только, где плюс и минус у диода, но и рабочее состояние. Во избежание вывода элемента из строя в случае неправильного подключения к щупам, дотрагиваться ими нужно быстро, не задерживая надолго. При обратном включении на табло прибора будет бесконечно большая величина сопротивления. А вот неисправный LED отобразит слишком малые значения сопротивления в обе стороны (как правило, 1). С таким работать уже нельзя.

На современных цифровых тестерах есть удобный режим «прозвонка, проверка диода». Прибор переключается в этот режим, а щупы должны попасть на верную полярность: красный на плюс, а черный — на минус. Это должно дать небольшое свечение светодиода и отображение измеренной величины, характерной для его цветности. Заодно можно проверить характеристики элемента (соответствие напряжения и тока по кривой вольтамперной характеристики).

Жаль, но методы с щупами срабатывают достоверно только на зеленых и красных диодах. Синие и белые лампочки можно проверить только через гнезда определения характеристик транзисторов (PNP/NPN). С многоцветными и двухцветниками с щупами придется повозиться в режиме диодной прозвонки. Для них следует искать общий плюс и минус, перебирая щупами выводы и фиксируя свечение.

Как определить полярность путем подачи питания

Для определения полярности LED в любом корпусе существует еще один надежный метод — подача тока с аккумулятора 3-6 В. Осторожные не рискуют брать батарейку больше 3 В. Для 12 В мощных светодиодов и 12 В не сильно страшны, но остальные надо беречь от пробоя. Самый удобный вид подачи питания на ножки диода — это старая круглая большая батарейка из настенных часов или компьютерной платы (маркировка CR2032). Ее просто вставляют между ножками элемента, если анод коснется плюса, а катод минуса, то о правильной работе исправного диода скажет яркое свечение, если нет, то он пробит.

Но! Нужно или сначала убедиться измерением, что батарейка не выдает ток выше 10-30 мА величиной, или использовать резистор от 400 до 600 Ом (иногда выше). Без ограничения тока легко пробить светодиод даже 4 В с аккумулятора, т.к. для напряжения диода в пределах 1,5-3,8 В максимально допустимой величиной тока с источника питания будет 10-30 мА. Многие считают, что кратковременное помещение диода на источник питания не спалит кристалл, но это может значительно снизить его ресурс, что потом чревато быстрым выходом из строя в готовой схеме. Вывод — используем резистор для ограничения тока батарейки, это точно убережет элемент от пробоя и потери работоспособности в дальнейшем.

Как определить полярность по внешнему виду

Есть способ «для ленивых», когда анод и катод определяется по:

  • длине ножек в корпусе DIP;
  • маркировке на корпусе;
  • расположению среза/скоса у катода или специальных графических обозначений — пиктограмм, смещенных к аноду.

С длиной ножек можно здорово не угадать, потому что производители, порой, используют нестандартную цоколевку. Обычно короткий штырек означает катод (К-короткий, К-катод), а длинный — анод. Это в идеале. Но профессионалы все проверяют приборами, не доверяя добросовестности производителей.

На корпусе также могут встретиться маркировки:

  • стандартные «+»/»-«;
  • «-» обозначается зеленой линией, точкой, а «+»  — треугольником и т.п.

Маркировке дешевых или выпаянных ноунеймов лучше не доверять. Ведь производитель свободен в своем «творчестве»: хочешь — просто сделает утолщение одной из ножек цоколевки, хочешь — вообще никак не обозначит разницу между анодом и катодом в светодиоде.

Визуальное определение маркировки на корпусе SDM немногим лучше: срез или скос располагается ближе к катоду, тогда как теплоотвод на корпусе — к аноду. Бывает, что на SMD маленького размера изображены графические обозначения — пиктограммы, значки (треугольник, п-образная и т-образная линия), они указывают направление выхода тока, поэтому вершиной располагаются к катоду, а основанием — к аноду. Лучше всего тестировать элементы в таком типе корпуса приборами. Потому что гарантии соответствия маркировки действительности нет.

Определение полярности по технической документации

Если производитель надежный и на диоды идет сопроводительная техническая документация, то полярность там будет указана. Проблема в том, что документы идут только с большой партией, на розницу никто их давать не будет. Можно попробовать найти информацию о характеристиках в интернете, зная точно производителя и марку светодиода. Но тут опять возникает вопрос доверия производителю. Даже добросовестные поставщики не застрахованы от недобросовестности на производстве, бракованной партии, несоблюдения норм и регламента по маркировке.

Определяем, где плюс зрительно

Самый спорный и ненадежный способ определения распиновки диода — это визуально отличить в колбе LED размер деталей: маленькая назначается анодом, а большая — катодом. Хотя встречается огромное количество диодов, где все с точностью до наоборот. А могут попасться элементы столь странные, нетипичные, что визуальное определение цоколевки точно не поможет. Стоит ли рисковать исправностью светодиода и готовой схемы — решать любителям определять «на глазок».

Основные выводы

Полярность диода профессионалы никогда не определяют визуально, потому что модификации их настолько разные, а производители не удосуживаются соблюдать какие-то единые требования. Поэтому, перефразируя известное выражение, можно сказать «что белому светодиоду хорошо, то красному — смерть».

Самые надежные методы определения плюса и минуса требуют наличия аппаратуры: тестера и резистора для ограничения силы тока при проверке подачей питания. Для радиолюбителей и «самоделкиных» это не проблема, тестер у всех под рукой. А вот любителю проще 100% выявить анод и катод у светодиода через подачу питания, но только не напрямую, а через токоограничивающий резистор. Есть большая опасность спалить кристаллы или настолько значительно снизить срок их службы, что они потом быстро перегорят.

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Обозначение светодиодов на электрической схеме

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

Катод и анод на маломощном диоде

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Распиновка мощных светодиодов

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

smd5050 отметка полярности

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Полярность SMD на led ленте

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Определение распиновки по теплоотводящей подложке

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определение полярности на SMD 1206

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Маркировка на плате

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

Определение полярности мультиметром

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Определение полярности с помощью батарейки

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.

Схема пробника

Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Определение полярности в режиме Hfe

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

Понравилась статья? Поделить с друзьями:
  • Как найти энергетический уровень по таблице
  • Как найти силу взаимного притяжения двух тел
  • Как найти ip своего ipad
  • Ошибка 117 на котле аристон как исправить ошибку
  • Как в сталкере найти место эвакуации