Длительность светового импульса как найти

Длительность — световой импульс

Cтраница 1

Длительности световых импульсов, генерируемых современными лазерными системами, могут составлять всего несколько периодов световых колебаний. Линейное распространение таких импульсов даже в слабо диспергирующей; среде ( вдали от резонансов) уже на весьма коротких расстояниях кардинально отличается от привычного для оптики распространения волновых пакетов неизменной формы с групповой скоростью. Дисперсия среды может чрезвычайно-сильно изменить форму коротких импульсов. При специальном подборе начальной фазовой модуляции импульса и знака дисперсии появляются возможности целенаправленного управления его формой, сильного сжатия импульса — фокусировки во времени. Явления, возникающие при распространении коротких световых импульсов в диспергирующей среде, во многом сходны с дифракционным распространением и преобразованием узких световых пучков.
 [1]

Длительность светового импульса от импульсной лампы обычно составляет 0 5 — 1 мс. При уровнях накачки, которые в достаточной степени превышают пороговое значение, импульс излучения на выходе лазера приблизительно повторит по длительности излучение от импульсной лампы.
 [2]

Длительность световых импульсов предполагается равной 0 05 и 0 4 сек соответственно для быстрого и медленного вращения сектора. При вычислении kt принимается равной 1 — Ю13 см3 / молъ-сек, 1а 10-и эйн-штейн. Как видно из рис. 6 — 5, к концу светового периода при медленной скорости [ RJ достигает стационарного значения, характерного для постоянного освещения интенсивностью 1а ( пунктирная линия при RJ 10 — 10 — 13 моль / см3), и падает почти до нуля в течение темнового периода. При большой скорости вращения сектора [ RJ возрастает, но никогда не достигает концентрации стационарного состояния за время освещения и уменьшается, никогда не достигая нуля в течение темнового периода. RJ на свету точно равно уменьшению [ RJ в темноте.
 [4]

Длительность светового импульса в зависимости от электронной схемы ( в общем аналогичной схеме питания искры в воздухе) и конструкции лампы может быть от долей микросекунды до нескольких миллисекунд.
 [5]

Автоматическую регулировку длительности светового импульса возможно получить путем переделки имеющейся фотовспышки. Практически это сравнительно просто сделать на базе фотовспышек типа ФИЛ-100, ФИЛ-101 и ФИЛ-102.
 [6]

Для объема 3 см3 и при длительности светового импульса 0 1 мксек требуется электрическая энергия возбуждения, равная — 8 дж. В настоящее время такие источники вполне доступны.
 [7]

Постоянная времени этой цепи значительно больше длительности светового импульса, поэтому за время действия импульса напряжение на конденсаторах С2 — С4 будет возрастать пропорционально длительности светового импульса и его амплитуде. Так как диод V3 имеет большое обратное сопротивление, то по окончании светового импульса конденсаторы С2 — С4 через сопротивления плеч моста не разрядятся, напряжение на них останется постоянным значительное время, что позволяет измерить энергию вспышки.
 [8]

Здесь приводятся два варианта схем управления длительностью светового импульса. Первый вариант — простая схема, в которой в качестве порогового элемента используют тиристор в сочетании со стабилитроном.
 [10]

Для выполнения этих требований необходимо, чтобы длительность светового импульса значительно превосходила характеристические времена релаксации фотоэлектрических эффектов. Если используется синусоидальная модуляция света, то ее период должен быть настолько велик, чтобы в любой момент времени процесс можно было считать квазистационарным.
 [12]

При значениях Дооо и Дооо с измеряются длительности световых импульсов электронных вспышек.
 [13]

Составление феноменологического кинетического уравнения упрощает допущение, что длительность светового импульса Т значительно меньше длительности релаксационных процессов.
 [14]

Рассмотрим, как влияет положение контролируемого тела на длительность световых импульсов при использовании в качестве развертывающего элемента узкой щели.
 [15]

Страницы:  

   1

   2

   3

   4

Имеем
следующие данные для расчёта:

q=200
кт, расстояние от взрыва = 2 км. По табл.
4 «Определение расстояния от центра
взрыва (км) по величине СИ» расстояние
2 км находится в интервале от 2,1км до 2,5
км. Необходимо определить, как изменяется
СИ на 0,1 км. Для этого сначала определим,
чему равен этот интервал. Он равен 2,5 –
2,1 = 0,4 км, что составляет 4 х 0,1 км. Тогда
получим величину светового импульса
на 0,1 км: (1000 кДж/м² – 640 кДж/м² ): 4 = 90
кДж/м². Если на расстоянии 2,1 км СИ = 1000
кДж/м²,то 2 км–это ближе от 2,1 км, значит,
СИ будет больше в данном случае, отсюда
на объекте СИ = =1000кДж/м2+90кДж/м²=1090
кДж/м².

Степень ожога у людей и животных, находящихся на открытой территории объекта

Независимо
от причин ожогов, поражения делятся на
четыре степени: Люди, находящиеся на
открытой местности, получили 4 степень
ожога, и животные, находящиеся на открытой
местности, так же получили 4 степень
ожога.

Ожоги
– повреждения тканей, возникающие под
действием высокой температуры,
электрического тока, кислот, щелочей
или ионизирующего излучения.

Ожоги
четвертой степени

сопровождаются омертвлением кожи и
поражением более глубоких тканей (мышц,
костей и сухожилий).

Поражение
ожогами четвертой степени значительной
части тела может привести к смертельному
исходу.

Поражение
глаз проявляется в ослеплении от 2 до 5
минут днем, до 30 и более минут ночью,
если человек смотрел в сторону взрыва.

Первая
помощь

состоит в прекращении действия поражающего
фактора. При ожогах пламенем следует
потушить горящую одежду, вынести
пострадавшего из зоны пожара; при ожогах
горячими жидкостями или расплавленным
металлом – быстро удалить одежду с
области ожогов. Для прекращения
воздействия температурного фактора
необходимо быстрое охлаждение поражённого
участка тела путем погружения в холодную
воду, под струю холодной воды или
орошением хлорэтилом. При химических
ожогах (кроме ожогов негашеной известью)
пораженную поверхность как можно быстрее
обильно промывают водой из-под крана.
В случае пропитывания химическим
веществом нужно стремиться быстро его
удалить. Абсолютно противопоказаны
какие-либо манипуляции при ожоговых
ранах. С целью обезболивания пострадавшему
дают анальгин (пенталгин, темпалгин,
седалгин). При больших ожогах пострадавший
принимает 2-3 таблетки ацетилсалициловой
кислоты (аспирина) и 1 таблетку димедрола.
До прибытия врача дают пить горячий чай
и кофе, минеральную воду (500-2000 мл). На
обожжённые поверхности после обработки
их 70% этиловым спиртом или водкой
накладывают асептические повязки. При
обширных ожогах пострадавшего заворачивают
в чистую ткань или простыню и немедленно
доставляют в больницу. Для местного
лечения ожогов лучше применять
многокомпонентные аэрозоли (левовинизоль,
олазоль, ливиан, пантенол), эффективно
также использование настоя травы
зверобоя.

Материалы,
которые от данного СИ будут воспламенены
и при отсутствии тепла прекращают
горение; материалы, которые будут иметь
устойчивое горение
.

Воспламеняются:
ткань х/б темная, резиновые изделия,
бумага, солома, стружка, доска сосновая,
кровля мягкая (толь, рубероид).

Устойчивое
горение
:
ткань х/б темная, резиновые изделия,
бумага, солома, стружка, кровля мягкая
(толь, рубероид).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Когда мы употребляем слово «мгновение», то обычно не задумываемся над тем, сколько же оно длится. Подразумевается, что какую-то долю секунды… Особенно наглядно проявляется «мгновенность» в явлениях, связанных со светом. Мы считаем мгновенны ми, например, сверкнувшую молнию или световой «всплеск» лампы-вспышки при фотографировании. В этих случаях свет вспыхивает на сотые или тысячные доли секунды. Но и такие длительности невообразимо велики по сравнению с теми, что достигнуты в современной лазерной физике. Световые вспышки лазеров могут иметь длительность в сто раз меньшую, чем миллионная от миллионной доли секунды! Как же получают и измеряют импульсы света столь фантастически малой длительности и зачем они нужны?

Добротность колебательной системы показывает, насколько велики потери энергии в ней. Чем выше сопротивление воздуха, тем быстрее затухают колебания маятника, тем меньше его добротность.

Действие фототропных модуляторов добротности основано на резонансном поглощении излучения растворами органических красителей или стеклами с примесью сульфида кадмия. Слабый световой поток эти вещества практически полностью поглощают, но с ростом его интен

Образование импульсов при синхронизации мод на примере сложения трех синусоидальных колебаний, частоты которых различаются на величину с/2L (три соседние моды). А. Фазы колебаний произвольны в момент t = 0 (моды не синхронизированы). Б. Фазы всех колебани

Акустооптические затворы и модуляторы используют способность света дифрагировать на звуковых волнах в жидкости и стекле. Пьезоэлектрический вибратор, подключенный к генератору высокой частоты, создает в материале модулятора «гребенку» стоячих продольных в

Сверхкороткий лазерный импульс воздействует на вещество совсем иначе, чем длинный.

Так, излучение обычного импульсного лазера зажигает спичечную головку, а сильно сжатый, «гигантский импульс» пробивает ее, подобно пуле, — горючий состав не успевает вспыхнуть.

Наиболее сильно сжать импульс удается, применяя дифракционные решетки. Материал активной среды, которая генерирует свет, обладает дисперсией — низкочастотные составляющие импульса движутся медленнее высокочастотных, ширина импульса растет.

Импульсы, длительностью около 100 пс дают модуляторы добротности, основанные на повороте плоскости поляризации света в веществе при наложении на него поперечного электрического (эффекты Керра и Поккельса) или продольного магнитного поля (эффект Фарадея).

Наука и жизнь // Иллюстрации

Измерение длительности импульса методом двухфотонной люминесценции. Лазерный импульс расщепляется пополам, и два вторичных импульса встречаются в кювете с люминесцирующей жидкостью (А). Свечение возникает только при их сложении (Б).

Метод генерации второй гармоники. Лазерный импульс расщепляется на два импульса, которые поступают в интерферометр Майкельсона, где приобретают взаимно-перпендикулярную поляризацию.

Уже в первые годы развития лазерной техники исследователи стали искать пути получения оптических импульсов как можно меньшей длительности. Такие импульсы требуются во многих областях науки и техники. С их помощью можно изучать быстропротекающие процессы, происходящие при взаимодействии света с веществом, в химических и фотохимических реакциях, в физике плазмы… Кроме фундаментальных исследований существует и немало чисто технических, прикладных задач, требующих возможно более коротких импульсов — например, для создания точных систем измерения времени или длины. Ведь если оптические импульсы использовать как метки времени, то чем меньше их длительность, тем точнее можно измерить интервал между ними (на этом, в частности, основана работа импульсных лазерных дальномеров; см. «Наука и жизнь» № 1, 2002 г.). Кроме того, следует вспомнить, что мощность (в данном случае — светового импульса) равна энергии, деленной на длительность импульса. «Сжимая» импульс в сотни и тысячи раз, получают соответствующий рост его мощности.

История создания коротких световых импульсов начинается с 1962 года (уже через два года после постройки первого лазера), когда были получены импульсы наносекундного диапазона (1 нс = 10-9 с ). Импульсы длительностью в десятки наносекунд излучали твердотельные лазеры с оптической накачкой при работе в так называемом режиме модуляции добротности резонатора.

Любой лазер в принципе состоит из трех основных элементов — активной среды, накачки, сообщающей ей способность усиливать световые колебания, и оптического резонатора, образованного двумя параллельными зеркалами, между которыми помещена активная среда. Зеркала резонатора возвращают излучение обратно в активную среду, превращая оптический усилитель в генератор когерентного света — лазер. Одно из зеркал делают частично прозрачным для выхода излучения.

В качестве активной среды твердотельных лазеров наиболее распространены рубин, стекло с примесью редкоземельного металла неодима и иттрий-алюминиевый гранат (также с примесью неодима). Из них наибольшей шириной линии усиления (то есть спектральным диапазоном, в котором может усиливать среда) обладает неодимовое стекло.

Резонатор, как и любая колебательная система, имеет характеристику, называемую добротностью Q. Она показывает, насколько велики потери P в системе, получившей энергию W: Q ~ W/P. Например, колебания маятника с грузиком большого размера затухают быстрее, чем колебания маятника той же массы, но более компактного (из-за большего сопротивления воздуха) — добротность второго маятника выше. Добротность оптических резонаторов очень велика — до 107. Это означает, что при каждом отражении от зеркал светового импульса, возникшего в резонаторе, теряется одна десятимиллионная часть его энергии (для сравнения — добротность колебательного радиоконтура не превышает 102). Но если во время поступления энергии в среду — работа системы накачки — одно зеркало перекрыть затвором, добротность резонатора упадет до нуля, и энергия станет накапливаться в активной среде. Когда ее количество приближается к максимально возможной величине, затвор очень быстро открывается, и вся запасенная энергия высвобождается в виде короткого и мощного импульса излучения. Такие импульсы получили название «гигантских», а способ их получения — режим модуляции добротности. Это очень похоже на то, как если бы высокая плотина, за которой медленно накапливается огромное количество воды, вдруг внезапно исчезла.

Первые затворы для генерации гигантского импульса были механическими. Заднее зеркало (его роль нередко играла призма полного внутреннего отражения) быстро вращалось, и только в моменты, когда оно оказывалось строго параллельным переднему, неподвижному зеркалу, возникала генерация. Однако механический затвор не позволял получать импульсы короче 10-4 секунды, был технически неудобен, и на смену ему пришли другие конструкции. Например, между активной средой и задним зеркалом помещали алюминиевую фольгу толщиной 0,25 микрона, которая взрывалась под действием электрического импульса (активный затвор) или энергии излучения активной среды (пассивный). Этот способ модуляции добротности методом прожигания или взрывающейся пленки позволял получать импульс длительностью до одной десятой микросекунды (10-7с). Но наиболее широкое распространение получили затворы оптические.

Оптические затворы не имеют подвижных частей; ими управляют короткие электрические или акустические импульсы, переключающие их уже за 10-9-10-10 секунды, позволяя получать световые вспышки наносекундной длительности. Называют их соответственно электрооптичес

кими и акустооптическими. Еще один класс затворов — так называемые фототропные; они не требуют и управляющего сигнала. Их действие основано на свойстве некоторых веществ увеличивать прозрачность с ростом интенсивности падающего излучения (подобный принцип, но с «обратным знаком» и малым быстродействием используется в известных всем очках с фотохромными стеклами). Это наиболее простой вариант затвора: достаточно лишь поместить внутрь резонатора кювету с просветляющейся жидкостью. После вспышки жидкость сама возвращается в непросветленное состояние и «ждет» очередного импульса.

Следующим шагом на этом пути стало создание в сотни и в тысячи раз более коротких импульсов — сначала в десятки, а затем и в единицы пикосекунд (1 пс = 10-12 с). За одну пикосекунду свет, распространяющийся с огромной скоростью — почти 300 тысяч км/с, проходит всего 0,3 мм. Создание пикосекундных лазеров (они появились в 1965 году) стало возможным благодаря применению так называемого режима синхронизации мод.

Модами называют типы колебаний, которые могут возбуждаться в оптическом резонаторе лазера. Их обычно бывает очень много, но сейчас нас интересуют только те, которые укладываются целое число раз на двойной длине резонатора 2L (так называемые продольные моды). Соответствующие им частоты расположены через одинаковые интервалы, равные с/2L, где с — скорость света в резонаторе , L — длина резонатора. Однако фазы этих мод принимают произвольные значения, и для генерации сверхкоротких импульсов, помимо получения большого количества мод, приходится все их синхронизировать . При этом возникает интерференция, приводящая к резкому перераспределению энергии в лазерном излучении — в одних участках пространства наблюдается чрезвычайно сильная концентрация энергии, а в других ее практически не остается совсем. В результате формируются последовательности сверхкоротких импульсов исключительно большой мощности. Длительность каждого импульса обратно пропорциональна числу синхронизированных мод, а мощность прямо пропорциональна его квадрату.

Этот режим, вообще говоря, осуществляется теми же средствами, что и режим модуляции добротности — в резонатор лазера помещается электрооптический или фототропный затвор, — но действуют они по-другому. На электрооптический затвор подается не короткий перепад напряжения (который открывал затвор), а периодический сигнал, обычно синусоидальной формы, с частотой, примерно равной с/2L, а использование фототропного затвора (просветляющегося фильтра) по-прежнему не требует управляющего сигнала. Метод с использованием электрооптического (или акустооптического) затвора называют активной синхронизацией мод, а с использованием просветляющегося фильтра — пассивной синхронизацией. При активной синхронизации мод затвор работает в режиме модулятора с частотой с/2L. При пассивной синхронизации действует другой механизм, который в упрощенной форме сводится к следующему. Когда импульс света проходит через просветляющийся фильтр, «хвосты» импульса, имеющие малую интенсивность, ослабляются в нем из-за поглощения, а вершина импульса с большой интенсивностью проходит — импульс становится узким. Этот процесс повторяется с периодом Т = 2L/с, и на выходе образуется последовательность мощных пикосекундных импульсов. Одновременно с синхронизацией мод имеет место и модуляция добротности резонатора. Пассивная синхронизация мод технически намного проще, чем активная.

Первым поколением пикосекундных лазеров были твердотельные лазеры с просветляющимся поглотителем, обеспечивающим пассивную синхронизацию мод; они могут генерировать импульсы длительностью до 10 пс. Второе поколение составляют лазеры, в которых активная среда — растворы органических красителей. Лазеры на красителях имеют огромную ширину полосы усиления (15-20 нм, или, в единицах частоты, порядка 100 ТГц), позволяя перестраивать длину волны в широком диапазоне. Применение в таких лазерах просветляющихся поглотителей позволило получить импульсы длительностью до 0,5 пс.

Однако для исследования многих быстропротекающих процессов требуются еще более короткие импульсы, входящие в фемтосекундный диапазон (1 фс = 10-15 с). Прорыв в фемтосекундную область впервые осуществлен с лазером непрерывного действия на красителе, когда удалось получить импульсы длительностью 0,1 пс, то есть 100 фс. И тут исследователям пришлось столкнуться с весьма специфическими явлениями.

Импульс малой длительности имеет очень широкий спектр. В диспергирующей среде отдельные части спектра движутся с различными групповыми скоростями , и при нормальной дисперсии длинноволновые составляющие движутся быстрее коротковолновых, при аномальной — наоборот. В результате интервалы между составляющими различных частот становятся неодинаковыми — импульс расплывается.

В случае нормальной дисперсии среды частота увеличивается от начала импульса к его концу. Чтобы устранить растяжение импульса, нужно пропустить его через среду с дисперсией аномальной, имеющей обратный знак. Было обнаружено, что этого же можно добиться при помощи призм или дифракционных решеток, традиционно используемых в спектроскопии для пространственного разделения частот. Длинноволновые составляющие переднего фронта импульса задерживаются по отношению к коротковолновым составляющим заднего его фронта, задний фронт «догоняет» передний, импульс сжимается.

Так удалось получить от лазеров на красителях импульсы длительностью примерно 50 фс. При этом образуется нечто вроде оптических солитонов (см. «Наука и жизнь» № 11, 2001 г.) — волновых пакетов, распространяющихся без изменения формы на расстояния, превышающие собственную длину импульса в 106-107 раз.

Дальнейшее развитие фемтосекундных лазеров связано с использованием нелинейных свойств среды, возникающих в поле мощного лазерного излучения. К 1990 году был реализован новый способ пассивной синхронизации мод без просветляющегося поглотителя — самосинхронизация. О том, как в этом случае получают фемтосекундные импульсы, рассказано, например, в статье академика В. Летохова (см. «Наука и жизнь» № 9, 1995 г.).

Нелинейные свойства среды проявляются в том, что ее показатель преломления n начинает зависеть от интенсивности излучения I. Интенсивность пропорциональна квадрату амплитуды поля A2, и эту зависимость обычно записывают в виде n = no + n2A2 (оптический эффект Керра). Здесь no — «обычный» показатель преломления (имеющий место при малых интенсивностях света), а второе слагаемое — нелинейная добавка, определяющая изменение показателя преломления под влиянием мощного излучения. Вследствие этой «керровской не линейности» возникают самофокусировка пучка, фазовая модуляция и сжатие импульсов, часто объединяемые термином «самовоздействие».

Впервые эффекты нелинейных свойств среды использовали для получения сверхкоротких импульсов в лазере непрерывного действия на титан-сапфире. Эти лазеры третьего поколения могут генерировать импульсы длительностью от десятков фемтосекунд до 5-6 фс (такие предельные значения соответствуют двум-трем периодам световых колебаний).

Но самый короткий световой импульс получен два года назад исследователями из берлинского Института Макса Борна тоже с использованием лазера на титан-сапфире. Длительность полученного импульса составляет 3,8 фс, и группа физиков, осуществившая эксперимент, надеется уменьшить ее до 1-2 фс.

Пикосекундные и особенно фемтосекундные оптические импульсы открывают широкие возможности для исследования быстропротекающих процессов в физике, химии, биологии и других областях науки. Фемтосекундные импульсы, например, используют для создания электромагнитных полей с напряженностью выше внутриатомного. Ведутся интенсивные исследования по созданию оптических компьютеров, в которых применение фемтосекундных импульсов с гигагерцовой частотой повторения сулит резкое увеличение объема и быстродействия компьютерной памяти. С этой областью связаны разработки «памяти на стекле», ведущиеся в Японии. Около трех лет назад обнаружили, что, если сфокусировать фемтосекундный импульс на стекло, содержащее редкоземельный элемент самарий, в точку диаметром около 400 нм, она начинает светиться, оставаясь при этом прозрачной. Светящиеся точки могут размещаться на поверхности самариевого стекла на расстоянии 100 нм одна от другой и располагаться послойно. Компания «Central Glass», выпускающая подобное стекло, создала эквивалент 2000 уровней точек в одном его кубическом сантиметре, которые можно считывать по отдельности. Это позволяет хранить в нем 1 терабайт (1012 байт) данных. Фемтосекундные лазеры станут также основой новой технологии широкополосной связи, способной за секунду передать несколько терабайт информации.

Из новейших применений можно указать на исследования по созданию фемтосекундных «оптических часов» — стандартов частоты, а значит, и времени. А с учетом принятого в 1983 году нового определения метра, связанного с единицей времени и скоростью света в вакууме, оптические часы становятся и «оптическим метром», позволяя реализовать единый эталон времени — частоты — длины. Фемтосекундная техника позволяет разработать методы высокоточного измерения оптических частот для метрологических применений. В их основе лежит способность фемтосекундного лазера с синхронизацией мод генерировать широкий спектр частот, лежащих на равных расстояниях одна от другой с точностью до 10-16. Они образуют линейку, обладающую высокой стабильностью.

В Институте лазерной физики Сибирского отделения РАН впервые созданы малогабаритные фемтосекундные оптические часы на основе титан-сапфирового лазера, генерирующего импульсы длительностью 10 фс со стабильностью 10-14 за 100 секунд.

В заключение следует сказать, что в настоящее время мы находимся на пороге очередного прорыва в следующий диапазон — аттосекундный. Аттосекунда в тысячу раз меньше фемтосекунды, то есть 1 ас = 10-18 с. Обсуждаются возможные способы генерации аттосекундных импульсов на быстро ионизуемых атомах в полях сверхкоротких оптических импульсов. В видимом диапазоне спектра продвинуться в аттосекундную область принципиально невозможно, однако это вполне реально в дальнем ультрафиолете и мягком рентгеновском излучении. Но как же измерить длительность столь неимоверно короткого импульса? В одной из теоретических работ предложено возможное решение этой задачи с использованием двойной ионизации гелиевой плазмы, служащей мишенью. По расчетам авторов, можно измерять длительность импульсов до 400 ас, а меняя некоторые параметры, уменьшить эту величину в несколько раз. С физическим механизмом предложенного решения можно ознакомиться в статье, опубликованной в журнале «Physical Review Letters», v.86, p.412 (2001).

Лазер, этот удивительный прибор, созданный полвека назад, продолжает совершенствовать ся и открывает поистине неисчерпаемые возможности своего применения в самых разных областях науки и техники.

У графика есть зум — выделите зону мышкой справа налево и она сама зуммируется. Чтобы сбросить зум справа вверху будет кнопка «reset zoom»
мс — миллисекунды
мкс — микросекунды (мс/1000)

для справки длительность движений

800 микросекунд — время удара рака богомола
1-1,4 мс — Начальная скорость винтовочной пули (700-1000 м/с). За 1 мс пуля пролетит 1 м
2-3 мс — Начальная скорость пистолетной пули (300-500 м/с). За 2 мс пуля пролетит 1 м
3 мс — продолжительность взмаха крыла комнатной мухи.
5 мс — продолжительность взмаха крыла пчелы.
7,3 мс — мировой рекорд скорости волана для бадминтона равен 493 км/ч
11 мс — официальный рекорд скорости мяча для гольфа составляет 326 км/ч
13,6 мс — Наиболее убойным ударом в мужском теннисе владеет австралиец Сэм Грог с рекордом 263,4 км/ч
19 мс — рекорд скорости полёта шайбы 51 м/сек (183,7 км/ч), 19 мс — время за которое она пролетает 1м
21 мс — мячи в бейсболе летают со скоростью примерно 170 км/ч
50 мс — время удара кулаком Брюса Ли с расстояния 1м
66 мс — время удара чемпиона мира по боксу с расстояния 1м при скорости удара 15 м/сек (данные из интернета)
5-80 мс — продолжительность взмаха крыла колибри.
200 мс — время, которое требуется человеческому мозгу для распознавания эмоций в мимике.
300 мс — время удара ногой Брюса Ли
300—400 мс — время мигания человеческого глаза.

Предположим нам нужно заснять пистолетную пулю.

длина импульса импульсных источников света

Фото: Гарольд Эджертон, также известный как «papa flash». Не мог не упомянуть родоначальника скоростной фотографии, когда мы говорим о «заморозке» импульсом вспышки.

Пуля будет резкой в кадре, если сместится на 1 мм за время импульса. Значит делим 2мс за которые она пролетает 1 м на 1000 мм в метре и получаем 0,002 мс или 2 мкс. Такой должна быть длина импульса вспышки, чтобы пистолетная пуля отобразилась резко с расстояния пары метров, где её смещение в кадре на 1 мм
будет незаметным. Студийный генератор Broncolor Grafit A2 даёт самый короткий импульс в 0,112 мс, что составляет 112 мкс и соответственно он никак не может «заморозить» полёт пули.

Предположим, вы решили заснять («заморозить») удар рукой Брюса Ли, что было невозможно или очень сложно во времена когда он снимался в кино. Казалось бы, даже на 1600 Дж генератор даёт импульс в 4 мс, а длительность удара рукой Брюса составляет 50 мс. Но если вы будете ориентироваться по всему времени, которое затрачивает Брюс на удар, то у вас будет размазанное движение. Вам нужно чтобы его рука почти не успела сдвинуться. Тогда возьмем путь его руки в 1 мм, а не в 1м, как в списке. Тогда вам нужно поделить 50 мс на 1000, чтобы получить время за которое его рука пройдёт 1 мм (чтобы в кадре она выглядела как статичная). Вы получите 50 мкс, а генератор даёт минимальный импульс в 112 мкс. Вывод такой, что даже на минимальном импульсе его рука успеет пройти ~ 2 мм. В целом на снимке это будет не сильно заметно, почти статично. Но всё-таки не полностью «заморожено»! :)

  • Освещение
  • Что такое длительность импульса и зачем нужна
  • Почему не важно какая у вас стоит выдержка при фотосъемке со вспышкой в студии
  • Если мы вдруг начнём снимать на открытой диафрагме, то столкнемся с двумя проблемами
  • Заморозка импульсом
  • Как же «замораживают» движение в фотостудии?
  • Как выглядит этот самый пресловутый импульс?
  • У импульса два важных параметра: t0.5 и t.01.
  • Контроль цветовой температуры
  • Виды вспышек
  • Встроенные вспышки
  • Накамерные вспышки
  • Моноблоки
  • Импульсные генераторы
  • На что стоит обратить внимание при покупке моноблока или генератора
  • Мощность
  • Регулировка мощности
  • Постоянство цветовой температуры
  • Скорость перезарядки
  • На примере студийного генератора Profoto Pro-8a Air
  • Охлаждение и защита от перегрева
  • Размер и вес
  • Длина и форма импульса студийного генератора Broncolor Grafit A2

к содержанию ↑

Освещение

Фотография существует потому, что есть свет. Света бывает мало, а бывает много. Но если уменьшить его количество легко, то увеличить количество света бывает весьма тяжело и этом сложном деле нам помогают импульсные источники освещения, как наиболее эффективные приборы для увеличения количества света, чтобы мы могли спокойно заниматься фотосъемкой, реализовывать свои самые интересные идеи, будучи не ограничены количеством и качеством света.

Импульсные источники света (вспышки) - длина и форма импульса

к содержанию ↑

Что такое длительность импульса и зачем нужна

Если вы ранее не снимали студийными вспышками, то возможно считаете, что единственный способ «заморозить» (остановить в кадре) движение — это поставить короткую выдержку на фотокамере.

Но когда вы попадаете в условия фотостудии, то частенько сталкиваетесь с тем, что практически неважно, какая выдержка стоит у вас на фотокамере. Т.е. вам сразу объяснят, что есть такое понятие, как «максимальная выдержка синхронизации со вспышкой». Для разных камер она своя.

Чаще всего в студии используют выдержку синхронизации 1/125 сек. Это не догма и вы можете использовать любую, вплоть до максимальной для вашей камеры (может быть 1/200 или 1/250 для зеркальной камеры). Традиция на 1/125 сек пошла со среднеформатных камер, хотя на сегодняшний день многие из них имеют выдержку синхронизации 1/800 и 1/1600 сек, благодаря центральному затвору в объективе.

к содержанию ↑

Почему не важно какая у вас стоит выдержка при фотосъемке со вспышкой в студии

Дело в том, что при съемке со вспышкой в студии мы весь светотеневой рисунок создаём вспышкой (обычно) и наоборот избегаем постоянного света. В частности, для того чтобы избежать смещения цветовой температуры света от вспышки и от постоянного света (лампы на потолке).
При установленной диафрагме F11 на камере и выдержке 1/125 сек мы не регистрируем постоянный свет на сенсоре. Его как бы нет, он превращается в чёрный.
А вот мощный свет вспышки спокойно проходит через узенькую дырочку диафрагмы и экспонирует снимок. Таким образом мы получаем картинку только за счёт вспышки, даже если у нас включены лампы на потолке и в фотостудии светло.

к содержанию ↑

Если мы вдруг начнём снимать на открытой диафрагме, то столкнемся с двумя проблемами

1) Вспышка засвечивает кадр. Не все моноблоки позволяют ставить такую малую мощность, чтобы работать на открытой диафрагме. Это можно обойти, если использовать сплошные нейтрально-серые фильтры на объектив (аналогия с пейзажной съемкой).

2) Постоянный свет ламп на потолке мешает съемке. Свет ламп с потолка и свет солнца из окна начнут оказывать влияние на снимок. Но учитывая то, что цветовая температура света от ламп накаливания другая, в кадре он будет отображаться оранжевым шлейфом за моделью, если у вас баланс белого настроен на вспышку.

к содержанию ↑

Заморозка импульсом

Итак, мы не можем поставить очень короткую выдержку на фотокамере, потому как мы ограничены выдержкой синхронизации со вспышкой. Причем нам нет смысла вообще связываться с выдержкой т.к. она имеет отношение к постоянному свету, а в фотостудии мы работаем только диафрагмой, чтобы оказывать влияние на импульсный свет вспышки.

к содержанию ↑

Как же «замораживают» движение в фотостудии?

Для того, чтобы «заморозить» движение в фотостудии используют вспышки с коротким импульсом разряда.

к содержанию ↑

Как выглядит этот самый пресловутый импульс?

Шумахеры мира фото : "заморозка" движений
Иллюстрация из каталога компании Broncolor, Швейцария.

к содержанию ↑

У импульса два важных параметра: t0.5 и t.01.

t0.1 — Полная длина импульса. Это время, в течение которого сила света вспышки превышает 10 % пикового значения. Если в технических характеристиках вспышки не указывается общая длительность вспышки, можно допустить — основываясь на математической форме кривой — что общая длительность вспышки t0.1 приблизительно в три раза больше, чем фактическая длительность вспышки.

t0.5 — это время, в течение которого сила излучения вспышки составляет более 50 % от пикового значения.

t0.5 было использовано производителями вспышек изначально т.к. считалось, что тянущийся «хвост» импульса малой амплитуды мало влияет на экспозицию и им можно пренебречь.

На экспозицию тянущийся «хвост» после t0.5 влияет слабо, а вот на цветовую температуру и главное на «заморозку» движения он влияет существенно.

к содержанию ↑

Контроль цветовой температуры

Импульс не просто так нарисован цветным. Цвета на кривой обозначают изменение цветовой температуры света в зависимости от амплитуды импульса.
Простыми словами: в начале вспышки выходит фиолетовый свет, на максимуме он синий, а дальше постепенно краснеет и в конце совсем красный.
Это важно, т.к. Баланс Белого на снимке определяется цветом света, которым мы экспонировали снимок.
Если будет преобладать синяя составляющая импульса, то и снимок будет синить. Если красная — уйдёт в теплые тона. Так и случается на плохих вспышках (а тем более на источниках постоянного света с диммером), когда мы регулируем мощность.

Это всё подводит нас к тому, что при попытках манипулировать с импульсом мы меняем цветовую температуру света и нужны дополнительные усилия, чтобы в получить идеальные для фотостудии 5500К (что соответствует белому дневному свету).

к содержанию ↑

Виды вспышек

к содержанию ↑

Встроенные вспышки

Вспышка встроенная в камеру. Обычно находится на верхней части камеры. Отличается маленькой мощностью (можно только уменьшить, внеся поправку в камере), отсутствием гибкости в работе (она не отсоединяется и свет всегда «в лоб», зависит от аккумулятора камеры, не имеет насадок.

Обзор генератора импульсного света Profoto

к содержанию ↑

Накамерные вспышки

Устанавливаются в «горячий башмак» фотокамеры. Могут иметь разную мощность, но самые мощные, как правило, не превышают 80 Дж. Очень гибкие в работе, работают автономно от камеры.

Обзор генератора импульсного света Profoto

Обзоры накамерных вспышек

к содержанию ↑

Моноблоки

Моноблок — это вспышка со встроенным адаптером питания. Как правило, работает от сети, хотя сейчас появились моноблоки с аккумулятором и моноблоки с работой и от сети и от аккумулятора.

Обзор и тест аккумуляторной вспышки Profoto B1

Моноблоки значительно крупнее, чем накамерные вспышки, но позволяют использовать все студийные модификаторы света, что очень важно. Ведь «голой» вспышкой много не сделаешь. Также моноблоки бывают гораздо бОльшей мощности, чем накамерные вспышки (вплоть до 1500 Дж).
Работа моноблока от дизельного генератора не рекомендуется — можно сжечь моноблок.

к содержанию ↑

Импульсные генераторы

Импульсный генератор представляет из себя по сути миникомпьютер (т.к. есть процессор, память, экран и проч.), блок питания, конденсаторы и сложные платы контроля импульса разряда. Проще говоря — это «венец творения» импульсных источников света.

Генераторы бывают студийные т.е. питающиеся от розетки и аккумуляторные, питающиеся от аккумулятора.

Обзор генератора импульсного света Profoto Pro-8a Air

На фото — аккумуляторный генератор Profoto B2

Импульсные источники света (вспышки) - длина и форма импульса

На фото — студийный генератор Profoto Profoto Pro-8a Air

Студийные генераторы обычно мощнее т.к. там нет задачи экономить заряд. Некоторые студийные генераторы могут питаться от дизельного генератора и таким образом становится мобильными.
Мощность студийного генератора может достигать 6400 Дж, но чаще всего используются студийные генераторы 1600 дж, 2400 Дж и 3200 Дж (а аккумуляторные как правило от 250 Дж до 1200 Дж).

к содержанию ↑

На что стоит обратить внимание при покупке моноблока или генератора

к содержанию ↑

Мощность

Чем мощнее прибор, тем легче абстрагироваться от постоянного света и работать только с тем, который вы сами создаете с помощью источника импульсного света. Т.е. если источник импульсного света в помещении, при большой его мощности вы можете даже не зашторивать окна. По сравнению с его мощностью камера просто не увидит свет из окна, как будто там ночь.
Тоже самое касается использования источника импульсного света на улице. Слабый источник может позволить вам работать в технике «смешанного» света, когда видно и то что освещено вспышкой и то что освещено солнцем, а мощный источник импульсного света может делать из дня ночь и контролировать освещение объекта съемки как угодно.

Импульсные источники света (вспышки) - длина и форма импульса

На фото — студийный генератор Broncolor Scoro A4s

к содержанию ↑

Регулировка мощности

Казалось бы взяли мощный прибор, о чём еще мечтать? А мечтать еще хочется об универсальности применения. Ведь не всё же вы время снимаете на максимуме мощности. Иногда света нужно весьма мало, если снимаете что-то маленькое с близкого расстояния. Или снимаете на открытой диафрагме (да, с импульсным светом, вопреки заблуждениям, тоже снимают на открытых диафрагмах).
Вот и получается, что казалось бы маловажные цифры 1/16, 1/32, 1/64 принимают уже вполне понятные очертания.

Например, у генератора Profoto Pro-8a Air предусмотрена регулировка от 5 до 2400Дж, что очень хорошо. Он может дать очень слабый импульс, а может дать очень мощный.
Broncolor Scoro A4s диапазон 3 — 3200 Дж (10 ступеней).

к содержанию ↑

Постоянство цветовой температуры

Обзор генератора импульсного света Profoto Pro-8a Air

график разряда вспышки

Как видите, в зависимости от фазы импульса цветовая температура разная. Начинается с фиолетового, потом синий и в конце красный.
Конечная цветовая температура света определяется амплитудой разряда в каждой фазе и длиной этой фазы.

Если, например, растянуть красный хвост импульса при том, что у него будет оставаться более-менее значимая амплитуда, то цветовая температура уйдёт в тёплые тона. Если его отрезать и оставить только фиолетово-синюю составляющую, то цветовая температура уйдет в холодные тона.

В дешевых импульсных источниках с этим никак не борются и потому цветовая температура «гуляет» как ей хочется. Особенно это касается моноблоков, где параметры импульса зависят от источника питания моноблока, от его конденсатора и лампы. Меняя мощность моноблока относительно других моноблоков вы рискуете получить другую цветовую температуру и тогда свет где-то будет белый, а где-то нет. Поправить такое в фотошопе невозможно (ну или крайне сложно, если уж принципиально пытаться поправить).
Сразу скажу, что есть приличные моноблоки с более-менее постоянной цветовой температурой, а есть те, где цветовая температура сильно меняется, в зависимости от мощности прибора.

Зато в импульсных генераторах используются разные методы контроля цветовой температуры (например, у Broncolor это CTC и более новая ECTC) и она меняется очень мало на всём диапазоне мощности современного генератора. Даже самый лучший поляризационный фильтр меняет цветовую температуру примерно на 150 К, так что уж говорить про 40К, которые бывают заявлены как диапазон колебания цветовой температуры у импульсного генератора.). Правда в случае контроля цветовой температуры импульс вспышки становится существенно длиннее, так что «замораживать» при контроле цветовой температуры сложнее.

к содержанию ↑

Скорость перезарядки

Если вы не видели как «строчат» из импульсного генератора на мастерклассах, когда его доверяют новичкам, то вы не знаете, что такое быстрая перезарядка импульсного источника света :)

Ни один моноблок не может так быстро перезаряжаться (хотя сейчас появились очень быстрые на перезарядку моноблоки, например, Profoto D2), а если вы снимаете фешн или просто быстротекущие процессы (всплески, струи, порошки), то скорость перезарядки прибора для вас очень критична.

к содержанию ↑

На примере студийного генератора Profoto Pro-8a Air

Генератор по мере готовности издает звуковой сигнал (можно отключить), а на Profoto Pro-8a Air еще загорается белая кнопка «test» (на снимке ниже горит она оранжевым).

Обзор генератора импульсного света Profoto Pro-8a Air

Здесь вы видите подключенную одну световую головку (один круглый разъем занят). Мощность этой световой головки выставлена на 1.0, что соответствует минимальной мощности в 5 Дж.
Выставляется можность крутящимися ручками, которые переключаются по 0.1 стопа и издают характерный щелкающий звук, так что можно контролировать на сколько переключил даже не глядя на ЖК-экранчик под разъемом (удобно при съемке в полутёмной студии).
С правой стороны на панели мы видим переключатель «speed». Не сразу догадаешься, что это контролируется скорость перезарядки генератора. Колёсико, которое контролирует положение переключателя находится сбоку на генераторе.

Контроль скорости перезарядки генератора нужна для использования его при питании от слабых электрических сетей и от дизельных генераторов. Так сказать «на выезде» мы используем медленную перезарядку, а на надежных сетях максимально быструю.

Импульсный генератор Profoto Pro-8a Air способен перезаряжаться за 0.05 сек на минимальной мощности и за 0.9 сек на максимальной, до 2400 Дж!
Т.е. каждые 0.9 сек генератор способен выдавать 2400 Дж мощности!

к содержанию ↑

Охлаждение и защита от перегрева

Важный момент — это система охлаждения импульсного источника света. При выходе такого потока света за столь короткий промежуток времени лампа и сам источник нагреваются. Если перегреется импульсный источник — он выйдет из строя. Если перегреется лампа — она взорвётся. В наше время лампы уже не взрываются в нормальных приборах и везде стоит контроль температуры лампы. Даже в накамерных вспышках от Canon такой контроль и стоит и при перегреве вспышка перестает срабатывать.

А теперь представьте, что было бы, если бы не было охлаждения прибора? Студийные вспышки используются не так, как накамерные, у них скорость заряда выше и потому срабатывают они чаще (так уж их используют). Если нет активной системы охлаждения (встроенных вентиляторов), то вспышка просто выключается и простаивает, пока не остынет сама собой. Именно так происходит на дешевых студийных вспышках.
При покупке рекомендую обратить внимание на этот параметр т.к. может получиться, что вы будете больше ждать, чем снимать.

В генератора импульсного света, как правило, встроено несколько вентиляторов и проблем с перегревом у него нет.

Обзор генератора импульсного света Profoto Pro-8a Air

Есть и защита от перегрева лампы. Раз уж генератор так быстро перезаряжается, то можно обеспечить очень большой поток энергии за короткое время и вы рискуете сами разрушить лампу, если будете хлопать вспышкой как пулеметчик в течении долгого времени (тем более и по звуку похоже :) ). Вот потому генератор тоже вам через некоторое время работы «очередями» на большой мощности приостановит работу для охлаждения лампы (я сам до этого пределах не доходил т.к. дойти до него очень сложно да и не надо). Это актуально для тех, кто снимает, например, церкви и нужно дострелить вспышкой до купола церкви. Одним импульсом это невозможно, потому набирают мощность многократными импульсами на полной мощности генератора и на длинной выдержке. Другого такого примера из реальной жизни я не знаю, где можно было бы перегреть лампу в нормальной ситуации.

к содержанию ↑

Размер и вес

Я думаю понятно, что все бонусы генераторов достигаются более сложной конструкцией. Потому размер генератора относительно большой (а к нему нужны еще световые головки).

Обзор генератора импульсного света Profoto Pro-8a Air

Cветовая головка ProHead

Но это меньше даже, чем системный блок обычного компьютера.
Стационарные генераторы предполагается возить на машине, так что в багажнике машины их поместится много и пределом скорее будет служить ваш бюджет, нежели размер генератора.

Весит генератор, например, Profoto Pro-8a Air — 12кг, т.к. внутри у него кроме электронных схем еще массивные медные катушки и алюминиевые радиаторы охлаждения.

Обзор генератора импульсного света Profoto Pro-8a Air

Моноблоки, как правило, весят меньше. Особенно это касается небольших аккумуляторных моноблоков типа Profoto B10.

Обзоры импульсных генераторов

к содержанию ↑

Длина и форма импульса студийного генератора Broncolor Grafit A2

Длина импульса студийного генератора Broncolor Grafit A2

T.MIN — форма импульса Broncolor Grafit A2

Импульсные источники света (вспышки)

3.9 EV (23 Дж, t.min)

длина импульса импульсных источников света

4 EV (25 Дж, t.min)

длина импульса импульсных источников света

5 EV (50 Дж, t.min)

длина импульса импульсных источников света

6 EV (100 Дж, t.min)

длина импульса импульсных источников света

7 EV (200 Дж, t.min)

длина импульса импульсных источников света

8 EV (400 Дж, t.min)

длина импульса импульсных источников света

9 EV (800 Дж, t.min)

Импульсные источники света (вспышки)

10 EV (1600 Дж, t.min)

Pulse-Width — Длительность лазерного импульса, который оптический рефлектометр подает в оптическое волокно.

Длительность лазерных импульсов можно изменять. Выбирая большую или меньшую длительность импульса‚ можно регулировать уровень отраженного обратного рассеяния‚ а также размер мертвой зоны. Более длительный импульс означает посылку в волокно большего количества световой энергии‚ которая поэтому пройдет по волокну на большее расстояние и приведет к более высоким уровням обратного рассеяния. Но это приведет также к большей длительности мертвых зон. И наоборот‚ импульс меньшей длительности приведет к тому‚ что мертвые зоны будут минимальной длительности‚ но обратное рассеяние окажется слабее.

Импульсы большой длительности обеспечивают рефлектометру максимальный динамический диапазон; они применяются для быстрого обнаружения дефектов и обрывов волокна. Поскольку при более длинных импульсах уровни обратного рассеяния повышаются‚ то для получения «чистой» рефлектограммы потребуется меньшее время усреднения.

Импульсы меньшей длительности применяются для тестирования той части волокна‚ которая примыкает к рефлектометру. Они используются и для того‚ чтобы отличить друг от друга две (или более) неоднородности‚ близко расположенные друг к другу. Вследствие меньшей длительности мертвой зоны такие импульсы дают возможность обнаруживать более мелкие подробности в обратном рассеянии‚ идущем сразу же за френелевским отражением. Но из-за более низкого уровня обратного рассеяния требуется большее время усреднения.

Эмпирическое правило‚ применяемое для определения длительности импульса гласит: «Длинный импульс – чтобы видеть далеко; короткий импульс – чтобы видеть вблизи».

Рекомендуемые длительности импульсов при различных измеряемых дистанциях:

Дистанция:                                Длительность импульса:
До 1km…………………………………10ns (5ns если есть)
1-3km……………………………………10ns
3-15km………………………………….30ns
15-40km………………………………..100ns
40-80km………………………………..275-500ns
80-100km………………………………1,000ns (1ps)
100-120km…………………………….2,500ns (2.5ps)
120+km…………………………………2,500-10,000ns (10ps)

Понравилась статья? Поделить с друзьями:
  • Как найти фазу с помощью индикаторной отвертки
  • Как составить медицинский гороскоп
  • Мисти киберпанк как найти
  • Как найти подсеть айпи адреса
  • Как найти неизвестное слагаемое нужно