Движение по наклонной плоскости как найти скорость

Динамика и кинематика — это два важных раздела физики, которые изучают законы перемещения объектов в пространстве. Первый рассматривает действующие на тело силы, второй же занимается непосредственно характеристиками динамического процесса, не вникая в причины того, что его вызвало. Знание этих разделов физики необходимо применять для успешного решения задач на движение по наклонной плоскости. Рассмотрим этот вопрос в статье.

Основная формула динамики

Сила трения скольжения

Конечно же, речь идет о втором законе, который постулировал Исаак Ньютон в XVII веке, изучая механическое движение твердых тел. Запишем его в математической форме:

F¯ = m*a¯

Действие внешней силы F¯ вызывает появление линейного ускорения a¯ у тела с массой m. Обе векторные величины (F¯ и a¯) направлены в одну и ту же сторону. Сила в формуле является результатом действия на тело всех сил, которые присутствуют в системе.

В случае движения вращения второй закон Ньютона записывается в виде:

M = I*α

Здесь M и I — моменты силы и инерции, соответственно, α — угловое ускорение.

Формулы кинематики

Решение задач на движение по наклонной плоскости требует знания не только главной формулы динамики, но и соответствующих выражений кинематики. Они связывают в равенства ускорение, скорость и пройденный путь. Для равноускоренного (равнозамедленного) прямолинейного движения применяются следующие формулы:

a = Δv/Δt;

v = v0 ± a*t;

S = v0*t ± a*t2/2

Здесь v0 — значение начальной скорости тела, S — пройденный за время t путь вдоль прямолинейной траектории. Знак «+» следует поставить, если скорость тела увеличивается с течением времени. В противном случае (равнозамедленное движение) следует использовать в формулах знак «-«. Это важный момент.

Если движение осуществляется по круговой траектории (вращение вокруг оси), тогда следует использовать такие формулы:

α = Δω/Δt;

ω = ω0 ± α*t;

θ = ω0*t ± α*t2/2

Здесь α и ω — угловые ускорение и скорость, соответственно, θ — угол поворота вращающегося тела за время t.

Линейные и угловые характеристики друг с другом связаны формулами:

a = α*r;

v = ω*r

Здесь r — радиус вращения.

Движение по наклонной плоскости: силы

Под этим движением понимают перемещение некоторого объекта вдоль плоской поверхности, которая наклонена под определенным углом к горизонту. Примерами может служить соскальзывание бруска по доске или качение цилиндра по металлическому наклоненному листу.

Для определения характеристик рассматриваемого типа движения необходимо в первую очередь найти все силы, которые действуют на тело (брусок, цилиндр). Они могут быть разными. В общем случае это могут быть следующие силы:

  • тяжести;
  • реакции опоры;
  • трения качения и/или скольжения;
  • натяжение нити;
  • сила внешней тяги.

Первые три из них присутствуют всегда. Существование последних двух зависит от конкретной системы физических тел.

Чтобы решать задачи на перемещение по плоскости наклонной необходимо знать не только модули сил, но и их направления действия. В случае, если тело по плоскости скатывается, сила трения неизвестна. Однако она определяется из соответствующей системы уравнений движения.

время движения по наклонной плоскости

Методика решения

Решения задач данного типа начинается с определения сил и их направлений действия. Для этого в первую очередь рассматривают силу тяжести. Ее следует разложить на два составляющих вектора. Один из них должен быть направлен вдоль поверхности наклонной плоскости, а второй должен быть ей перпендикулярен. Первая составляющая силы тяжести, в случае движения тела вниз, обеспечивает его линейное ускорение. Это происходит в любом случае. Вторая равна силе реакции опоры. Все эти показатели могут иметь различные параметры.

Скольжение по наклонной плоскости

Сила трения при движении по наклонной плоскости всегда направлена против перемещения тела. Если речь идет о скольжении, то вычисления довольно просты. Для этого следует использовать формулу:

Ff = µ*N

Где N — реакция опоры, µ — коэффициент трения, не имеющий размерности.

Если в системе присутствуют только указанные три силы, тогда их результирующая вдоль наклонной плоскости будет равна:

F = m*g*sin(φ) — µ*m*g*cos(φ) = m*g*(sin(φ) — µ*cos(φ)) = m*a

Здесь φ — это угол наклона плоскости к горизонту.

Зная силу F, можно по закону Ньютона определить линейное ускорение a. Последнее, в свою очередь, используется для определения скорости движения по наклонной плоскости через известный промежуток времени и пройденного телом расстояния. Если вникнуть, то можно понять, что все не так уж и сложно.

В случае, когда тело скатывается по наклонной плоскости без проскальзывания, суммарная сила F будет равна:

F = m*g*sin(φ) — Fr = m*a

Где Fr — сила трения качения. Она неизвестна. Когда тело катится, то сила тяжести не создает момента, поскольку приложена к оси вращения. В свою очередь, Fr создает следующий момент:

M = Fr*r = I*α

Учитывая, что мы имеем два уравнения и две неизвестных (α и a связаны друг с другом), можно легко решить эту систему, а значит, и задачу.

Теперь рассмотрим, как использовать описанную методику при решении конкретных задач.

Задача на движение бруска по наклонной плоскости

Брусок наклонной плоскости

Деревянный брусок находится в верхней части наклонной плоскости. Известно, что она имеет длину 1 метр и располагается под углом 45o. Необходимо вычислить, за какое время брусок опустится по этой плоскости в результате скольжения. Коэффициент трения принять равным 0,4.

Записываем закон Ньютона для данной физической системы и вычисляем значение линейного ускорения:

m*g*(sin(φ) — µ*cos(φ)) = m*a =>

a = g*(sin(φ) — µ*cos(φ)) ≈ 4,162 м/с2

Поскольку нам известно расстояние, которое должен пройти брусок, то можно записать следующую формулу для пути при равноускоренном движении без начальной скорости:

S = a*t2/2

Откуда следует выразить время, и подставить известные значения:

t = √(2*S/a) = √(2*1/4,162) ≈ 0,7 с

Таким образом, время движения по наклонной плоскости бруска составит меньше секунды. Заметим, что полученный результат от массы тела не зависит.

Задача со скатывающимся по плоскости цилиндром

Скатывание цилиндра

Цилиндр радиусом 20 см и массой 1 кг помещен на наклонную под углом 30o плоскость. Следует вычислить его максимальную линейную скорость, которую он наберет при скатывании с плоскости, если ее длина составляет 1,5 метра.

Запишем соответствующие уравнения:

m*g*sin(φ) — Fr = m*a;

Fr*r = I*α = I*a/r

Момент инерции I цилиндра вычисляется по формуле:

I = 1/2*m*r2

Подставим это значение во вторую формулу, выразим из нее силу трения Fr и заменим полученным выражением ее в первом уравнении, имеем:

Fr*r = 1/2*m*r2*a/r = >

Fr = 1/2*m*a;

m*g*sin(φ) — 1/2*m*a = m*a =>

a = 2/3*g*sin(φ)

Мы получили, что линейное ускорение не зависит от радиуса и массы скатывающегося с плоскости тела.

Зная, что длина плоскости составляет 1,5 метра, найдем время движения тела:

S = a*t2/2 =>

t = √(2*S/a)

Тогда максимальная скорость движения по наклонной плоскости цилиндра будет равна:

v = a*t = a*√(2*S/a) = √(2*S*a) = √(4/3*S*g*sin(φ))

Подставляем все известные из условия задачи величины в конечную формулу, получаем ответ: v ≈ 3,132 м/c.



Чтобы ответить на поставленный вопрос, надо определить сначала, с каким ускорением Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 1 будет двигаться брусок вдоль наклонной плоскости. Зная ускорение и пройденный путь Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 2 можно будет найти скорость бруска в конце спуска, воспользовавшись уже выведенной нами формулой для равноускоренного движения Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 3 (см. § 3. Ускорение. Прямолинейное равноускоренное движение).

На брусок, скользящий по наклонной плоскости, действуют три силы: сила тяжести Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 4 сила нормальной реакции Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 5 и сила трения скольжения Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 6 направленная вдоль наклонной плоскости вверх.

Чтобы найти ускорение тела, надо воспользоваться вторым законом Ньютона Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 7

Выбирая оси координат так же, как в рассмотренном выше примере, получаем:

Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 8

Кроме того, выполняется соотношение Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 9

Из второго уравнения системы следует, что Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 10 Обратите внимание: для тела, находящегося на наклонной плоскости, сила нормальной реакции меньше силы тяжести. Отсюда следует, что Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 11 Подставляя это соотношение в первое уравнение системы, находим, что ускорение бруска Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 12 Мы можем быть уверены в том, что это величина положительная, поскольку, согласно условию, брусок начал соскальзывать с наклонной плоскости — а это означает, в соответствии с предыдущим примером, что Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 13 то есть Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 14

Подставляя найденное выражение для ускорения в формулу для скорости в конце спуска, получаем Решение к задаче 2. Скорость тела при соскальзывании с наклонной плоскости 15


Механика.
2014

 

Цель этой
работы: с помощью экспериментальной установки определить среднюю
скорость скольжения бруска по наклонной плоскости.

Для выполнения этой работы мы будем использовать оборудование
из комплекта № 5 в составе: штатив с креплением для наклонной плоскости,
направляющая со шкалой, деревянный брусок с пусковым магнитом, электронный
секундомер с датчиками, три груза, массой по сто граммов каждый, линейка и
транспортир.

Прежде чем приступить к работе давайте с вами вспомним, что
механические явления являются одними из самых распространённых физических
явлений в мире. И чаще всего в повседневной жизни мы сталкиваемся с таким
явлением, как неравномерное движение.

Напомним, что неравномерное движение — это такое
движение, при котором тело, за любые равные промежутки времени совершает разные
перемещения.

Для описания быстроты изменения положения тела с течением
времени при неравномерном движении, вводится понятие средней скорости. Она
показывает, какое перемещение в среднем совершало тело за единицу времени:

Но пользоваться этой формулой для определения модуля средней
скорости можно лишь в том случае, если тело движется вдоль прямой в одну
сторону. Во всех остальных случаях эта формула не работает.

Поэтому на практике пользуются понятием средней путевой
скорости
, с которым вы знакомы ещё с седьмого класса. Напомним, что средняя
путевая скорость
определяется отношением пути к промежутку времени, за
который этот путь пройден:

Именно среднюю скорость движения тела нам и предстоит
определить в данной работе. Ну что ж, приступим.

Для начала
давайте соберём экспериментальную установку. Для этого на штативе закрепим
наклонную плоскость. После этого, используя транспортир, установим направляющую
под углом 30° к поверхности стола.

Далее
установим на направляющей датчики секундомера: первый расположим в точке 0, а
второй — в точке 40 см. При пуске бруска пусковой магнит мы установим на 0,5 см
выше первого датчика. Грузы закрепим на бруске.

Далее мы
сделаем рисунок нашей установки. Для этого схематически изобразим штатив с
прикреплённой к нему направляющей. На направляющей расположим брусок так, как
это показано на экране. Также на рисунке мы должны будем указать перемещение
тела и направление вектора ускорения. Не лишним будет показать и угол, под
которым установлена направляющая.

Запишем формулы, которыми будем пользоваться при выполнении
данной работы. Она у нас одна: средняя скорость равна отношению пути к
промежутку времени, за который этот путь пройден:

С формулой разобрались, теперь запишем результат измерения
пути, пройденного бруском, с учётом абсолютной погрешности измерения (путь нам
дан в условии задания):

Теперь приступим непосредственно к выполнению работы. Итак,
подключаем электронные датчики к секундомеру, а брусок устанавливаем так, чтобы
пусковой магнит находился на пол сантиметра выше первого датчика. Отпускаем
брусок.

Значение промежутка времени, за которое брусок преодолел
заданный отрезок пути, записываем в бланке ответов с учётом погрешности
измерения:

Опыт повторяем ещё два раза, каждый раз записывая результаты
измерений.

Прямы измерения мы с вами завершили. Теперь давайте определим
среднее значение промежутка времени. Для этого мы должны сложить результаты
наших экспериментов, а сумму разделить на количество экспериментов (в нашем
случае на 3):

Найденное среднее значение времени мы должны записать также с
учётом погрешности измерения:

И, наконец, мы определяем среднюю скорость скольжения бруска.
Для чего в расчётную формулу подставляем значения пути и среднего времени
движения бруска на этом отрезке пути:

Тогда в выводе можно написать: средняя скорость
движения бруска по наклонной плоскости составляет 0,27 м/с.

Изучение движения тел по наклонной плоскости

Ц е л ь р а б о т ы:определение скорости движения тел на
наклонной плоскости и сравнение
теоретических результатов с
экспериментальными.

П р и б о р ы:наклонная плоскость, шар, цилиндр,
линейка, ящик с песком.

Т е о р и я м е т о д а

Рассмотрим движение
тела по наклонной плоскости длиною
(рис.1). Тело, скатываясь с наклонной
плоскости, участвуют в поступательном
и вращательном движениях.

рис.1.

В
точке А
тело обладает запасом потенциальной
энергии

По закону сохранения
энергии, по-тенциальная энергия
уменьшается и переходит в кинетическую
энергию. В точке Втело приобрело
кинетическую энергию поступа-тельного
движенияи вращательного движения

По
закону сохранения энергии

(1)

где
υ

линейная скорость,
ω

угловая скорость тела, J

момент инерции тел, h

высота наклонной плоскости. Теоретическая
скорость

υТ
определяется
из соотношения (1). Для этого угловая
скорость заменяется линейной
с учетом формулы
,
а момент инерции шара и цилиндра
выражается формулами





После
постановки w
и Jш,
Jц
в уравнение (1), получаем расчётные
формулы скорости шара и цилиндра

,


(2)

Измерив
высоту наклонной плоскости, вычисляем
теоретические значения скоростей в
точке В.

Экспериментальное
определение скорости проводят так. В
точке В
тело имеет скорость υ, которая может
быть представлена в виде двух компонент
υх
и υу
– скорости в
горизонтальном и вертикальном направлениях


Из
законов поступательного движения
находим

х
=
у
=
(3)

Время
движения в обоих направлениях одинаково
и равно
(4)

Подставив
время (4) в уравнение (3), получим выражение
для экспериментальной скорости в точке
В

(5)

а по найденному
выражению скорости, окончательно
находим время

(6)

Порядок работы

1.
Измерить длину
наклонной
плоскости, высоту h
и основание b,
вычислить
и

2.
Пустить тело из точки A
по наклонной
плоскости и измерить расстояние:
х = СД и
у =
ВС

3.Вычислить
экспериментальное значение скорости
по формуле (5) и сравнить со значением
теоретической скорости, вычисленной
по формуле (2). По
формуле (6) вычислить время движения.
Опыт повторить три раза при разных
высотах. Данные занести в таблицу.

п/п

=
(м)

тело

у
=
(м)

cosα

х(м)

t
(c)

1

2

3

шар

1

2

3

цилиндр

Контрольные вопросы

1. Сформулировать и
записать закон сохранения и превращения
энергии

в данной работе.

2.
Дать определение и записать формулу
мгновенной скорости, указать

направление.

3.
Что характеризует нормальное,
тангенциальное и полное ускорение и

чему
они равны?

4.
Вывести формулу экспериментальной и
теоретической скоростей.

Л а б
о р а т о р н а я р а б о т а № 5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

1. Тело на гладкой наклонной плоскости

Напомним: когда говорят о гладкой поверхности, подразумевают, что трением между телом и этой поверхностью можно пренебречь.

На тело массой m, находящееся на гладкой наклонной плоскости, действуют сила тяжести m и сила нормальной реакции (рис. 19.1).

Удобно ось x направить вдоль наклонной плоскости вниз, а ось y – перпендикулярно наклонной плоскости вверх (рис. 19.1). Угол наклона плоскости обозначим α.

Уравнение второго закона Ньютона в векторной форме имеет вид

? 1. Объясните, почему справедливы следующие уравнения:

? 2. Чему равна проекция ускорения тела на ось x?

? 3. Чему равен модуль силы нормальной реакции?

? 4. При каком угле наклона ускорение тела на гладкой плоскости в 2 раза меньше ускорения свободного падения?

? 5. При каком угле наклона плоскости сила нормальной реакции в 2 раза меньше силы тяжести?

При выполнении следующего задания полезно заметить, что ускорение тела, находящегося на гладкой наклонной плоскости, не зависит от направления начальной скорости тела.

? 6. Шайбу толкнули вверх вдоль гладкой наклонной плоскости с углом наклона α. Начальная скорость шайбы v0.
а) Какой путь пройдет шайба до остановки?
б) Через какой промежуток времени шайба вернется в начальную точку?
в) С какой скоростью шайба вернется в начальную точку?

? 7. Брусок массой m находится на гладкой наклонной плоскости с углом наклона α.
а) Чему равен модуль силы, удерживающей брусок на наклонной плоскости, если сила направлена вдоль наклонной плоскости? Горизонтально?
б) Чему равна сила нормальной реакции, когда сила направлена горизонтально?

2. Условие покоя тела на наклонной плоскости

Будем теперь учитывать силу трения между телом и наклонной плоскостью.

Если тело покоится на наклонной плоскости, на него действуют сила тяжести m, сила нормальной реакции и сила трения покоя тр.пок (рис. 19.2).

Сила трения покоя направлена вдоль наклонной плоскости вверх: она препятствует соскальзыванию бруска. Следовательно, проекция этой силы на ось x, направленную вдоль наклонной плоскости вниз, отрицательна:

Fтр.пок x = –Fтр.пок

? 8. Объясните, почему справедливы следующие уравнения:

? 9. На наклонной плоскости с углом наклона α покоится брусок массой m. Коэффициент трения между бруском и плоскостью равен μ. Чему равна действующая на брусок сила трения? Есть ли в условии лишние данные?

? 10. Объясните, почему условие покоя тела на наклонной плоскости выражается неравенством

μ ≥ tgα.

Подсказка. Воспользуйтесь тем, что сила трения покоя удовлетворяет неравенству Fтр.пок ≤ μN.

Последнее неравенство можно использовать для измерения коэффициента трения: угол наклона плоскости плавно увеличивают, пока тело не начинает скользить по ней (см. лабораторную работу 4).

? 11.Лежащий на доске брусок начал скользить по доске, когда ее угол наклона к горизонту составил 20º. Чему равен коэффициент трения между бруском и доской?

? 12. Кирпич массой 2,5 кг лежит на доске длиной 2 м. Коэффициент трения между кирпичом и доской равен 0,4.
а) На какую максимальную высоту можно поднять один конец доски, чтобы кирпич не сдвинулся?
б) Чему будет равна при этом действующая на кирпич сила трения?

Сила трения покоя, действующая на тело, находящееся на наклонной плоскости, не обязательно направлена вдоль плоскости вверх. Она может быть направлена и вниз вдоль плоскости!

? 13. Брусок массой m находится на наклонной плоскости с углом наклона α. Коэффициент трения между бруском и плоскостью равен μ, причем и μ < tg α. Какую силу надо приложить к бруску вдоль наклонной плоскости, чтобы сдвинуть его вдоль наклонной плоскости:
а) вниз? б) вверх?

3. Движение тела по наклонной плоскости с учетом трения

Пусть теперь тело скользит по наклонной плоскости вниз (рис. 19.3). При этом на него действует сила трения скольжения, направленная противоположно скорости тела, то есть вдоль наклонной плоскости вверх.

? 15. Изобразите на чертеже в тетради силы, действующие на тело, и объясните, почему справедливы следующие уравнения:

? 16. Чему равна проекция ускорения тела на ось x?

? 17. Брусок скользит по наклонной плоскости вниз. Коэффициент трения между бруском и плоскостью равен 0,5. Как изменяется со временем скорость бруска, если угол наклона плоскости равен:
а) 20º? б) 30º? в) 45º? г) 60º?

? 18. Брусок начинает скользить по доске, когда ее наклоняют на угол 20º к горизонту. Чему ранен коэффициент трения между бруском и доской? С каким по величине и направлению ускорением будет скользить брусок вниз по доске, наклоненной на угол 30º? 15º?

Пусть теперь начальная скорость тела направлена вверх (рис. 19.4).

? 19. Изобразите на чертеже в тетради силы, действующие на тело, и объясните, почему справедливы следующие уравнения:

? 20. Чему равна проекция ускорения тела на ось x?

? 21. Брусок начинает скользить по доске, когда ее наклоняют на угол 20º к горизонту. Брусок толкнули вверх по доске. С каким ускорением он будет двигаться, если доска наклонена на угол: а) 30º? б) 15º? В каком из этих случаев брусок остановится в верхней точке?

? 22.Шайбу толкнули вверх по наклонной плоскости с начальной скоростью v0. Угол наклона плоскости α, коэффициент трения между шайбой и плоскостью μ. Спустя некоторое время шайба вернулась в начальное положение.
а) Сколько времени двигалась шайба вверх до остановки?
б) Какой путь прошла шайба до остановки?
в) Сколько времени после этого шайба возвращалась в начальное положение?

? 23. После толчка брусок двигался в течение 2 с вверх по наклонной плоскости и затем в течение 3 с вниз до возвращения в начальное положение. Угол наклона плоскости 45º.
а) Во сколько раз модуль ускорения бруска при движении вверх больше, чем при движении вниз?
б) Чему равен коэффициент трения между бруском и плоскостью?

Зацените!! Езда Электро-Велосипеда по воде

Дополнительные вопросы и задания

24. Брусок соскальзывает без начальной скорости с гладкой наклонной плоскости высотой h (рис. 19.5). Угол наклона плоскости равен α. Какова скорость бруска в конце спуска? Есть ли здесь лишние данные?

25. (Задача Галилея) В вертикальном диске радиуса R просверлен прямолинейный гладкий желоб (рис. 19.6). Чему равно время соскальзывания бруска вдоль всего желоба из состояния покоя? Угол наклона желоба α, в начальный момент брусок покоится.

26. По гладкой наклонной плоскости с углом наклона α скатывается тележка. На тележке установлен штатив, на котором на нити подвешен груз. Сделайте чертеж, изобразите силы, действующие на груз. Под каким углом к вертикали расположена нить, когда груз покоится относительно тележки?

27. Брусок находится на вершине наклонной плоскости длиной 2 м и высотой 50 см. Коэффициент трения между бруском и плоскостью 0,3.
а) С каким по модулю ускорением будет двигаться брусок, если толкнуть его вниз вдоль плоскости?
б) Какую скорость надо сообщить бруску, чтобы он достиг основания плоскости?

28. Тело массой 2 кг находится на наклонной плоскости. Коэффициент трения между телом и плоскостью 0,4.
а) При каком угле наклона плоскости достигается наибольшее возможное значение силы трения?
б) Чему равно наибольшее значение силы трения?
в) Постройте примерный график зависимости силы трения от угла наклона плоскости.
Подсказка. Если tg α ≤ μ, на тело действует сила трения покоя, а если tg α > μ – сила трения скольжения.

Понравилась статья? Поделить с друзьями:
  • Как найти сбежавшего хомяка в квартире сирийского
  • Как правильно составить долговое обязательство
  • Как найти репетитора через интернет
  • Фейсбук черновики как найти
  • Как найти логику в цифрах