Понятие о силе тяжести в физике
Содержание:
- Что такое сила тяжести
-
Формулы для нахождения
- Единица измерения
- Расчет через массу m и ускорение свободного падения g
- Закон всемирного тяготения Ньютона
- Примеры решения задач
Что такое сила тяжести
Сила тяжести — гравитационная сила, с которой Земля или другой астрономический объект притягивает тело на поверхности, или вблизи себя.
Гравитация — универсальное фундаментальное взаимодействие между всеми материальными телами.
Впервые понятие «силы тяжести» возникло в теориях Аристотеля, который объяснял это явление движением тяжелых физических стихий (земля, вода) к своему естественному местоположению (к центру Вселенной, который, как он полагал, находится внутри Земли). Также Аристотель рассуждал от чего зависит скорость притяжения. По его мнению чем ближе тяжелое тело к центру, тем больше скорость притяжения.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В дальнейшем, Архимед рассуждал о центрах тяжести геометрических фигур. Стевин на опытах установил, что тела разных масс падают с одинаковым ускорением. Галилей работал в том же направлении и экспериментально изучал законы падения тел. Гюйгенс разработал классическую теорию движения маятника. Декарт создал кинетическую теорию тяготения. Ньютон, благодаря своему II закону и равенству ускорений падающих тел сделал вывод о связи массы тела и силы тяжести, а так же доказал, что сила тяжести — одно из проявлений силы всемирного тяготения.
Примечание
Ошибочно полагать, что сила гравитационного притяжения и сила тяжести — это одно и то же. Эта сила лишь одна составляющая силы тяжести, вторая — центробежная сила инерции.
Формулы для нахождения
Единица измерения
Эта величина в СИ (системе интернациональной), как и любая другая сила измеряется в Ньютонах: (lbrack F_{тяж}rbrack=Н)
Расчет через массу m и ускорение свободного падения g
(F_{тяж}=mg)
Для решения задач обычно используют (gapprox10frac н{кг})
Закон всемирного тяготения Ньютона
Два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними.
(F=Gfrac{m_1m_2}R), где F — сила притяжения, G — гравитационная постоянная ((G=6,67cdot10^{-11}frac{Нcdot м^2}{кг^2}), m_1,m_2) — массы тел, R — расстояние между ними.
Применим для:
- материальных точек;
- шаров;
- шара большого радиуса и тела.
Из этого закона выводится вторая формула для силы тяжести:
(F_{тяж}=Gfrac{M_пcdot m}{R_п^2}), где (F_{тяж}) — сила тяжести, G — гравитационная постоянная, (M_п) — масса планеты, m — масса тела, (R_п) — радиус планеты.
Примеры решения задач
Задача №1
Какова масса человека, если Земля притягивает его с силой 600 Н?
Дано: (F_{тяж}=600;Н, gapprox10frac н{кг})
Решение: (F_{тяж}=mg), значит (m=frac{F_{тяж}}g; m=frac{600;H}{10;{displaystylefrac Н{кг}}}=60;кг)
Ответ: 60 кг
Задача №2
Найдите силу тяжести тела, масса которого 7 кг?
Дано: (m=7кг, gapprox10frac н{кг})
Решение: (F_{тяж}=mg, F_{тяж}=7;кгcdot10frac Н{кг}=70;Н)
Ответ: 70 Н
Задача №3
Сравните силы тяжести, действующие на тела с массами 3 кг и 6 кг.
Решение: сила тяжести прямо пропорциональна массе тела, т.е. они отличаются в одинаковое количество раз. Масса второго тела в 2 раза больше массы первого, значит сила тяжести второго тела будет в 2 раза больше силы тяжести первого.
Насколько полезной была для вас статья?
Рейтинг: 5.00 (Голосов: 7)
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Текст с ошибкой:
Расскажите, что не так
Поиск по содержимому
Разбираетесь с такой физической категорией, как сила тяжести? Формула, ее составляющие и единицы измерения укажут, что сильнее притянет Земля — яблоко или поезд. Отличается ли сила тяжести от силы тяготения? Объясним, как не перепутать эти две величины.
Что такое сила тяжести
Каждый день наблюдаем, как тела вокруг деформируются (меняют форму или размеры), ускоряются или тормозят, падают. В реальной жизни с различными телами происходят самые разнообразные вещи. Причина всех действий и взаимодействий кроется в некой силе. О чем идет речь?
Понятие силы
Силой называют физическую векторную величину, которая оказывает воздействие на тело, а ее источниками становятся другие тела. Что означает понятие векторной величины? Это говорит о том, что сила наделена направлением. В зависимости от того, куда она направлена, можно получить разные результаты.
Это как если стоять на вершине горы на сноуборде, то от направления толчка будет зависеть дальнейшее движение. Таков результат приложения силы в этом случае. Силы, которые изучают ученые-физики, разнообразны и очень важны для нашей повседневной жизни.
Определение и значение силы тяжести
Одна из них носит название сила тяжести. Физика предлагает следующее определение: сила тяжести — это величина, которая показывает, насколько сильно Земля притягивает тело, которое расположено на ее поверхности или рядом с ней. Таким образом, направление этой силы — центр нашей планеты.
Сила тяжести на Земле крайне важна по следующим причинам:
- Наша планета притягивает все, что попадает в сферу действия этой силы, будь то твердое тело, жидкость или газ.
- Благодаря ее существованию стало возможным создание атмосферы (молекулы газов, которые ее составляют, не улетают в космические просторы), появились и остаются на своих местах моря и океаны.
- Любой предмет, который приподнимаем и роняем, обязательно упадет вниз по направлению к Земле.
Кстати, именно из-за воздействия этой силы люди не могут летать. Самостоятельно развить скорость, на которой полет становится возможным (так называемую первую космическую) человек не способен, а потому в обычной жизни всегда твердо стоит ногами на Земле.
Сила тяжести и сила тяготения: отличия
Сила тяжести, определение которой дали выше, схожа с силой тяготения. Оба варианта связывает сила притяжения.
Однако эти две силы не одно и то же, хоть их и часто путают. Давайте разберемся, в чем тут дело.
Еще в 1682 году Исаак Ньютон открыл закон о всемирном тяготении. Сформулирован он был так: тела притягивают друг друга, а сила этого тяготения — величина, прямо пропорциональная произведению их масс и обратно пропорциональна расстоянию, возведенному в квадрат.
Математически силу тяготения записывают так: F = G×M×m/R², где:
- F — сила тяготения, Н;
- M — масса первого тела (часто планеты), кг;
- m — масса второго тела, кг;
- R — дистанция между ними, м;
- G — постоянная величина (G = 6,67×10⁻¹¹ м³×кг⁻¹×с⁻²).
Продемонстрировать эту силу легко — достаточно встать на весы. Стрелка сразу же отклонится, показывая вес тела. Так происходит из-за очень большой массы Земли, благодаря которой мы придавлены к ней. На Луне, масса которой меньше, вес человека меньше в несколько раз.
Итак, закон о всемирном тяготении и соответствующая сила необходимы для вычисления силы взаимодействий между разнообразными телами. При этом их размеры должны быть меньше, чем расстояние между ними.
Теперь вернемся к нашей теме и рассмотрим подробно, что же такое сила тяжести, обозначение которой дали выше, и как она связана с силой тяготения.
Сила тяжести: формула, единицы измерения
Напомним, что когда говорим о силе тяжести, то имеем в виду силу, с которой осуществляет притяжение наша планета.
Формула силы тяжести такова: F = m×g, где:
- F — сила тяжести, Н;
- m — масса тела, кг;
- g — ускорение свободного падения, м/с².
В этой формуле видим новую величину — ускорение свободного падения. Так называют ускорение, которое приобретает тело рядом с Землей во время свободного и беспрепятственного падения. Рядом с поверхностью Земли значение этой величины примерно равняется 9,81 м/с², а в приблизительных расчетах используют округленное значение 10 м/с².
По этой формуле рассчитывается сила тяжести, единица измерения которой — Ньютоны (в честь Исаака Ньютона).
Чему равна сила тяжести? Глядя на эту формулу, можно сказать, что сила тяжести схожа с весом тела. В покое на Земле эта величина и вес будут идентичны. Но это не одно и то же. Почему? Объяснение не сложное:
- Силой, с которой на тела действует Земля, называют силу тяжести.
- Вес тоже сила, с которой тела действуют на опору.
- То есть у них отличаются точки действия: первая направлена на центр массы тел, а вес направлен на опору.
Кроме того, на величину силы тяжести влияет масса и планета, на которой проводятся измерения. Вес определяется также ускорением, с которым происходит движение тела и опоры.
К примеру, вес тела в лифте определяется тем, в каком направлении и как быстро происходит движение тела. Сила тяжести не учитывает, куда и что движется: эти внешние факторы на нее не влияют.
Итак, с весом разобрались. А что же с силой тяготения, которую упоминали выше? Можем ли две эти силы приравнять? На этот раз ответ будет утвердительным. Но только, когда мы говорим о Земле и теле, которое к ней притягивается. В этом случае обе силы будут равны.
Выразим это математически:
- F = m×g.
- F = G×M×m/R².
- m×g = G×M×m/R².
Если обе части полученного уравнения разделить на массу, то получим такую формулу: g = G×M/R².
Величина g (ускорение свободного падения) уникальна для каждой планеты:
- На нашей Земле свободно падающее тело с каждой секундой ускоряется примерно на 9,81 метр (м/с²).
- Ускорение свободного падения рядом с Луной имеет величину всего 1,62 м/с².
- На Юпитере это значение достигает 26,2 м/с². Человек, который весит 60 кг, на этой планете почувствует себя так, будто бы поправился на 100 кг.
Как изменится величина, если тело будет падать 4 секунды? Попробуем подсчитать:
- Скорость падения в начальной точке составит 0 м/с².
- В течение первой секунды она увеличится до 9,81 м/с².
- За вторую секунду величина вырастет вдвое и составит 19,62 м/с².
- Третья секунда добавить еще одну величину ускорения и получится 29,43 м/с².
- В четвертую секунду скорость движения тела достигнет 39,24 м/с², что равняется приблизительно 141 км/ч.
Отметим, что яблоко и кирпич будут падать с равной скоростью. Только очень легкие предметы во время падения замедляет воздух, оказывая им ощутимое сопротивление. Так, птичье перышко будет совершать падение очень медленно и плавно.
Задумываемся об этом или нет, на каждого из нас оказывает воздействие сила тяжести. Формула ее расчета состоит из массы, умноженной на величину ускорения свободного падения. Эта сила показывает воздействие планет на тела, которые находятся рядом с их поверхностями. Поэтому ее величина отличается на Земле и на Луне.
Оригинал статьи: https://www.nur.kz/family/school/1909020-sila-tyazhesti-formula-edinitsy-izmereniya-osobennosti/
Download Article
Download Article
Gravity is one of the fundamental forces of physics. The most important aspect of gravity is that it is universal: all objects have a gravitational force that attracts other objects to them.[1]
The force of gravity acting on any object is dependent upon the masses of both objects and the distance between them.[2]
-
1
Define the equation for the force of gravity that attracts an object, Fgrav = (Gm1m2)/d2.[3]
In order to properly calculate the gravitational force on an object, this equation takes into account the masses of both objects and how far apart the objects are from each other. The variables are defined below.- Fgrav is the force due to gravity
-
G is the universal gravitation constant 6.673 x 10-11 Nm2/kg2[4]
- m1 is the mass of the first object
- m2 is the mass of the second object
- d is the distance between the centers of two objects
- Sometimes you will see the letter r instead of the letter d. Both symbols represent the distance between the two objects.
-
2
Use the proper metric units. For this particular equation, you must use metric units. The masses of objects need to be in kilograms (kg) and the distance needs to be in meters (m). You must convert to these units before continuing with the calculation.
Advertisement
-
3
Determine the mass of the object in question. For smaller objects, you can weigh them on a scale or balance to determine their weight in grams. For larger objects, you will have to look-up the approximate mass in a table or online. In physics problems, the mass of the object will generally be provided to you.[5]
-
4
Measure the distance between the two objects. If you are trying to calculate the force of gravity between an object and the earth, you need to determine how far away the object is from the center of the earth.[6]
- The distance from the surface of the earth to the center is approximately 6.38 x 106 m.[7]
- You can find tables and other resources online that will provide you with approximate distances of the center of the earth to objects at various elevations on the surface.[8]
- The distance from the surface of the earth to the center is approximately 6.38 x 106 m.[7]
-
5
Solve the equation. Once you have defined the variables of your equation, you can plug them in and solve. Be sure that all of your units are in metric and on the right scale. Mass should be in kilograms and distance in meters. Solve the equation using the proper order of operations.[9]
- For example: Determine the force of gravity on a 68 kg person on the surface of the earth. The mass of the earth is 5.98 x 1024 kg.[10]
- Make sure all your variables have the proper units. m1 = 5.98 x 1024 kg, m2 = 68 kg, G = 6.673 x 10-11 Nm2/kg2, and d = 6.38 x 106 m
- Write your equation: Fgrav = (Gm1m2)/d2 = [(6.67 x 10-11) x 68 x (5.98 x 1024)]/(6.38 x 106)2
- Multiply the masses of the two objects together. 68 x (5.98 x 1024) = 4.06 x 1026
- Multiply the product of m1 and m2 by the gravitational constant G. (4.06 x 1026) x (6.67 x 10-11) = 2.708 x 1016
- Square the distance between the two objects. (6.38 x 106)2 = 4.07 x 1013
- Divide the product of G x m1 x m2 by the distance squared to find the force of gravity in Newtons (N). 2.708 x 1016/4.07 x 1013 = 665 N
- The force of gravity is 665 N.
- For example: Determine the force of gravity on a 68 kg person on the surface of the earth. The mass of the earth is 5.98 x 1024 kg.[10]
Advertisement
-
1
Understand Newton’s Second Law of Motion, F = ma. Newton’s second law of motion states that any object will accelerate when acted upon by a net or unbalanced force.[11]
In other words, if a force is acting upon an object that is greater than the forces acting in the opposite direction, the object will accelerate in the direction of the larger force.- This law can be summed up with the equation F = ma, where F is the force, m is the mass of the object, and a is acceleration.
- Using this law, we can calculate the force of gravity of any object on the surface of the earth, using the known acceleration due to gravity.
-
2
Know the acceleration due to gravity on earth. On earth, the force of gravity causes objects to accelerate at a rate of 9.8 m/s2. On the earth’s surface, we can use the simplified equation Fgrav = mg to calculate the force of gravity.
- If you want a more exact approximation of force, you can still use the above equation, Fgrav = (GMearthm)/d2 to determine force of gravity.
-
3
Use the proper metric units. For this particular equation, you must use metric units. The mass of the object needs to be in kilograms (kg) and the acceleration needs to be in meters per second squared (m/s2). You must convert to these units before continuing with the calculation.
-
4
Determine the mass of the object in question. For smaller objects, you can weigh them on a scale or balance to determine its weight in kilograms (kg). For larger objects, you will have to look-up the approximate mass in a table or online. In physics problems, the mass of the object will generally be provided to you.[12]
-
5
Solve the equation. Once you have defined the variables of your equation, you can plug them in and solve. Be sure that all of your units are in metric and on the right scale. Mass should be in kilograms and distance in meters. Solve the equation using the proper order of operations.[13]
- Let’s use the same equation from above and see how close the approximation is. Determine the force of gravity on a 68 kg person on the surface of the earth.
- Make sure all your variables have the proper units: m = 68 kg, g = 9.8 m/s2.
- Write your equation. Fgrav = mg = 68*9.8 = 666 N.
- With F = mg the force of gravity is 666 N, while using the more exact equation yields a force of 665 N. As you can see, these values are almost identical.
Advertisement
Calculator, Practice Problems, and Answers
Add New Question
-
Question
How do I find the mass of the moon?
Check out same steps as mentioned below. But remember gravity on moon is 1/6th of gravity on earth.
-
Question
A mass of 25 kg weighs 123 Newtons on another planet. What is the gravity on the planet?
The «gravity» on the surface of a planet is it’s acceleration (the rate of increase in speed as an object falls). Fg (the force of gravity) is m x g (acceleration of gravity), in m/(s squared), so g is Fg / m = 123 N / 25 kg ~= 4.92 m/(s squared).
-
Question
How do I find the value of acceleration due to a gravity at a height of 2R from the surface of the earth?
If you want to know what the gravity would be when you are 3 earth-radii away from the center of earth, then the gravity would be 1/9th normal gravity. You’re multiplying by 3 on the bottom, so 1/3, but then it’s squared. Acceleration would then be 1.09 meters per second squared.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
-
These two formulas should give the same result, but the shorter formula is simpler to use when discussing objects on a planet’s surface.
-
You may round off 9.8m/s2 to 10m/s2, to make calculations easier.
-
Use the first formula if you don’t know the acceleration due to gravity on a planet or if you’re determining the force of gravity between two very large objects such as a moon and a planet.
Advertisement
References
About This Article
Article SummaryX
To calculate the force of gravity of an object, use the formula: force of gravity = mg, where m is the mass of the object and g is the acceleration of the object due to gravity. Since g is always 9.8 m/s^2, just multiply the object’s mass by 9.8 and you’ll get its force of gravity! If you want to learn how to calculate the force of gravity between 2 objects, keep reading the article!
Did this summary help you?
Thanks to all authors for creating a page that has been read 622,960 times.
Reader Success Stories
-
Ezekiel Ishaya
Mar 1, 2019
«It was great! It clears the doubt, and all those examples were very helpful.»
Did this article help you?
Дано определение силы тяжести. Показано, что сила тяжести является частным случаем силы гравитации. Описаны факторы, определяющие силу тяжести: направление, точка приложения и численное значение. Приведен пример расчета силы тяжести, действующей на штангу со стороны Земли.
Сила тяжести, действующая на тело
Закон всемирного тяготения
Закон о взаимодействии тел друг с другом (Закон всемирного тяготения) открыл английский ученый Исаак Ньютон около 1666 года. А в 1687 году он был опубликован в его труде «Математические начала натуральной философии».
Закон всемирного тяготения формулируется так: » Все тела притягиваютс друг к другу с силой, модуль которой прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними». Сила притяжения между телами называется силой гравитации.
Определение силы тяжести
Сила тяжести (Fтяж) — это сила, характеризующая меру притяжения материальных тел к Земле. Поэтому она считается частным случаем силы гравитации. Можно сказать, что сила тяжести — это сила гравитации вблизи поверхности Земли.
Действие любой силы определяется тремя факторами:
- направлением;
- точкой приложения;
- численным значением.
Разберем эти факторы относительно силы тяжести.
Направление
Сила тяжести направлена вертикально вниз (рис.1).
Точка приложения
Любое тело можно представить состоящим из множества частиц, на каждую из которых действует сила тяжести. Однако условно считают, что сила тяжести приложена в точке, называемой центром масс тела или центром тяжести тела (ЦТ).
Численное значение
Численно значение силы тяжести рассчитывается по формуле:
Fтяж=m*g,
где: m – масса тела, кг
g – ускорение свободного падения тела, которое приближенно равно 9,8 м/c2.
Рассмотрим следующий пример.
Определить силу тяжести, действующую на штангу со стороны Земли. Масса штанги равна 100 кг.
Решение
Значение силы тяжести определяем по формуле:
Fтяж=m*g = 100*9,8 = 980 Н.
То есть на штангу массой 100 кг со стороны Земли действует сила, равная 980 Н.
С уважением, А.В. Самсонова
Похожие записи:
Биомеханика рывка и толчка в тяжелой атлетике
Приведена рецензия на книгу докт. пед. наук, профессора А.А. Шалманова «Биомеханика движения штанги в рывке и толчке у…
Мышечно-сухожильный комплекс
Приведена рецензия на книгу В.Т.Тураева и В.В. Тюпа «Мышечно-сухожильный комплекс: анатомия, биомеханика, спортивная практика» зав. кафедрой биомеханики НГУ…
Сила
Дано определение силы в механике. Описаны факторы, определяющие действие на тело силы: направление, точка приложения и численное значение.
Типы телосложения (соматотип) по Башкирову
Описана краткая биография П.Н. Башкирова и его научные труды. Дается классификация типов телосложения человека: долихоморфного (астенического), мезоморфного…
Типы телосложения (конституции) по Э. Кречмеру
Описана биография Эрнста Кречмера – немецкого психиатра и психолога, разработавшего типологию тела человека. Дано описание типов телосложения…
Типы конституции женщин по И.Б. Галанту
Описана биография известного советского психиатра И.Б.Галанта, предложившего естественную систему конституциональных типов женщин. Дана характеристика предложенных И.Б.Галантом конституциональных…
Содержание:
Сила тяжести:
Почему все подброшенные вверх тела падают на Землю ? Почему на санках легко съезжать с горки, а вверх их нужно тянуть?
Подбросьте вверх мяч. Поднявшись на некоторую высоту, он начнёт двигаться вниз и упадёт на Землю. Парашютист, выпрыгнувший из самолёта, падает вниз и после раскрытия парашюта. С появлением дождевой тучи на Землю падает густой дождь. Как бы высоко мы не прыгали вверх, всегда опускаемся на Землю.
Все тела, находящиеся на Земле или вблизи неё, взаимодействуют с ней: Земля притягивает тела, а они притягивают Землю.
Поскольку масса у Земли очень большая, то в результате взаимодействия с нею заметно изменяют свои скорости и положения именно тела, а Земля практически остаётся на месте.
Силу, с которой Земля притягивает к себе любое тело, называют силой тяжести.
От чего зависит сила тяжести
Из опыта с яблоками, выполненного ранее, можем сделать вывод, что на два яблока, подвешенных на пружине, действует сила тяжести больше, чем на одно, так как масса двух яблок больше массы одного. Силу тяжести обозначают
Единицей силы тяжести, как и любой другой, в СИ является один ньютон (1Н). Эта единица названа в честь английского учёного Исаака Ньютона, впервые сформулировавшего основные законы движения тел и законы тяготения. 1 ньютон (1 Н) равен силе тяжести, которая действует на тело массой приблизительно 102 г.
Тогда на тело массой 1кг действует сила тяжести 9,81 Н, т. е.
Как, пользуясь единицей силы 1 Н, определить силу тяжести, которая действует на тело любой массы?
Поскольку на тело массой 1 кг действует сила тяжести 9,81 Н, то на тело массой т будет действовать сила тяжести, в т раз большая.
Чтобы определить силу тяжести , действующую на тело, нужно постоянную для данной местности величину = 9,81 умножить на массу тела , выраженную в килограммах:
Но притяжение существует не только между Землёй и телами на ней или вблизи неё. Все тела притягиваются друг к другу. Например, притягиваются между собой Земля и Луна, Солнце и Земля или другие планеты, корабли в море, предметы в комнате. Вследствие притяжения Земли к Луне на Земле возникают приливы и отливы (рис. 69).
Вода в океанах поднимается дважды в сутки на несколько метров.
Благодаря силе тяжести атмосфера удерживается возле Земли, реки текут сверху вниз, Луна удерживается возле Земли, планеты двигаются по орбитам вокруг Солнца.
Явление притяжения всех тел Вселенной друг к другу называют всемирным тяготением.
Исаак Ньютон доказал, что сила притяжения между телами тем больше, чем больше массы этих тел и чем меньше расстояние между телами. Если бы сила тяжести на Земле вдруг исчезла, то все незакреплённые на ее поверхности тела от любого небольшого толчка разлетелись бы во все стороны в космическом пространстве.
Каково направление силы тяжести
Опыт. Если взять отвес или привязанный к нити какой-либо предмет (рис. 70), то увидим, что нить с грузиком вследствие действия на него силы тяжести всегда направлена к Земли вдоль прямой, которую называют вертикалью.
Выполнив этот опыт во всех точках Земли, учёные убедились, что сила тяжести всегда направлена к центру Земли.
Силу тяжести изображают в виде вертикальной стрелки, направленной вниз и приложенной к определённой точке тела (рис. 71 а, б).
Кстати:
Кроме планет с их спутниками вокруг Солнца двигаются малые планеты, которые еще называют астероидами. Наибольшая из них — Церера — имеет статус карликовой планеты и радиусом почти в 20 раз, а по массе в 7500 раз меньше Земли. Сила тяжести на ней настолько мала, что человек, оттолкнувшись от поверхности планеты, мог бы улететь с нее.
Вот как описывает основатель теории космонавтики К,Э. Циолковский в рассказе «Путь к звездам» условия пребывания человека на этом астероиде: «На Земле я могу свободно нести еще одного человека такого же веса, как я. На Весте так же легко могу нести в 30 раз больше. На Земле я могу подпрыгнуть на 50см. На Весте такое же усилие дает прыжок в 30м. Это высота десятиэтажного дома или огромной сосны. Там легко перепрыгивать через рвы и ямы шириной с крупную реку. Можно перепрыгнуть через 15-метровые деревья и дома. И это без разгона».
Сила тяготения
Все тела возле Земли падают на ее поверхность, если их ничто не удерживает. В чем причина этого явления?
Как тела падают на Землю
Рассмотрим фотографию падения шарика, на которой положение шарика фиксировалось на пленке через равные интервалы времени (рис. 45). Если линейкой отмерить расстояние между изображениями шарика в различные моменты времени, то можно заметить, что эти расстояния постепенно увеличиваются. Это свидетельствует о том, что скорость шарика при падении постепенно увеличивается.
Как увеличивается скорость падающего тела
Если вспомнить определение силы, по которому сила изменяет скорость тела, то можно сделать вывод, что на шарик действует сила, направленная к Земле.
Силу, действующую на каждое тело со стороны Земли, называют силой тяготения.
Измерения показывают, что скорость тела, падающего на поверхность Земли при отсутствии сопротивления воздуха, каждую секунду увеличивается на 9,8 .
Как рассчитать силу тяготения
Если знать массу тела, то можно рассчитать силу тяготения. Способ таких расчетов подсказывают результаты опытов.
Возьмем динамометр и подвесим к нему гирьку массой 102 г, стрелка динамометра остановится на отметке 1 Н. Если подвесить два таких груза, то динамометр покажет силу 2 Н и т. д. С этого опыта можно сделать вывод, что сила тяжести пропорциональна массе тела.
Сила тяготения пропорциональна массе тела:
Коэффициент пропорциональности равен приблизительно
Для расчетов при решении задач иногда принимают, что
Если знать такую зависимость силы тяготения от массы, то можно заранее рассчитать ее значение.
Например, необходимо определить, что покажет динамометр, если на его крючок повесить гирю массой 500 г.
Дано:
Решение
Ответ. Стрелка динамометра покажет 4,9 Н.
Какая природа силы тяготения
Сила тяготения является проявлением общего закона природы, действующего во всей Вселенной закона всемирного тяготения. Открытый и сформулированный в XVII в. английским физиком Ньютоном, он утверждает, что сила гравитационного притяжения во Вселенной пропорциональна массам взаимодействующих тел и зависит от расстояния между ними.
где R — расстояние между телами, m1 и m2 — массы взаимодействующих тел, — гравитационная постоянная.
Сила тяготения, как проявление гравитационного взаимодействия Земли, является следствием взаимодействия всех тел с Землей. Поэтому в расчетах силы тяготения пользуются только массой данного тела. Характеристики Земли отображены в обобщенной форме в коэффициенте
Работа силы тяжести
Каждая сила, действующая на движущееся тело, совершает работу. Проанализируем более подробно работу, совершаемую силой тяжести. При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна mg. Пусть тело массой m падает с высоты h1 до высоты h2 (рис. 132). Модуль перемещения равен при этом h1 —h2 . Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:
(1)
Рис. 132
Высоты h1 и h2 можно отсчитывать от любого уровня. Это может быть уровень поверхности Земли, пола класса или поверхности стола и т. д. Высоту выбранного уровня принимают равной пулю. Поэтому этот уровень называют нулевым.
Если тело падает с высоты h до нулевого уровня, то работа силы тяжести:
(2)
Теперь выясним, какую работу совершает сила тяжести, если тело движется не по вертикали. Для этого рассмотрим движение тела по наклонной плоскости. Пусть тело массой m совершило перемещение , равное по модулю длине наклонной плоскости (рис. 133). Работа силы тяжести в этом случае равна: , где — угол между вектором перемещения и вектором силы тяжести. Из рисунка видно, что . Поэтому
Рис. 133
Мы получили для работы силы тяжести такое же выражение, как и в случае движения тела по вертикали (см. формулу (2)). Отсюда следует, что работа силы тяжести не зависит от того, движется ли тело по вертикали или проходит более длинный путь по наклонной плоскости. Работа силы тяжести определяется только изменением высоты относительно некоторого уровня.
Теперь докажем, что работа силы тяжести определяется формулой (2) при движении по любой траектории. Например, некоторое тело бросили горизонтально с высоты h (рис. 134). Как известно, траекторией такого движения является парабола. Мысленно разобьем траекторию на маленькие участки , такие, что их можно считать прямыми линиями. Каждый из них можно считать маленькой наклонной плоскостью, а движение по траектории AB рассматривать как движение по множеству наклонных плоскостей. Работа силы тяжести на каждой из них равна произведению силы тяжести на изменение высоты. Например, на участке А2А3 работа равна mg(h2-h3). Полную же работу силы тяжести на всем пути найдем, сложив работу на каждом участке:
Рис. 134
Таким образом, работа силы тяжести не зависит от формы траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях тела, т. е. вычисляется но формуле (1). Отсюда следует, что если тело движется по замкнутой траектории, где начальное и конечное положения тела совпадают, то работа силы тяжести равна нулю. Такие силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положениями тела в пространстве, называются потенциальными или консервативными. Другое определение потенциальных сил: это такие силы, работа которых по замкнутой траектории равна нулю.
Для потенциальных сил можно ввести понятие потенциальной энергии. Действительно, формула (I) может быть переписана следующим образом:
A = mg(hl — h2)= -(mgh2— mgh1). (3)
Правая часть этого равенства представляет собой изменение величины mgh, взятое с противоположным знаком.
Понятие кинетической энергии, изменение которой равно работе сил, действующих на тело. Теперь мы встретились еще с одной величиной, изменение которой (но с противоположным знаком) тоже равно работе силы — в данном случае работе силы тяжести. Величину, равную mgh, называют потенциальной энергией П тела в гравитационном поле. Тогда формулу (3) можно записать в виде:
(4)
Говорят, что работа силы тяжести равна убыли потенциальной энергии тела в гравитационном поле Земли.
Если тело падает с высоты h до нулевого уровня, то работа силы тяжести равна его начальной потенциальной энергии:
Следовательно, потенциальная энергия тела, поднятого на некоторую высоту, равна работе силы тяжести при падении тела с этой высоты. Например, этим пользуются при забивании свай на строительных площадках (рис. 135). Чтобы поднять тело с нулевого уровня на эту же высоту, должна быть совершена работа другой силой, направленной против силы тяжести.
Рис. 135
Потенциальная энергия зависит от положения тела относительно нулевого уровня и, следовательно, от координат тела. Так как пулевой уровень может быть выбран произвольно, то и потенциальная энергия определяется неоднозначно. Однако физический смысл имеет разность потенциальных энергий тела ΔП, а эта разность не зависит от выбора нулевого уровня.
Сила тяжести является силой, с которой Земля притягивает тело. Тело обладает потенциальной энергией, потому что оно взаимодействует с Землей. Не было бы Земли, не было бы и силы притяжения, а следовательно, и потенциальной энергии тела. Поэтому потенциальная энергия — это энергия взаимодействия, в данном случае тела и Земли.
Главные выводы:
- Работа силы тяжести не зависит от формы траектории, а определяется начальным и конечным положениями тела.
- Работа силы тяжести равна нулю, если тело возвращается в исходное положение.
- Сила тяжести является потенциальной силой.
- Потенциальная энергия тела, поднятого на некоторую высоту, равна работе силы тяжести при падении тела с этой высоты.
- Потенциальная энергия — это энергия взаимодействия тел.
Сила тяжести и напряженность гравитационного поля
Как вы знаете, по современным научным представлениям взаимное притяжение между телами осуществляется посредством особого вида материи — гравитационного поля. Каждое тело вокруг себя создает гравитационное поле. Как и другие физические поля, гравитационное поле имеет свою силовую характеристику — напряженность гравитационного поля.
Напряженность гравитационного поля — это векторная физическая величина, равная отношению силы притяжения, действующей на материальную точку (тело) в гравитационном поле, к его массе:
Где — напряженность гравитационного поля, — масса материальной точки (тела), — сила притяжения, действующая на материальную точку в гравитационном поле.
От чего зависит модуль напряженности гравитационного поля
Чтобы ответить на этот вопрос, определим модуль напряженности гравитационного поля для произвольной точки на поверхности Земли и на высоте от поверхности Земли:
Здесь и — силы притяжения на поверхности Земли и на высоте h соответственно, — масса Земли, — радиус Земли.
- Заказать решение задач по физике
Модуль напряженности гравитационного поля в некоторой точке прямо пропорционален массе источника данного поля и обратно пропорционален
квадрату расстояния до этой точки. Модуль напряженности гравитационного поля не зависит от массы тела, помещенного в это поле. Вектор напряженности гравитационного поля в произвольной точке поля направлен вдоль радиуса к центру источника поля (b). В данной точке гравитационного поля модуль и направление напряженности гравитационного поля совпадают с модулем и направлением ускорения свободного падения.
Являются ли напряженность гравитационного поля и ускорение свободного падения одной и той же величиной
На помещенное в гравитационное поле произвольное тело действует сила притяжения со стороны источника поля. В результате тело получает ускорение (ускорение свободного падения), направленное к центру источника поля (например, центру Земли). Это ускорение сообщается телу действующей на него силой тяжести гравитационного поля.
Сила тяжести — это сила, с которой Земля (планета) притягивает тела. Сила тяжести равна произведению массы тела, помещенного в гравитационное поле Земли (планеты), на ускорение свободного падения:
Сила тяжести всегда приложена к центру массы тела и направлена вертикально вниз (перпендикулярно к горизонтальной поверхности) к центру Земли (планеты) (с).
Из вышесказанного ясно, что понятия «напряженность гравитационного поля» и «ускорение свободного падения» имеют разный физический смысл. Так, напряженность гравитационного поля появляется в случае возникновения поля, а ускорение свободного падения возникает в результате действия силы тяжести при помещении в это поле произвольного тела (пробное тело).
Сила тяжести и вес тела
Если выпустить из рук карандаш, он обязательно упадет. Если поставить рюкзак на скамейку, она (хоть и незаметно для глаз) прогнется. Если подвесить к резиновому шнуру какое-нибудь тело, шнур растянется. Все это — следствия притяжения Земли. При этом репортажи с космических станций демонстрируют нам вроде бы «исчезновение» земного притяжения — космонавты и все вещи на борту находятся в состоянии невесомости.
Гравитационное взаимодействие:
Почему любой предмет, например выпущенный из руки карандаш, капля дождя, лист дерева и т. д., падает вниз? Почему стрела, выпущенная из лука, не летит все время прямо, а в конце концов падает на землю? Почему Луна движется вокруг Земли? Причина всех этих явлений в том, что Земля притягивает к себе все тела (рис. 20.1).
При этом все тела притягивают к себе Землю. Например, притяжение к Луне вызывает на Земле приливы и отливы (рис. 20.2). В результате притяжения к Солнцу наша планета и все другие планеты Солнечной системы движутся вокруг Солнца по определенным орбитам. В 1687 г. Исаак Ньютон сформулировал закон, согласно которому между всеми телами Вселенной существует взаимное притяжение. Такое взаимное притяжение объектов называют гравитационным взаимодействием или всемирным тяготением. Опираясь на опыты и математические расчеты, Ньютон доказал, что интенсивность гравитационного взаимодействия увеличивается с увеличением масс взаимодействующих тел. Именно поэтому легко убедиться в том, что всех нас притягивает Земля, и при этом мы совсем не ощущаем притяжение соседа по парте.
В физике силу гравитационного притяжения Земли, действующую на тела вблизи ее поверхности*, называют силой тяжести.
Сила тяжести — это сила, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее.
Сила тяжести приложена к телу, которое притягивается Землей, и направлена вертикально вниз, к центру Земли (рис. 20.3).
Многочисленными опытами доказано, что сила тяжести, действующая на тело, прямо пропорциональна массе этого тела: где — значение силы тяжести; m — масса тела; g — коэффициент пропорциональности, который называют ускорением свободного падения.
Будем считать, что, когда говорят «вблизи поверхности Земли», имеют в виду расстояние, не превышающее нескольких десятков километров.
Вблизи поверхности Земли ускорение свободного падения равно приблизительно 9,8 ньютона на килограмм: Значение ускорения свободного падения несущественно изменяется на экваторе и полюсах Земли (рис. 20.4), при подъеме над поверхностью Земли и при спуске в шахту. Используя рис. 20.4, определите, на сколько сила тяжести, действующая на вас, на экваторе меньше, чем на полюсе.
Что физики называют весом тела
Из-за притяжения к Земле все тела сжимают или прогибают опору либо растягивают подвес. Сила, которая характеризует такое действие тел, называется весом тела (рис. 20.5).
Вес тела — это сила, с которой вследствие притяжения к Земле тело давит на горизонтальную опору или растягивает вертикальный подвес. Единица веса в СИ, как и любой другой силы,— ньютон Если тело находится в состоянии покоя или прямолинейного равномерного движения, то его вес совпадает по направлению с силой тяжести и равен ей по значению: P=mg. Однако в отличие от силы тяжести, которая приложена к телу, вес приложен к опоре или подвесу (рис. 20.6).
Для упрощения расчетов в случаях, когда большая точность не существенна, можно считать, что g= 10 Н/кг.
Состояние невесомости
Вы наверняка хорошо знаете термин «невесомость», но его значение многие понимают неправильно. Например, считают, что невесомость — это состояние, которое наблюдается только в космосе, где нет воздуха, или там, где отсутствует гравитация. Но это не так! Отсутствие воздуха само по себе не вызывает невесомости, а от гравитации вообще не спрячешься — во Вселенной нет ни одного уголка, где бы не действовали силы всемирного тяготения*. На самом деле невесомость — это отсутствие веса. Уберите у тела опору или подвес — и оно окажется в состоянии невесомости. (Обратите внимание: сопротивление воздуха тоже является своего рода опорой!)
Невесомость — это такое состояние тела, при котором тело не действует на опору или подвес. Тело вблизи поверхности Земли находится в состоянии невесомости, если на него действует только одна сила — сила тяжести. На короткое время невесомость легко создать и дома. Можно, например, подпрыгнуть — и вы на мгновение окажетесь в состоянии невесомости: в данном случае, пока выдвигаетесь вниз, сопротивление воздуха пренебрежимо мало и можно считать, что на вас действует только сила тяжести. Постоянно в состоянии невесомости находятся космические орбитальные станции и все, что на них находится (рис. 20.7). Это связано с тем, что космические корабли «постоянно падают» на Землю из-за ее притяжения и в то же время остаются на орбите благодаря своей огромной скорости. У нетренированного человека длительное пребывание в состоянии невесомости, как правило, сопровождается тошнотой, нарушением работы мышц, вестибулярного аппарата**, нервными расстройствами, именно поэтому космонавты проходят серьезную физическую подготовку (рис. 20.8).
Плотность материи в нашей Вселенной очень мала (2-3 атома Гидрогена на 1 м3), потому во Вселенной в среднем очень мала и гравитация. Ее называют микрогравитацией. Вестибулярный аппарат — орган чувств у людей и позвоночных животных, воспринимающий изменение положения тела в пространстве и направление движения. Этот орган отвечает, например, за способность человека различать в темноте, где верх, а где низ.
Итоги:
Во Вселенной все тела притягиваются друг к другу. Такое взаимное притяжение тел называют всемирным тяготением. Сила тяжести — сила, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее. Сила тяжести вычисляется по формуле и направлена вертикально вниз, к центру Земли. Вес тела — это сила, с которой вследствие притяжения к Земле тело действует на горизонтальную опору или вертикальный подвес. Следует различать силу тяжести и вес тела: сила тяжести приложена к самому телу, а вес — к опоре или подвесу; вес тела равен по значению силе тяжести (P=mg) только в состоянии покоя тела или его равномерного прямолинейного движения. Когда тело движется под действием только силы тяжести, то оно находится в состоянии невесомости (его вес равен нулю).
- Сила упругости в физике и закон Гука
- Деформация в физике
- Плотность вещества в физике
- Сила трения в физике
- Инерция в физике
- Масса тела в физике
- Сила в физике
- Силы в механике