Физика как найти количество энергии


Загрузить PDF


Загрузить PDF

В одной из своих революционных научных работ, опубликованной в 1905 году, Альберт Эйнштейн предложил формулу E=mc2, где Е − энергия, m − масса, с − скорость света в вакууме.[1]
С тех пор она стала одной из самых известных формул в мире. Даже люди, далекие от физики, хотя бы раз слышали об этой формуле и о той важной роли, которую она играет в наших представлениях об окружающем мире. Однако далеко не все понимают, что именно означает данное уравнение. Попросту говоря, эта формула выражает эквивалентность энергии и массы, связанных между собой простым соотношением.[2]
Это соотношение, изменившее наше представление об энергии, нашло широкое практическое применение.

  1. Изображение с названием Understand E=mc2 Step 1

    1

    Рассмотрим величины, входящие в уравнение. Для понимания какой-либо формулы первым делом следует определить, какие величины в нее входят. В нашем случае E − это энергия, m − масса, и c − скорость света.

    • Скорость света в вакууме − это постоянная величина, приблизительно равная 3,00×108 метров в секунду. Ввиду фундаментальных свойств энергии она возводится в квадрат: тело, движущееся в два раза быстрее, обладает в четыре раза большей энергией.[3]
    • Скорость света является константой, так как если вы превратите какое-либо тело в чистую энергию, эта энергия будет перемещаться со скоростью света.[4]
  2. Изображение с названием Understand E=mc2 Step 2

    2

    Рассмотрим понятие энергии. Существует множество видов энергии, в том числе тепловая, электрическая, химическая, ядерная и так далее.[5]
    Энергия может переходить из одного вида в другой, и различные тела или системы могут обмениваться энергией. Основной единицей измерения энергии служит джоуль (Дж).

    • Энергия не может бесследно исчезнуть или появиться из ничего, она лишь принимает различные формы. Например, уголь обладает большим количеством потенциальной энергии, которая превращается в тепловую при его сгорании.
    • Кинетическая энергия какого-либо тела пропорциональна его массе, умноженной на квадрат скорости. Общая энергия тела равна его массе, умноженной на квадрат скорости света в вакууме.[6]
  3. Изображение с названием Understand E=mc2 Step 3

    3

    Рассмотрим понятие массы. Масса тела определяется как количество составляющего его вещества.[7]
    Следует различать массу и вес. Вес − это сила тяжести, действующая на тело, в то время как масса представляет собой количество вещества, содержащегося в этом теле. Масса тела может измениться лишь в том случае, когда меняется оно само, а вес зависит от гравитационного поля, в котором находится данное тело. Масса измеряется в килограммах (кг), а вес − в ньютонах (Н).

    • Как и энергия, масса не может возникнуть из ничего или бесследно исчезнуть, но она способна изменять свою форму. Например, кубик льда может растаять и превратиться в воду, однако масса вещества при этом не изменится.
  4. Изображение с названием Understand E=mc2 Step 4

    4

    Энергия и масса эквивалентны.[8]
    Рассматриваемое равенство свидетельствует о том, что энергия эквивалентна массе, и из него мы можем определить, какое количество энергии содержится в определенной массе вещества. Характерно, что даже в малой массе содержится довольно большое количество энергии.[9]

    Реклама

  1. Изображение с названием Understand E=mc2 Step 5

    1

    Из чего производится полезная энергия? Большая часть потребляемой нами энергии выделяется при сгорании угля и природного газа. При этом высвобождается энергия их валентных электронов (неспаренных электронов во внешних электронных оболочках атомов), задействованных в связях с другими химическими элементами. При нагревании эти связи разрушаются, и при этом выделяется энергия, используемая для различных целей.

    • Данный способ получения энергии не очень эффективен и довольно вреден для окружающей среды.
  2. Изображение с названием Understand E=mc2 Step 6

    2

    Рассмотрим уравнение Эйнштейна, чтобы найти более эффективные источники энергии. Из равенства E=mc2 мы видим, что намного больше энергии заключено внутри атомных ядер, а не во внешних валентных электронах.[10]
    При расщеплении атомного ядра выделяется гораздо больше энергии, чем при разрыве электронных связей.

    • Ядерная энергетика основана именно на этом законе. В ядерных реакторах происходит распад (расщепление) атомов, при котором выделяется большое количество энергии.
  3. Изображение с названием Understand E=mc2 Step 7

    3

    На уравнении Эйнштейна основаны многие технологии. Формула E=mc2 привела к развитию множества новых технологий, без которых невозможно представить современный мир:[11]

    • В позитрон-эмисионной томографии явление радиоактивности используется для того, чтобы увидеть внутренние органы человека.
    • Уравнение Эйнштейна сделало возможным развитие спутниковой мобильной связи.
    • Основанный на формуле Эйнштейна радиоуглеродный анализ позволяет установить возраст древних объектов.
    • Ядерная энергетика − это более чистый и эффективный способ получения энергии.

    Реклама

Об этой статье

Эту страницу просматривали 214 893 раза.

Была ли эта статья полезной?

Физика, 10 класс

Урок 23. Внутренняя энергия. Работа. Количество теплоты

Список вопросов, рассмотренных в уроке: внутренняя энергия; способы изменения внутренней энергии; различные виды теплообмена; уравнение теплового баланса; работа в термодинамике; нахождение численного значения работы в различных тепловых процессах.

Глоссарий по теме

Термодинамическая система представляет собой систему тел, которые взаимодействуют и обмениваются энергией и веществом.

Состояние равновесия — это состояние системы, в которой нет теплообмена между телами, составляющими систему.

Термодинамический процесс — процесс изменения состояния системы, который изменяет параметры системы.

Внутренняя энергия представляет собой сумму кинетической энергии хаотичного теплового движения и потенциальной энергии взаимодействия всех молекул, составляющих тело.

Теплоемкость представляет собой энергию, которая численно равна количеству тепла, которое выделяется или поглощается, когда температура тела изменяется на 1 К.

Теплопередача- это передача энергии от одного тела другому без выполнения работы.

Количество тепла является количественной мерой изменения внутренней энергии во время теплообмена.

Работа в термодинамике — это взаимодействие системы с внешними объектами, в результате чего изменяются параметры системы.

Список литературы

Г.Я. Мякишев., Б. Буховцев., Н. Н. Соцкий. Физика.10. Учебник для образовательных организаций М .: Просвещение, 2017. — С. 243-254.

Рымкевич А.П. Сборник задач по физике. 10-11 класс М.: Дрофа, 2009.- с.75-84

Основное содержание урока

Внутренняя энергия тела — это полная энергия всех молекул, которые его составляют. Внутренняя энергия идеального газа пропорциональна его температуре.

U = 3/2 · ν · R · T

Чтобы изменить внутреннюю энергию вещества, надо сообщить ему некоторое количество тепла или совершить работу.

Работа в термодинамике равна изменению внутренней энергии системы: A = ΔU.

Работа газа в изобарном процессе равна A = P · ΔV. Если газ расширяется, то А > 0, если газ сжимается, то А < 0.

Кроме того, работа газа может быть определена с использованием графика давления в зависимости от объема.

Работа газа численно равна площади под графиком давления.

Количество теплоты — это энергия, которую система получает или теряет во время теплообмена.

Количество тепла для различных термических процессов определяется по-разному.

При нагревании и охлаждении: Q = c_ ∙ m ∙ ΔT;

Во время плавления и кристаллизации: Q = ℷ ∙ m;

Во время испарения и конденсации; Q = r ∙ m;

При сжигании: Q = q ∙ m.

Для замкнутой и адиабатически изолированной системы тел выполняется уравнение теплового баланса: Q1 + Q2 + … + Qn = 0

Выражение для внутренней энергии одноатомного идеального или разреженного реального газа имеет следующий вид:

U = 3/2 ν ∙ R ∙ T

Для идеального газа из молекул с двумя, тремя или более атомами необходимо учитывать кинетическую энергию вращения молекул (они больше не могут считаться материальными точками), поэтому выражение для их внутренней энергии отличается от U = 3/2 ν ∙ R ∙ T числовым коэффициентом.

Для двухатомного газа (например, O2, CO и т. д.):

U = 5/2 ν ∙ R ∙ T

Для газа с тремя атомами или более (например, O3, CH4):

U = 3ν · R · T

Изменить внутреннюю энергию вещества можно, передав ему некоторое количество тепла или выполнить над ним работу.

Существует три типа теплопередачи:

1) Теплопроводность представляет собой процесс переноса энергии от более теплого тела к менее нагретому телу с прямым контактом или от более нагретых частей тела к менее нагретым, осуществляемый хаотично движущимися частицами тела (атомы, молекулы, электроны , и т.д.). Простым примером является нагревание чашки, в которую выливают горячий чай.

2) Конвекция — это своего рода передача тепла, в которой внутренняя энергия передается снизу вверх струями или потоками жидкости или газа. Пример: нагревание воды в чайнике, который стоит на горячей плите.

3) Лучистый обмен или излучение — это процесс передачи энергии через электромагнитное излучение. Простой пример: солнечный свет.

Механическая работа изменяет механическую энергию тела. Термодинамическая работа изменяет внутреннюю энергию газа.

Если газ расширяется, то работа газа считается положительной. Если он сжат, то отрицательной.

Формула для нахождения работы газа в изобарном процессе имеет следующий вид:

A = p · ΔV

Для изотермического процесса формула принимает следующий вид: A = ν ∙ R ∙ T ∙ ln⁡ (V_2 / V_1)

Разбор тренировочных заданий

1. Объём газа, расширяющегося при постоянном давлении 100 кПа, увеличился на 20 литров. Работа, выполняемая газом в этом процессе, — _____.

Варианты ответов:

2000 Дж;

20 000 Дж;

200 Дж;

50 МДж.

Правильный вариант / варианты (или правильные комбинации вариантов): 3) 2000 Дж.

Совет: используйте формулу работы.

2. Чтобы из 5 кг снега, при температуре 0ºС, получить воду при 20ºС, необходимо сжигать в печке с КПД 40% __ кг дров.

Решение: при сгорании дров выделится количество теплоты:

из этого количества на полезную работу пойдёт только:

Для плавления снега необходимо количество теплоты:

для нагревания воды понадобится:

Согласно уравнению теплового баланса:

Отсюда следует:

Подставим числовые значения в формулу:

Ответ: 0,5175 кг.

Сколько стоит (4)-часовой просмотр телевизора, если его мощность равна (200) Вт?
Переводим данные единицы не в единицы СИ (ватты и секунды), а в единицы, в которых учитывается количество потреблённой электроэнергии (киловатты и часы).

P=200Вт=0,2кВтt=4чТариф=4,5руб/кВт⋅чСтоимость−?Стоимость=E⋅ТарифE=P⋅tСтоимость=P⋅t⋅ТарифСтоимость=0,2⋅4⋅4,5=3,6(руб.)

Чтобы определить количество потреблённой за месяц электроэнергии или совершённую током работу, необходимо:

1. Определить показания счётчика в начале и в конце месяца.
2. Разница показаний — количество потреблённой электроэнергии в течение месяца в киловатт-часах.
3. Полученное количество электроэнергии умножить на тариф.

физика формулыВсе основные формулы по школьной физике, которые помогут  для подготовке к ЕГЭ, а также для решения задач в  7, 8, 9, 10 и 11 классах.  Все формулы структурированы, что позволит из запомнить гораздо быстрее.

Равномерное движение

S= U∙t,  U= S/t,  t=S/U Уравнение движения при равномерном движении?

где U-скорость, t-время, S-расстояние

x=x0+U0t Координата при равномерном прямолинейном движении

Равномерное движение по окружности

T=t/N,   T=1/v,   Т=2π/ω
T=2πR/U,   T=2π ∙√(R/a)
T – период
N – количество оборотов
v=1/T,   v=ω/2π,   v=U/2πR,
v=1/2π ∙√(a/R),   v=N/t,   v=L/t
v – частота
R – радиус окружности
ω=2π/Т,  ω=2πv,  ω=φ/t
ω=U/R,     ω=√(a/R)
ω – угловая скорость
t – время
υ=2πR/Т,  υ=2πvR,   U=ωR
U=√(a/R),   U=L/t
U – линейная скорость тела

a=υ2/R,   a=ω2R,   a=Uω
a=4π2R/T2

a – центростремительное ускорение
 L=φR L – длина дуги окружности (φ – угол поворота (в радианах))

Равноускоренное движение

X=X00∙t+(a∙t2)/2  Уравнение прямолинейного равноускоренного движения
S=U0t+a∙t2/2
S= (υ202) /2а 
S= (υ+υ0) ∙t /2 = Uср∙t
Расстояние при равноускоренном  движении
υ=υ0+a∙t Rонечная скорость тела при равноускоренном движении
a=(υ-υ 0)/t       Ускорение
U=√(2gh)
tпадения=√(2h/g)
S=U∙√(2h/g)
— Падение тела с высоты
— Горизонтальный бросок
(h-высота падения, g – ускорение свободного падения 9,8м/с2, t-время падения, S-расстояние)
hmax=U02/2g Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной
скоростью U0
tподъема=U0/g Время подъема тела на максимальную высоту
tполета=2U0/g Полное время полета (до возвращения в исходную точку)
Sторм=U02/2a Тормозной путь тела двигавшегося до начала торможения со скоростью U0 , а затем тормозившего с ускорением а
U = √(U02+(gt)2)
tgβ = Uy/Ux = gt/U0
Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости
к горизонту
hmax=(U0∙sinα)2/2g
tподъема=(U0∙sinα)/g
Бросок с земли на землю под углом к горизонту равным α. Время подъема до высшей точки и
максимальная высота

Sx=Ux∙tполета
S=U0∙cosα∙tполета   
S=U02∙sin2α/g   
tполета=2U02∙sinα/g   

Полное время и дальность полета при броске под углом к горизонту

Импульс

p=mυ

Импульс тела  

Ft=∆p

Импульс силы 

F=∆p/∆t

Второй закон Ньютона в импульсной форме

pk=pn

Закон сохранения импульса: в случае если на систему тел не
действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется

Энергия

A=F∙S∙cosα

Механическая работа (F – сила, S – путь,  – угол между направлением движения и силой)

P=A/t=F∙υ

Мощность (если мощность переменная, то рассчитывается средняя мощность)

Eп=mgh

Потенциальная энергия тела, поднятого над землей

Eп=kx2/2

Потенциальная энергия упруго деформированного тела

η=Aп/Аз

Коэффициент полезного действия

Ek=mυ2/2

Кинетическая энергия тела

Молекулярная физика

ρ=m/V

Плотность (ρ – его плотность,  m – масса вещества, V – объем)

ν=N/ Na = m/M

Количество вещества (N – число частиц вещества, содержащееся в массе вещества m, Na – число Авогадро, m0 – масса одной молекулы вещества, M – молярная масса)

М=m/ν

Молярная масса

m0=m/N=M/Na

Масса одной молекулы вещества

P=nkT=1/3nm0υ2
pV=NkT

Основное уравнение молекулярно-кинетической теории идеального газа (p – давление газа, n = N/V – концентрация его молекул, m0 – масса одной молекулы, Uкв – средняя квадратичная скорость)

Uкв=√(3kT/m0), Uкв=√(3RT/M)

Cредняя квадратичная скорость

Ek=3/2∙kT

Средняя кинетическая энергия поступательного движения одной молекулы (k – постоянная Больцмана, T – абсолютная температура)

kNa=R

Связь универсальной газовой постоянной и постоянной Авогадро

PV=m/M∙RT

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева)

PV=const (m=const и T= const)

Газовые законы. Закон Бойля-Мариотта (изотермический процесс)

V/T=const (m=const и p= const)

Газовые законы. Закон Гей-Люссака (изобарный процесс)

P/T =const (m=const и V= const)

Газовые законы. Закон Шарля (изохорный процесс) 

PV/T=const (m=const )

Газовые законы. Универсальный газовый закон (Клапейрона)

V=Vo(1+λt)

Тепловое расширение газов описывается законом Гей-Люссака. (V – объем жидкости при 0 °С, V – при температуре t , λ – коэффициент объемного расширения жидкости)

l=lo(1+αt)
S=So(1+2αt)
V=Vo(1+3αt)

Изменение линейных размеров, площади и объема тела (lo, So , Vo – соответственно длина, площадь поверхности и объем тела при 0 °С, α – коэффициент линейного расширения тела)

Динамика

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения

F=ma

Второй закон Ньютона (F – сила, m – масса, а – ускорение).

F1-2 = — F2-1 

Третий закон Ньютона (сила действия равна силе противодействия)

Fупр = kx

Сила упругости (k – жесткость пружины, х – величина растяжения (или сжатия) пружины, оно равно разности между
конечной и начальной длиной деформируемой пружины)

Fy=-kx

Закон Гука 

Fтр.скольжения=Fтр.макс = μТ

Сила трения скольжения ( μ– коэффициент трения, N – сила реакции опоры.) 

F=mg
F=G∙M∙m/r2
g=G∙M/Rn2 

Сила тяжести — Закон Всемирного тяготения  (G – гравитационная постоянная, F – сила с которой притягивается тело массой m к телу или планете массой M, r – расстояние между центрами этих тел)

gh = GM/(Rn+h)2 =
gh = gRn2/(Rn+h)2     

Ускорение свободного падения на некоторой высоте от поверхности планеты (h – высота над поверхностью планеты)

U = √(GM/(Rn+h)) 
U = √(gRn2/(Rn+h))

Скорость спутника на круговой орбите радиусом r = Rn + h

U=√(gRn)

Первая космическая скорость (скорость движения спутника по орбите вблизи поверхности планеты)

T12/T22 = R13/R23 

Закон Кеплера для периодов обращение T1 и T2 двух тел, вращающихся вокруг одного притягивающего
центра на расстояниях R1 и R2 соответственно

Р=m(g+a)
Р=m(g-a)

Вес тела, движущегося с ускорением а↑ 
Вес тела, движущегося с ускорением а↓   

Термодинамика

Q=cm(T2-T1)
C=cm
Q=C(T2-T1)

Количество теплоты (энергии) необходимое на нагревания некоторого тела (C-теплоемкость, c-удельная теплоемкость, m- масса, t- температура) 

Q=λm

Количество теплоты при плавлении (λ – удельная теплота плавления, m – масса расплавившегося тела или кристаллизовавшейся жидкости)

Q=rm

Количество теплоты при парообразовании (r – удельная теплота парообразования, m – масса испарившейся жидкости или конденсировавшегося пара)

Q=qm

Количество теплоты при сгорании топлива (q – удельная теплота сгорания топлива, m – масса сгоревшего топлива)

A=P∙ΔV = m/M∙ R∙ΔT, p = const

Работа идеального газа

U=3/2∙M/µ∙RT

Внутренняя энергия идеального одноатомного газа

ΔU=A+Q

Первый закон (начало) термодинамики (ЗСЭ) (Q – теплота полученная (отданная) газом)

η= (Q1 — Q2)/ Q1

КПД тепловых двигателей

η= (Т1 — Т2)/ Т1 

КПД идеальных двигателей (цикл Карно) 

ρ=pM/RT

Абсолютная влажность (ρ — абсолютная влажность, р – парциальное давление водяного пара, М – молярная масса, R – универсальная газовая постоянная, Т – абсолютная температура)

φ=ρ/ρ0∙100%
φ=P/P0∙100%

Относительная влажность
(ρ — абсолютная влажность, ρ0 -количество водяного пара, которое необходимо для насыщения 1 м3 воздуха при данной температуре)
(P — давление водяного пара, Pо — давление насыщенного пара при данной температуре)

Ep = σS

Поверхностное натяжение (σ – коэффициент поверхностного натяжения данной жидкости)

Fн= σL

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L

Статика и Гидростатика

M=F∙ℓ

Момент силы (F – сила, ℓ – плечо силы, т.е. кратчайшее расстояние между точкой опоры, относительно которой происходит вращение и линией действия силы)

Р=F/S

Давление (F – сила, S – площадь на которую распределено действие силы)

P=ρ∙g∙h
P=P0+ρ∙g∙h

Давление на глубине жидкости (p0 – атмосферное давление, ρ – плотность жидкости, g – ускорение свободного падения, h – высота столба жидкости)

Fa=ρж∙g∙V

Закон (сила) Архимеда (V – объем погруженной части тела, который иногда также называют объемом вытесненной жидкости)

Электростатика

q = Ne

Электрический заряд (N – количество элементарных зарядов, е – элементарный заряд)

λ=q/L,  σ=q/S,  ρ=q/V

Линейная, поверхностная и объемная плотность заряда 

F=k∙q1∙q2/R2
F=k∙q1∙q2/εr2

Закон Кулона (сила электростатического взаимодействия двух зарядов величиной q1 и q2, находящихся на расстоянии r друг от друга в веществе с диэлектрической проницаемостью ε):

E=1/(4πεε0)

Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра

E= σ/(2εε0)

Напряженность электрического поля, которую создает заряженная плоскость

ε=E0/E

Диэлектрическая проницаемость

E=F/q

Напряженность электрического поля

E=k∙q/R2

Напряженность электрического поля точечного заряда

E=2πkσ

Напряженность электрического поля бесконечной плоскости

W= k∙q1q2/R = k∙q1q2/εr

Потенциальная энергия взаимодействия двух электрических зарядов

U=Ed,  Δφ=E∙ Δl

Cвязь между напряженностью поля и напряжением

A=qU,  U=A/q

Работа электрического поля, Напряжение

A= qEd, U=E∙d

Работа электрического поля  в однородном поле при перемещении заряда вдоль его силовых линий, Напряжение для однородного электрического поля

φ=W/q

Потенциал

φ=k∙q/R

Потенциал точечного заряда

C=q/U

Электроемкость

C=S∙εε0/d

Электроемкость плоского конденсатора

q=CU

Заряд конденсатора

E = U/d = σ/εε0

Напряженность поля внутри конденсатора

F=qE/2

Сила притяжения пластин конденсатора

W=qU/2=q²/2С=CU²/2

Энергия заряженного конденсатора

Электрический ток

I=q/t

Сила тока (q – заряд, протекший через некоторое поперечное сечение проводника за время t)

R=ρ∙ℓ/S

Сопротивление проводника (l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала
проводника)

R=R0(1+αt)

Сопротивление проводника

I=U/R

Закон Ома для участка цепи (U – электрическое напряжение)

I1=I2=I, U1+U2=U, R1+R2=R

Законы последовательного соединения

U1=U2=U, I1+I2=I, 1/R1+1/R2=1/R

Законы параллельного соединения

ε=Aст/q

Электродвижущая сила источника тока, ЭДС (Aст – работа сторонних сил по перемещению заряда q)

I=ε/(R+r)

Закон Ома для полной цепи

I=ε/r

Сила тока короткого замыкания (R=0)

Q=A=I2Rt

Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока, протекающего по проводнику, обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике

P=IU=U2/R=I2R

Мощность электрического тока

m = kQ = kIt

Электролиз. Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q,
прошедшему через электролит

Магнетизм

Fa=IBℓsinα

Сила Ампера (В – индукция магнитного поля, I – сила тока в проводнике, l – его длина, α – угол между
направлением силы тока (т.е. самим проводником) и вектором индукции магнитного поля)

M = NBIS∙sinα

Момент сил, действующих на рамку с током (N – количество витков, S – площадь рамки, α – угол между нормалью к рамке и вектором магнитной индукции)

Fл=Bqυ∙sinα

Сила Лоренца (q – электрический заряд частицы, υ – её скорость, α – угол между направлением движения частицы и вектором индукции магнитного поля)

R=mU/qB

Радиус траектории полета заряженной частицы в магнитном поле

B=Fmax/ℓ∙I

Вектор магнитной индукции

Ф=BSсos α Ф=LI

Магнитный поток Φ через площадь S

Ei=ΔФ/Δt

Закон электромагнитной индукции

Ei=Вℓυsinα

ЭДС индукции при движении проводника

Esi=-L∙ΔI/Δt

ЭДС самоиндукции

Wм=LI2/2

Энергия магнитного поля катушки

Колебания

a+ω02x=0

Уравнение описывает физические системы способные совершать гармонические колебания с циклической частотой ω0

x = A cos (ωt + φ0)

Уравнением движения для гармонических колебаний (x– координата тела в некоторый момент времени t, A – амплитуда колебаний, ω – циклическая частота колебаний, φ0 –начальная фаза колебаний).

Х=Хmax∙cos ωt

Уравнение гармонических колебаний

T=t/N,   v=N/t=1/T
ω=2πv=2π/T

Связь некоторых характеристик колебательного процесса (T – период, N – количество полных колебаний, v – частота колебаний, ω – циклическая частота)

υ = x'(t) = –Aω sin (ωt + φ0)

Скорость тела при колебательном движении 

υm = ωA

Максимальное (амплитудное) значение скорости

a = υ'(t) = x»(t)
a = –Aω2 cos (ωt + φ0)

Ускорение тела при колебательном движении

am = Aω2

Максимальное (амплитудное) значение ускорения

ω0=√(g/ℓ)
T=2π√ℓ/g

Циклическая частота и период колебаний математического маятника (l – длина маятника, g – ускорение свободного падения)

ω0=√(k/m)
T=2 π √m/k

Циклическая частота и период колебаний пружинного маятника (m – масса груза, k – коэффициент жесткости пружины маятника)

W=CU2/2+LI2/2
W=CUmax2/2=LImax2/2

Электрический контур

T=2π ∙√LC
ω=2π/T=1/(√LC)

Период колебаний кол. контура и циклическая частота

Iд=I0/√2,       Iд=Imax/√2
Uд=U0/√2,   Uд=Umax/√2

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин;  Действующее значение силы тока и напряжения 

P=UдIд =Iд2R=Uд2/R

Мощность в цепи переменного тока

U1/U2=n1/n2

Трансформатор: если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2

λ= υТ=υ/v

Волны. Длина волны (υ – скорость распространения волны, T – период, v – частота)

XL=ωL=2πLν

Индуктивное сопротивление

Xc=1/ωC

Емкостное сопротивление

Z=√(Xc-XL)2+R2

Полное сопротивление

Оптика

Lопт=Ln

Оптическая длина пути (L – геометрическая длина траектории, по которой «идет» луч света, n – показатель преломление среды, в которой это происходит)

x=mλL/d

Интерференционная схема Юнга (L – расстояние между
экраном и плоскостью в которой расположены две щели, d –
расстояние между этими щелями, λ – длина волны света, которым
освещаются щели).

d∙sin φ=k λ

Формула дифракционной решетки (d – период решетки, или расстояние между соседними штрихами, φ – угол под которым наблюдается очередной дифракционный максимум, k – номер (порядок) максимума, λ – длина волны света, падающего на дифракционную решетку)

n21=n2/n1= υ 1/ υ 2

Закон преломления света на границе двух прозрачных сред (α – угол падения, β – угол преломления, n1 – показатель преломления первой среды, из которой падает луч, n2 – показатель преломления второй среды, в которую проникает луч)

n21=sinα/sinβ

Показатель преломления

1/F=1/d + 1/f

Формула линзы (d – расстояние от линзы до предмета, f – расстояние от линзы до изображения, F – фокусное расстояние, D – оптическая сила линзы)

D=1/F

Оптическая сила линзы

Δd=kλ,  Δd=(2k+1)λ/2

max интерференции, min интерференции

Атомная и ядерная физика

E=hv=hc/λ

Энергия кванта света, т.е. фотона (h – постоянная Планка, λ – длина волны света, v – частота света)

P=mc=h/ λ=Е/с

Импульс фотона

hν=Aвых+(mU2/2)max
hν=Aвых+Ek, Ek=еUз
min=Aвых=hc/λ

Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ) (Авых – работа выхода, слагаемое в скобках –максимальная кинетическая энергия вылетающих электронов, v – частота падающего света)

(mU2/2)max=еUз

Максимальная кинетическая энергия вылетающих электронов

νк = Aвых/h

Красная граница фотоэффекта

nm = |En – Em|

Второй постулат Бора (правило частот). При переходе атома из одного стационарного состояния с энергией En в другое стационарное состояние с энергией Em излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний

N=N0∙2t/T

Закон радиоактивного распада

ECB=(Zmp+Nmn-Mя)∙c2

Энергия связи атомных ядер

Основы СТО

ℓ=ℓ0∙√1-υ2/c2

Релятивистское сокращение длины. Длина тела, движущегося со скоростью V в инерциальной системе отсчета уменьшается в направлении движения до длины

t=t1/√(1-υ2/c2)

Релятивистское удлинение времени события. Время, за которое происходит некоторое событие в движущейся системе отсчета с точки зрения наблюдателя из неподвижной системы отсчета

υ=(υ12)/1+ υ1∙υ2/c2

Релятивистский закон сложения скоростей

Е = mс2

Связь энергии и массы тела. Наименьшей энергией Е0 тело обладает в инерциальной системе отсчета относительно которой оно покоится и называется собственной энергией тела (энергия покоя тела)

Единица измерения энергии, теория и онлайн калькуляторы

Единица измерения энергии

Определение

Энергия — это физическая величина служащая мерой разных форм движения и взаимодействия материи, мерой перехода разных форм материи.

Энергия отображает способность физической системы к совершению работы, при этом работа является мерой изменения энергии. Из этого следует, что работа и энергия имеют одинаковые единицы измерения.

Единицы измерения энергии в Международной системе единиц

В международной системе единиц (СИ) джоуль (Дж) — единица измерения энергии и работы. Исходя из механического определения работы:

[A=overline{F}cdot overline{s}(1)]

один джоуль — это работа ($A$), которую совершает сила ($overline{F}$) в один ньютон при перемещении ($overline{s}$) точки приложения силы в один метр:

[1 Дж=1 Нcdot 1 м.]

Джоуль не является основной единицей системы СИ. Через основные единицы джоуль легко выразить, используя механическое определение работы и единицы измерения соответствующих величин:

[left[Aright]=left[Fright]left[sright]=Нcdot м=frac{кгcdot м}{с^2}cdot м=frac{кгcdot м^2}{с^2}.]

Такую же размерность можно получить, если использовать определение энергии вида:

[E=mc^2left(2right),]

где $c$ — скорость света; $m$ — масса тела. Исходя из выражения (2), имеем:

[left[Aright]=left[Eright]=кгcdot {left(frac{м}{с}right)}^2=frac{кгcdot м^2}{с^2}.]

И так, мы убедились, что джоуль — единица измерения энергии. Насколько велик джоуль можно понять, если решить простую задачу: тело массой 2 кг движется со скоростью 1$frac{м}{с}$ , какова его кинетическая энергия? Вычислим кинетическую энергию ($E_k$) нашего тела используя ее определение:

[E_k=frac{mv^2}{2}left(3right),]

получаем:

[E_k=frac{2cdot 1^2}{2}=1 left({rm Дж}right).]

Единицы измерения энергии в других системах единиц

В системе СГС (сантиметр, грамм, секунда) энергия (и работа) измеряются в эргах (эрг). При этом одни эрг равен:

[1 эрг=1 динcdot 1 см.]

Зная, что:

[1 Н={10}^5{rm дин};;1 {rm м}=100 см,]

получаем:

[1 Дж={10}^7эрг.]

В технических расчетах встречается такая единица измерения энергии как килограммометр (кгм) или килограмм силы (кгс) на метр (м): (кгсм). При этом считают, что:

[1кгсм=1 кгсcdot 1 м=9,81 Дж.]

При расчетах тепла часто в качестве единицы измерения энергии используют калорию. Калорию определяют как:

[1 кал=4,1868 Дж.]

Гигакалорию (Гкал) применяют в теплоэнергетике, коммунальных хозяйствах, система отопления.

Энергию можно выражать в киловатт часах:

[1 кВтcdot ч=3,6cdot {10}^5Дж.]

В основном данную единицу измерения используют в электроэнергетике.

В атомной и квантовой физике применяют такую единицу измерения энергии как электрон-вольт (эВ). При этом полагают, что:

[1 эВ=1,6cdot {10}^{-19}Дж.]

Электрон — вольт — это энергия, которую приобретает частица, имеющая элементарный заряд (заряд электрона), если она перемещается между точками поля разность которых 1 В:

[1 эВ=1,6cdot {10}^{-19}{rm Кл}cdot 1{rm В}.]

Примеры задач с решением

Пример 1

Задание. Какое количество теплоты выделится при полном сгорании древесного угля, масса которого составляет $m=$1 кг. Переведите полученный ответ в калории.

Решение. Количество теплоты $(Q)$, выделяемое при сгорании угля, найдем, используя формулу:

[Q=rm left(1.1right),]

где $r=2,7cdot {10}^7frac{Дж}{кг}$ — удельная теплота сгорания древесного угля. Можно проводить вычисления:

[Q=2,7cdot {10}^7cdot 1=2,7cdot {10}^7left(Джright).]

Задача решена в системе СИ. Используя соотношение:

[1 кал=4,1868 Дж]

переведем полученный результат в калории:

[Q=2,7•{10}^7 Дж=frac{2,7•{10}^7}{4,2}approx 6,4•{10}^7 left(калright).]

Ответ. $Q=6,4cdot {10}^7$ кал

Пример 2

Задание. Вычислите количество энергии необходимое для превращения $m=$100 г воды в пар при температуре, равной $t=$1000С. Запишите ответ в СГС.

Решение. Энергия $(E)$, необходимая для перехода жидкости в пар равна количеству теплоты (Q), которое должно получить масса этого вещества при парообразовании:

[E=Q left(2.1right).]

Единица измерения энергии, пример 1

Теплоту парообразования найдем как:

[Q=lambda m left(2.2right),]

где $lambda =2,3cdot {10}^6frac{Дж}{кг}$ — удельная теплота парообразования воды. Вычислим искомую энергию, учитывая (2.1) и (2.2):

[E=2,3cdot {10}^6cdot 0,1=2,3cdot {10}^5left(Джright).]

Эрг — единица измерения энергии в системе СГС, при этом:

[1 Дж={10}^7эрг,]

следовательно, получаем:

[E=2,3cdot {10}^5Дж=2,3cdot {10}^{12}эрг.]

Ответ. $E=2,3cdot {10}^{12} эрг$

Читать дальше: единицы измерения атмосферного давления.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:
  • Как на телефоне найти блютуз беспроводные наушники
  • Как найти ревуса сарвани
  • Как найти ссылку инстаграмма в телефоне
  • Как найти силу торможения по формуле
  • Как составить смету для ремонта подъезда