Формула как найти объем сжатия

Как рассчитать коэффициент сжатия: по шагам Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Как рассчитать коэффициент сжатия: по шагам Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Как рассчитать коэффициент сжатия: по шагам

Любое вещество под воздействием внешнего давления может сжиматься, то ест в той или иной степени изменят свой объем. Так, газы при увеличении давления могу очень существенно уменьшать свой объем. Жидкость подвержена изменению объема при изменении внешнего давления в меньшей степени.

Еще меньше сжимаемость у твердых тел. Сжимаемость отражает зависимость физических свойств вещества от расстояний между его молекулами (атомами).

Сжимаемость характеризуют при помощи коэффициента сжатия (Тоже самое: коэффициент сжимаемости, коэффициент всестороннего сжатия, коэффициент объемного упругого расширения).

Величина коэффициента сжатия зависит от природы вещества, его температуры и давления. Помимо всего выше сказанного коэффициент сжатия зависит от вида процесса, в котором происходит изменение давления. Так, в изотермическом процессе коэффициент сжатия отличается от коэффициента сжатия в адиабатном процессе. Изотермический коэффициент сжатия определяют как:

  1.     Как рассчитать коэффициент сжатия: по шагам
  2. где — частная производная при T=const.
  3. Адиабатический коэффициент сжатия можно найти как:
  4.     Как рассчитать коэффициент сжатия: по шагам

где — частная производная при постоянной энтропии (S). Для твердых веществ коэффициент сжимаемости изотермический и адиабатический различается очень мало и этим различием часто пренебрегают.

  • Между адиабатическим и изотермическим коэффициентами сжимаемости существует связь, которая отражается уравнением:
  •     Как рассчитать коэффициент сжатия: по шагам
  • где и — теплоемкости при постоянном объеме и давлении.

Единицы измерения коэффициента сжатия

  1. Основной единицей измерения коэффициента сжимаемости в системе СИ является:
  2.     Как рассчитать коэффициент сжатия: по шагам
  3. В СГС:
  4. =см2/дин

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Как рассчитать и изменить степень сжатия двигателя

string(10) «error stat»
string(10) «error stat»

Одним из главнейших технических
показателей автомобильного мотора является коэффициент сжатия. Он показывает соотношение разницы между объёмом
свободного участка над цилиндровым поршнем и под ним в крайних его положениях.

Что такое степень сжатия двигателя

Условно величину сжатия представляют и как
соотношение давлений в устройстве при подаче горючего и взрыве смеси. Конкретно
эта степень обусловлена конструкцией автомобильного двигателя, и может быть
высокой или низкой.

Как рассчитать коэффициент сжатия: по шагам

Перед непосредственным процессом
воспламенения горючей смеси, поршни сжимают топливо до определённого объёма.
Инженеры способны варьировать этот показатель, рассчитывая его ещё на стадии
проектирования. Узнав количественное соотношение данной величины к объёму
камеры сгорания, можно делать различные выводы.

На бензиновых силовых установках
показатель сжатия достигает максимум 12 единиц. Чем выше здесь степень сжатия
двигателя или ССД, тем больше удельная мощность
мотора. Однако при сильном увеличении данного показателя снижается ресурс
агрегата, особенно при заправке низкосортным бензином. На дизельных моторах,
ввиду их технических отличий, она может варьироваться от 14 до 18 единиц.

В бензиновые двигатели с увеличенной до 12 единиц степенью сжатия нельзя лить ничего, кроме АИ-98 Премиум. Очевидно, что это существенно удорожает расходы на топливо.

На что она влияет

ССД непосредственно определяет объём
работы, произведённой ДВС. Чем изначально выше рассчитана
степень сжатия, тем продуктивнее будет воспламенение.
Пропорционально увеличится и отдача мотора.

Вспомним, как разработчики в 90-е годы
старались повышать этот показатель, полностью не модернизируя двигатель.  Таким
способом они конкурировали между собой, делая агрегаты мощнее, и не затрачивая
при этом много средств.

Но что самое интересное — моторы в этом случае не
потребляли больше горючего, а даже становились экономнее.

Однако всему есть предел, и как было
сказано выше, чересчур высокий коэффициент приводит к снижению ресурса ДВС.
Почему это происходит? Дело в том, что при значительном сжатии топливная смесь
начинает самопроизвольно детонировать, взрываться. Особенно это затрагивает
агрегаты на бензине, поэтому здесь данный коэффициент имеет строгое
ограничение.

Помните, что применение низкооктанового топлива становится причиной детонации на агрегатах с повышенной ССД. И наоборот, высокооктановое горючее может не позволять двигателю полностью раскрываться, если будет использовано в агрегатах с низким коэффициентом сжатия. По этой причине оба параметра должны соответствовать. Подробнее в таблице ниже.

Отличие степени сжатия от компрессии

Степень сжатия двигателя не является компрессией. Они полностью различаются, хотя многие их путают. Коэффициент, о котором идёт речь в статье, не раскрывает значение оптимального давления ТВС перед возгоранием. Измеряется ССД лишь относительно, в соотношении к единице объёма камеры.

Под компрессией принято понимать предельное значение сжатия, образуемого в камере сгорания, на конечном этапе давления горючей смеси. Данная величина априори не может быть относительной, поэтому её измеряют в абсолютных значениях — атм, кг/см2, бар.

Как рассчитать коэффициент сжатия: по шагам

Степень сжатия и компрессия неразрывно связаны, но не идентичны. Показатель компрессии зависит не только от сжатия. На него оказывает влияние температура ДВС, наличие зазоров в приводных клапанах, состав топлива и многое другое.

Расчет коэффициента сжатия

Ввиду того, что желательно увеличивать
степень сжатия до определённого значения, необходимо уметь рассчитывать этот
показатель. К тому же это даст возможность избежать детонационных моментов,
разрушающих силовой агрегат изнутри в процессе форсирования.

Таким образом, необходимость в измерении
этого показателя требуется в таких случаях, как:

  • форсировка мотора;
  • подгонка под топливо с другим АИ или для метанового топлива с октановым числом 120;
  • послеремонтная корректировка.

Турбированные моторы

На турбомоторах расчёт коэффициента сжатия
отличается. Это объясняется наличием наддува воздуха. Поэтому в этом случае
величину, полученную в ходе вычислений, умножают на показатель
турбокомпрессора.

Кроме того, при вычислении степени сжатия
турбированных моторов учитывается не только давление наддува, но и показатель
эффективного сжатия, климатические изменения и многое другое. В данном случае
процесс значительно усложняется по сравнению с измерениями на атмосферном
двигателе.

Пример подсчета

Вот как выглядит общепринятая расчётная
формула для автомобильного ДВС: «ССД = (РО+ОКС)/ОКС». Степень сжатия здесь
отмечена как «ССД», рабочий объём цилиндра — «РО», а объём камеры сгорания —
«ОКС».

Как рассчитать коэффициент сжатия: по шагам

Для расчёта «РО» нужно в первую очередь
разложить единый объём двигателя или литраж на количество используемых
цилиндров. К примеру, литраж мотора «четвёрки» — 1997 см3. Для определения
ёмкости одного цилиндра, надо 1997 разделить на 4. Получится около 499 см3.

Для вычисления параметра «ОКС» специалисты
пользуются проградуированной в см3 трубкой или пипеткой. Под камерой
подразумевается место, где непосредственно происходит возгорание горючего.
Камеру заправляют, а затем измеряют объём с помощью жидкостной бюретки.

Если
нет градуированной трубочки, можно жидкость выкачать с помощью шприца, а затем
измерить в мерной посуде или на весах.

В этом случае желательно для расчёта
использовать не бензин или солярку, а чистую воду, так как её удельный вес
более соотносим к объёму в см3.

Внимание! Для точного измерения «ОКС» дополнительно приплюсовывается объём толщины прокладки ГБЦ, учитывается форма днища поршней и другие особенности. Поэтому расчёт этой величины рекомендуется доверить специалистам.

Как увеличить степень сжатия двигателя

Если необходимо увеличить данный
показатель, используют несколько способов:

  • расточка блока и установка поршней с большим диаметром;
  • уменьшение объёма камеры сгорания путём удаления слоя металла в месте соединения ГБЦ.

Нельзя забывать, что в некоторых случаях потребуется инсталляция модернизированных поршней. Это делается, чтобы исключить такое нежелательное последствие, как встреча поршней с клапанами. В частности, на элементах увеличивают выемки клапанов. Также в обязательном порядке корректируются заново фазы газораспределения.

Интересно, что лучше всех раскрыли
потенциал степени сжатия ДВС японские производители. В то время как европейские
автокомпании пошли путём усовершенствования гибридных моторов, японцам удалось
увеличить ССД до 14 единиц и на бензиновых силовых агрегатах, применив
изменяемую величину.

Но как это возможно без детонационных моментов? Всё
оказалось просто. Оказывается, нужно охладить камеру, где происходит
возгорание. Тогда можно будет без опасения сжимать смесь. И вовсе не
обязательно для этого использовать прохладный воздух: достаточно модернизировать
систему выпуска.

Как рассчитать коэффициент сжатия: по шагам

Приём, давно известный ещё по гоночным
движкам. Выпускные каналы меняются согласно схеме 4-2-1. Порции выхлопных газов
здесь не мешаются, поочерёдно вылетают в трубу. Благодаря такой чёткой системе
выхлопа, улучшается продувка цилиндров, где остаётся меньше горячих газов.

Секрет японской формулы, согласно которой можно без опаски сжимать горючую смесь, имеет строго математическое соотношение. Так, если процент выхлопа снизить в 2 раза, ССД можно поднимать на 3 единицы, но не больше. Если же при этом ещё и охлаждать воздух, поступающий в цилиндры, можно приплюсовать ещё одну единицу.

Однако для реализации данного метода нужно
будет еще модернизировать газообмен, раскошелившись на фазовращатели обоих
распредвалов. Вдобавок потребуется доработать некоторые моменты. К примеру,
изменить длину поршневого хода посредством компьютерного вмешательства.

Применяется система изменяемого коэффициента на многих японских движках, например, для Inflniti. Способность автоматически менять этот показатель сжатия в зависимости от нагрузки позволяет значительно повышать КПД мотора, особенно турбированного.

Каждая порция смеси сгорает при оптимальном на данный момент работы сжатии. Так, если нагрузки на мотор незначительные и смесь обеднённая, включается максимальное сжатие.

И наоборот, в нагруженном режиме задействуется минимальная степень, так как бензина впрыскивается много и возможна детонация.

Таким образом, передовая система изменения ССД позволяет вдвое уменьшать литраж мотора, сохраняя при этом мощность и динамические характеристики.

Курс на увеличение
степени сжатия двигателя наблюдался и в середине 20 века в
США. Основная масса американских двигателей, выпущенных в 70-е годы, находилась
в пределах 11-13 единиц. Но работали они только на очень качественном,
высокооктановом топливе, получаемом путём этилирования. После того как
этилирование запретили, в серийных образцах ДВС наблюдалось снижение показателя
сжатия.

Важно знать, что прирост мощности будет наиболее заметен на двигателях, штатно работающих на низкой степени сжатия. Например, моторы с показателем 8 единиц, доведённые до 10, выдадут больше мощности, чем агрегаты со стоковым параметром 11 единиц, форсированные до 12.

Дефорсирование ДВС: для чего нужно и как осуществить

Иногда бывает необходимо уменьшить показатель сжатия. В этом случае устанавливается дополнительная металлическая прокладка ГБЦ. Можно использовать две прокладки вместо одной, тем самым утолщая промежуток — объём камеры растёт за счёт высоты головки блока. Более сложный способ подразумевает укорочение поршня — удаление верхнего слоя на токарном станке.

Дефорсирование двигателя, как правило, процедура
вынужденная. В том числе это делается для снижения налоговых выплат или в целях
увеличения ресурса агрегата. Как известно, моторы с низкой степенью сжатия дольше
работают, меньше подвержены износу. Однако любой такой процесс усложняется
законом, чтобы недобросовестные владельцы искусственно не занижали технические
данные.

Как рассчитать коэффициент сжатия: по шагам

Что касается снижения показателя сжатия на
турбированных моторах, то здесь потребуется модернизация системы электрики с
датчиками, всей поршневой группы и форсунок, если это дизельный агрегат.

В отдельных случаях дефорсированию предпочитают свап, когда менее мощный контрактный мотор устанавливают вместо штатного.

Таблица: зависимость степени сжатия от октанового
числа

Степень сжатия Октановое число
5,5-7 АИ 66-72
7-7,5 АИ 72-76
7,5-8,5 АИ 76-85
10 АИ 92
10,5-12,5 АИ 95
12-14,5 АИ 98

Таблица: популярные двигатели и показатель сжатия

Двигатели Степень сжатия
BMW M54B30 10,2
  Mercedes-Benz M112 E32 3.2 л  10
  Ford-Mazda 2,0 л Duratec HE/MZR LF  10,8
  Infiniti VQ37VHR (Nissan) 3.7 л  11.0
  Mitsubishi 4М41  17.0
  Audi 3.6 FSI  12.0
ЗМЗ 406 2.3 л. 8-9,3

Если у вас возникли вопросы — оставляйте их в х под статьей. Мы или наши посетители с радостью ответим на них

Сжатие данных алгоритмом Хаффмана

В данной статье я расскажу вам о широко известном алгоритме Хаффмана, и вы наконец разберетесь, как все там устроено изнутри.

После прочтения вы сможете своими руками(а главное, головой) написать архиватор, сжимающий реальные, черт подери, данные! Кто знает, быть может именно вам светит стать следующим Ричардом Хендриксом!

Да-да, об этом уже была статья на Хабре, но без практической реализации. Здесь же мы сфокусируемся как на теоретической части, так и на программерской. Итак, все под кат!

Немного размышлений

В обычном текстовом файле один символ кодируется 8 битами(кодировка ASCII) или 16(кодировка Unicode). Далее будем рассматривать кодировку ASCII. Для примера возьмем строку s1 = «SUSIE SAYS IT IS EASY
».

Всего в строке 22 символа, естественно, включая пробелы и символ перехода на новую строку — ‘
‘. Файл, содержащий данную строку будет весить 22*8 = 176 бит. Сразу же встает вопрос: рационально ли использовать все 8 бит для кодировки 1 символа? Мы ведь используем не все символы кодировки ASCII.

Даже если бы и использовали, рациональней было бы самой частой букве — S — дать самый короткий возможный код, а для самой редкой букве — T (или U, или ‘
‘) — дать код подлиннее.

В этом и заключается алгоритм Хаффмана: необходимо найти оптимальный вариант кодировки, при котором файл будет минимального веса. Вполне нормально, что у разных символов длины кода будут отличаться — на этом и основан алгоритм.

Кодирование

Почему бы символу ‘S’ не дать код, например, длиной в 1 бит: 0 или 1. Пусть это будет 1. Тогда второму наиболее встречающемуся символу — ‘ ‘(пробел) — дадим 0.

Представьте себе, вы начали декодировать свое сообщение — закодированную строку s1 — и видите, что код начинается с 1.

Итак, что же делать: это символ S, или же это какой-то другой символ, например A? Поэтому возникает важное правило:

Ни один код не должен быть префиксом другого

Это правило является ключевым в алгоритме. Поэтому создание кода начинается с частотной таблицы, в которой указана частота (количество вхождений) каждого символа: Как рассчитать коэффициент сжатия: по шагам Символы с наибольшим количеством вхождений должны кодироваться наименьшим возможным количеством битов. Приведу пример одной из возможных таблиц кодов: Как рассчитать коэффициент сжатия: по шагам Таким образом, закодированное сообщение будет выглядеть так: 10 01111 10 110 1111 00 10 010 1110 10 00 110 0110 00 110 10 00 1111 010 10 1110 01110 Код каждого символа я разделил пробелом. По-настоящему в сжатом файле такого не будет!

Вытекает вопрос: как этот салага придумал код как создать таблицу кодов? Об этом пойдет речь ниже.

Построение дерева Хаффмана

Здесь приходят на выручку бинарные деревья поиска. Не волнуйтесь, здесь методы поиска, вставки и удаления не потребуются. Вот структура дерева на java: class BinaryTree {
private Node root;

public BinaryTree() {
root = new Node();
}
public BinaryTree(Node root) {
this.root = root;
}

}
public class Node {
private int frequence;
private char letter;
private Node leftChild;
private Node rightChild;

}
Это не полный код, полный код будет ниже. Вот сам алгоритм построения дерева:

  1. Создать объект Node для каждого символа из сообщения(строка s1). В нашем случае будет 9 узлов(объектов Node).

    Каждый узел состоит из двух полей данных: символ и частота

  2. Создать объект Дерева(BinaryTree) для кажлого из узлов Node. Узел становится корнем дерева.
  3. Вставить эти деревья в приоритетную очередь. Чем меньше частота, тем больше приоритет. Таким образом, при извлечении всегда выбирается дерево наименьшей частотой.

Далее нужно циклически делать следующее:

  1. Извлечь два дерева из приоритетной очереди и сделать их потомками нового узла (только что созданного узла без буквы). Частота нового узла равна сумме частот двух деревьев-потомков.
  2. Для этого узла создать дерево с корнем в данном узле. Вставить это дерево обратно в приоритетную очередь.

    (Так как у дерева новая частота, то скорее всего она встанет на новое место в очереди)

  3. Продолжать выполнение шагов 1 и 2, пока в очереди не останется одно дерево — дерево Хаффмана

Рассмотрим данный алгоритм на строке s1: Как рассчитать коэффициент сжатия: по шагам Здесь символ «lf»(linefeed) обозначает переход на новую строку, «sp» (space) — это пробел.

А что дальше?

Мы получили дерево Хаффмана. Ну окей. И что с ним делать? Его и за бесплатно не возьмут А далее, нужно отследить все возможные пути от корня до листов дерева. Условимся обозначить ребро 0, если оно ведет к левому потомку и 1 — если к правому.

Строго говоря, в данных обозначениях, код символа — это путь от корня дерева до листа, содержащего этот самый символ. Как рассчитать коэффициент сжатия: по шагам Таким макаром и получилась таблица кодов. Заметим, что если рассмотреть эту таблицу, то можно сделать вывод о «весе» каждого символа — это длина его кода. Тогда в сжатом виде исходный файл будет весить: 2 * 3 + 2*4 + 3 * 3 + 6 * 2 + 1 * 4 + 1 * 5 + 2 * 4 + 4 * 2 + 1 * 5 = 65 бит. Вначале он весил 176 бит. Следовательно, мы уменьшили его аж в 176/65 = 2.7 раза! Но это утопия. Такой коэффициент вряд ли будет получен. Почему? Об этом пойдет речь чуть позже.

Декодирование

Ну, пожалуй, осталось самое простое — декодирование. Я думаю, многие из вас догадались, что просто создать сжатый файл без каких-либо намеков на то, как он был закодирован, нельзя — мы не сможем его декодировать! Да-да, мне было тяжело это осознать, но придется создать текстовый файл table.

txt с таблицей сжатия: 01110
00
A010
E1111
I110
S10
T0110
U01111
Y1110
Запись таблицы в виде ‘символ’«код символа». Почему 01110 без символа? На самом деле он с символом, просто средства java, используемые мной при выводе в файл, символ перехода на новую строку — ‘
‘ -конвертируют в переход на новую строку(как бы это глупо не звучало).

Поэтому пустая строка сверху и есть символ для кода 01110. Для кода 00 символом является пробел в начале строки. Сразу скажу, что нашему коэффициенту ханаэтот способ хранения таблицы может претендовать на самый нерациональный. Но он прост для понимания и реализации. С удовольствием выслушаю Ваши рекомендации в х по поводу оптимизации. Имея эту таблицу, очень просто декодировать.

Вспомним, каким правилом мы руководствовались, при создании кодировки:

Ни один код не должен являться префиксом другого

Вот тут-то оно и играет облегчающую роль. Мы читаем последовательно бит за битом и, как только полученная строка d, состоящая из прочтенных битов, совпадает с кодировкой, соответствующей символу character, мы сразу знаем что был закодирован символ character (и только он!). Далее записываем character в декодировочную строку(строку, содержащую декодированное сообщение), обнуляем строку d, и читаем дальше закодированный файл.

Реализация

Пришло время унижать мой код писать архиватор. Назовем его Compressor. Начнем с начала. Первым делом пишем класс Node: public class Node {
private int frequence;//частота
private char letter;//буква
private Node leftChild;//левый потомок
private Node rightChild;//правый потомок

public Node(char letter, int frequence) { //собственно, конструктор
this.letter = letter;
this.frequence = frequence;
}

public Node() {}//перегрузка конструтора для безымянных узлов(см. выше в разделе о построении дерева Хаффмана)
public void addChild(Node newNode) {//добавить потомка
if (leftChild == null)//если левый пустой=> правый тоже=> добавляем в левый
leftChild = newNode;
else {
if (leftChild.getFrequence() newTree.getFrequence()) {//если частота вставляемого дерева меньше
data.add(i, newTree);//чем част. текущего, то cдвигаем все деревья на позициях справа на 1 ячейку
break;//затем ставим новое дерево на позицию текущего
}
if (i == nElems — 1)
data.add(newTree);
}
}
nElems++;//увеличиваем кол-во элементов на 1
}

public BinaryTree remove() {//удаление из очереди
BinaryTree tmp = data.get(0);//копируем удаляемый элемент
data.remove(0);//собственно, удаляем
nElems—;//уменьшаем кол-во элементов на 1
return tmp;//возвращаем удаленный элемент(элемент с наименьшей частотой)
}
}
Класс, создающий дерево Хаффмана: public class HuffmanTree {
private final byte ENCODING_TABLE_SIZE = 127;//длина кодировочной таблицы
private String myString;//сообщение
private BinaryTree huffmanTree;//дерево Хаффмана
private int[] freqArray;//частотная таблица
private String[] encodingArray;//кодировочная таблица

//—————-constructor———————-
public HuffmanTree(String newString) {
myString = newString;

freqArray = new int[ENCODING_TABLE_SIZE];
fillFrequenceArray();

huffmanTree = getHuffmanTree();

encodingArray = new String[ENCODING_TABLE_SIZE];
fillEncodingArray(huffmanTree.getRoot(), «», «»);
}

//———————frequence array————————
private void fillFrequenceArray() {
for (int i = 0; i < myString.length(); i++) {
freqArray[(int)myString.charAt(i)]++;
}
}

public int[] getFrequenceArray() {
return freqArray;
}

//————————huffman tree creation——————
private BinaryTree getHuffmanTree() {
PriorityQueue pq = new PriorityQueue();
//алгоритм описан выше
for (int i = 0; i < ENCODING_TABLE_SIZE; i++) {
if (freqArray[i] != 0) {//если символ существует в строке
Node newNode = new Node((char) i, freqArray[i]);//то создать для него Node
BinaryTree newTree = new BinaryTree(newNode);//а для Node создать BinaryTree
pq.insert(newTree);//вставить в очередь
}
}

while (true) {
BinaryTree tree1 = pq.remove();//извлечь из очереди первое дерево.

try {
BinaryTree tree2 = pq.remove();//извлечь из очереди второе дерево

Node newNode = new Node();//создать новый Node
newNode.addChild(tree1.getRoot());//сделать его потомками два извлеченных дерева
newNode.addChild(tree2.getRoot());

pq.insert(new BinaryTree(newNode);
} catch (IndexOutOfBoundsException e) {//осталось одно дерево в очереди
return tree1;
}
}
}

public BinaryTree getTree() {
return huffmanTree;
}

//——————-encoding array——————
void fillEncodingArray(Node node, String codeBefore, String direction) {//заполнить кодировочную таблицу
if (node.isLeaf()) {
encodingArray[(int)node.getLetter()] = codeBefore + direction;
} else {
fillEncodingArray(node.getLeftChild(), codeBefore + direction, «0»);
fillEncodingArray(node.getRightChild(), codeBefore + direction, «1»);
}
}

String[] getEncodingArray() {
return encodingArray;
}

public void displayEncodingArray() {//для отладки
fillEncodingArray(huffmanTree.getRoot(), «», «»);

System.out.println(«======================Encoding table====================»);
for (int i = 0; i < ENCODING_TABLE_SIZE; i++) {
if (freqArray[i] != 0) {
System.out.print((char)i + » «);
System.out.println(encodingArray[i]);
}
}
System.out.println(«========================================================»);
}
//——————————————————
String getOriginalString() {
return myString;
}
}
Класс, содержащий который кодирует/декодирует: public class HuffmanOperator {
private final byte ENCODING_TABLE_SIZE = 127;//длина таблицы
private HuffmanTree mainHuffmanTree;//дерево Хаффмана (используется только для сжатия)
private String myString;//исходное сообщение
private int[] freqArray;//частотаная таблица
private String[] encodingArray;//кодировочная таблица
private double ratio;//коэффициент сжатия

public HuffmanOperator(HuffmanTree MainHuffmanTree) {//for compress
this.mainHuffmanTree = MainHuffmanTree;

myString = mainHuffmanTree.getOriginalString();

encodingArray = mainHuffmanTree.getEncodingArray();

freqArray = mainHuffmanTree.getFrequenceArray();
}

public HuffmanOperator() {}//for extract;

//—————————————compression————————————————————
private String getCompressedString() {
String compressed = «»;
String intermidiate = «»;//промежуточная строка(без добавочных нулей)
//System.out.println(«=============================Compression=======================»);
//displayEncodingArray();
for (int i = 0; i < myString.length(); i++) {
intermidiate += encodingArray[myString.charAt(i)];
}
//Мы не можем писать бит в файл. Поэтому нужно сделать длину сообщения кратной 8=>
//нужно добавить нули в конец(можно 1, нет разницы)
byte counter = 0;//количество добавленных в конец нулей (байта в полне хватит: 0

Как вычислить степень сжатия файла

  • Все алгоритмы сжатия оперируют входным потоком информации с целью получения более компактного выходного потока при помощи некоторого преобразования. Основными техническими характеристиками процессов сжатия и результатов их работы являются:
  • ·степень сжатия – отношение объемов исходного и результирующего потоков;
  • ·скорость сжатия – время, затрачиваемое на сжатие некоторого объема информации входного потока, до получения из него эквивалентного выходного потока;
  • ·качество сжатия – величина, показывающая, на сколько сильно упакован выходной поток при применении к нему повторного сжатия по тому же или другому алгоритму.

Алгоритмы, которые устраняют избыточность записи данных, называются алгоритмами сжатия данных, или алгоритмами архивации. В настоящее время существует огромное множество программ для сжатия данных, основанных на нескольких основных способах.

  1. Все алгоритмы сжатия данных делятся на:
  2. ) алгоритмы сжатия без потерь, при использовании которых данные на приемной восстанавливаются без малейших изменений;
  3. )алгоритмы сжатия с потерями, которые удаляют из потока данных информацию, незначительно влияющую на суть данных, либо вообще невоспринимаемую человеком.
  4. Существует два основных метода архивации без потерь:
  5. алгоритм Хаффмана (англ. Huffman), ориентированный на сжатие последовательностей байт, не связанных между собой,

алгоритм Лемпеля-Зива (англ. Lempel, Ziv), ориентированный на сжатие любых видов текстов, то есть использующий факт неоднократного повторения «слов» – последовательностей байт.

Практически все популярные программы архивации без потерь (ARJ, RAR, ZIP и т.п.) используют объединение этих двух методов – алгоритм LZH.

Алгоритм основан на том факте, что некоторые символы из стандартного 256-символьного набора в произвольном тексте могут встречаться чаще среднего периода повтора, а другие, соответственно, – реже. Следовательно, если $+o записи распространенных символов использовать короткие последовательности бит, длиной меньше 8, а для записи редких символов – длинные, то суммарный объем файла уменьшится.

  Телефон зте блейд а 610 характеристики

Алгоритм Лемпеля-Зива. Классический алгоритм Лемпеля-Зива -LZ77, названный так по году своего опубликования, предельно прост.

Он формулируется следующим образом: если в прошедшем ранее выходном потоке уже встречалась подобная последовательность байт, причем запись о ее длине и смещении от текущей позиции короче чем сама эта последовательность, то в выходной файл записывается ссылка (смещение, длина), а не сама последовательность.

4.Показатель степени сжатия файлов

Сжатие информации в архивных файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Алгоритмы подобного сжатия информации реализованы в специальных программах-архиваторах (наиболее известные из которых arj/arjfolder, pkzip/pkunzip/winzip, rar/winrar) применяются определенные Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Поэтому основным показателем эффективности той или иной программы-архиватора является степень сжатия файлов.

Степень сжатия файлов характеризуется коэффициентом Кс, определяемым как отношение объема сжатого файла Vc к объему исходного файла Vо, выраженное в процентах (в некоторых источниках используется обратное соотношение):

Степень сжатия зависит от используемой программы, метода сжатия и типа исходного файла.

Наиболее хорошо сжимаются файлы графических образов, текстовые файлы и файлы данных, для которых коэффициент сжатия может достигать 5 – 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей Кс = 60 – 90%. Почти не сжимаются архивные файлы.

Это нетрудно объяснить, если знать, что большинство программ-архиваторов используют для сжатия варианты алгоритма LZ77 (Лемпеля-Зива), суть которого заключается в особом кодировании повторяющихся последовательностей байт (читай – символов).

Частота встречаемости таких повторов наиболее высока в текстах и точечной графике и практически сведена к нулю в архивах.

  Гугл музыка и ютуб музыка

Кроме того, программы для архивации все же различаются реализациями алгоритмов сжатия, что соответственно влияет на степень сжатия.

В некоторые программы-архиваторы дополнительно включаются средства, направленные на уменьшение коэффициента сжатия Кс.

Так в программе WinRAR реализован механизм непрерывного (solid) архивирования, при использовании которого может быть достигнута на 10 – 50% более высокая степень сжатия, чем дают обычные методы, особенно если упаковывается значительное количество небольших файлов однотипного содержания.

Характеристики архиваторов – обратно зависимые величины. То есть, чем больше скорость сжатия, тем меньше степень сжатия, и наоборот.

На компьютерном рынке предлагается множество архиваторов – у каждого свой набор поддерживаемых форматов, свои плюсы и минусы, свой круг почитателей, свято верящих в то, что используемый ими архиватор самый лучший.

Не будем никого и ни в чем разубеждать – просто попытаемся беспристрастно оценить самые популярные архиваторы в плане функциональности и эффективности. К таковым отнесем WinZip, WinRAR, WinAce, 7-Zip – они лидируют по количеству скачиваний на софтовых серверах.

Рассматривать остальные архиваторы вряд ли целесообразно, поскольку процент применяющих их пользователей (судя по числу скачиваний) невелик.

Пошаговая инструкция

В этом пошаговом руководстве я покажу Вам, как узнать степень сжатия файлов архива. Для этого щелкнем правой кнопкой мыши по заархивированному файлу и выбираем графу «Свойства».

Как рассчитать коэффициент сжатия: по шагам

В новом диалоговом окне переходим во вкладку «Архив» и в графе «Степень сжатия» Вы видите процент сжатия документа. Это все! Если информация помогла Вам – жмите Спасибо!

Приветствую! В этой подробной пошаговой инструкции, с фотографиями, мы покажем вам, как узнать степень сжатия файлов в архиве.

Воспользовавшись этой инструкцией, вы с легкостью справитесь с данной задачей.

Коэффициент сжимаемости: как рассчитать, примеры и упражнения — наука

В коэффициент сжимаемости Z, или коэффициент сжатия для газов, представляет собой безразмерное значение (без единиц измерения), которое вводится как поправка в уравнение состояния идеальных газов. Так

Содержание:

В коэффициент сжимаемости Z, или коэффициент сжатия для газов, представляет собой безразмерное значение (без единиц измерения), которое вводится как поправка в уравнение состояния идеальных газов. Таким образом, математическая модель больше напоминает наблюдаемое поведение газа.

В идеальном газе уравнение состояния, связанное с переменными P (давление), V (объем) и T (температура), выглядит следующим образом: П.В. идеальный = n.R.T где n = число молей и R = постоянная идеального газа. Добавляя поправку на коэффициент сжимаемости Z, это уравнение принимает вид:

P.V = Z.n.R.T

Как рассчитать коэффициент сжимаемости?

Учитывая, что молярный объем равен Vпрохладно = В / п, имеем реальный молярный объем:

П. Vнастоящий = Z. R. T → Z = PV настоящий/ RT

  • Поскольку коэффициент сжимаемости Z зависит от условий газа, он выражается как функция давления и температуры:
  • Z = Z (P, Т)
  • Сравнивая первые два уравнения, можно увидеть, что если число молей n равно 1, молярный объем реального газа связан с объемом идеального газа следующим образом:
  •  Vнастоящий / Vидеальный = Z → V настоящий = Z Vидеальный
  • Когда давление превышает 3 атмосферы, большинство газов перестают вести себя как идеальные газы, и фактический объем значительно отличается от идеального.

Это было реализовано в его экспериментах голландского физика Йоханнеса Ван дер Ваальса (1837-1923), которые привели его к созданию модели, которая лучше подходила для практических результатов, чем уравнение идеального газа: уравнение состояния Вана. дер Ваальс.

Примеры

Согласно уравнению П.В.настоящий= Z.n.RT, для идеального газа Z = 1. Однако в реальных газах с увеличением давления увеличивается и значение Z. Это имеет смысл, потому что чем выше давление, молекулы газа имеют больше возможностей для столкновения, поэтому силы отталкивания увеличиваются, а вместе с ними и объем.

С другой стороны, при более низких давлениях молекулы движутся более свободно и силы отталкивания уменьшаются. Поэтому ожидается меньшая громкость. Что касается температуры, то при повышении Z уменьшается.

  1. Как заметил Ван-дер-Ваальс, вблизи так называемой критической точки поведение газа сильно отличается от поведения идеального газа.
  2. Критическая точка (Tc, Пc) любого вещества являются значениями давления и температуры, определяющими его поведение до фазового перехода:
  3. -Tc это температура, выше которой рассматриваемый газ не сжижается.
  4. -Пc- минимальное давление, необходимое для сжижения газа при температуре Tc
  5. Однако у каждого газа есть своя критическая точка, определяющая температуру и пониженное давление Tр И пр следующим образом:
  6. пр = P / Pc
  7. Vр = В / Вc
  8. Тр = Т / Тc

Замечено, что ограниченный газ с идентичным Vр Y Тр оказывает такое же давление пр. По этой причине, если Z отображается как функция пр себе Тр, каждая точка на этой кривой одинакова для любого газа. Это называется принцип соответствующих состояний.

Коэффициент сжимаемости в идеальных газах, воздухе, водороде и воде

Ниже представлена ​​кривая сжимаемости для различных газов при различных пониженных температурах. Вот несколько примеров Z для некоторых газов и процедура определения Z с помощью кривой.

Идеальные газы

У идеальных газов Z = 1, как объяснялось в начале.

Воздух

Для воздуха Z составляет приблизительно 1 в широком диапазоне температур и давлений (см. Рисунок 1), где модель идеального газа дает очень хорошие результаты.

Водород

Z> 1 для всех давлений.

вода

Чтобы найти Z для воды, вам нужны значения критических точек. Критическая точка воды: Pc = 22,09 МПа и Tc= 374,14 ° С (647,3 К). Снова необходимо учитывать, что коэффициент сжимаемости Z зависит от температуры и давления.

Например, предположим, что вы хотите найти Z воды при 500 ºC и 12 МПа. Итак, первое, что нужно сделать, это вычислить приведенную температуру, для которой градусы Цельсия необходимо преобразовать в Кельвина: 50 ºC = 773 K:

Тр = 773 / 647.3 = 1.2

пр = 12 / 22.09 = 0.54

Этими значениями поместим на график рисунка кривую, соответствующую Tр = 1,2, обозначено красной стрелкой. Затем смотрим на горизонтальную ось значение Pр ближе к 0,54, отмечен синим цветом. Теперь рисуем вертикаль, пока не перехватим кривую Tр = 1,2 и, наконец, он проецируется из этой точки на вертикальную ось, где мы читаем приблизительное значение Z = 0,89.

Решенные упражнения

Упражнение 1

  • Это образец газа с температурой 350 К и давлением 12 атмосфер с молярным объемом на 12% больше, чем предсказывается законом идеального газа. Рассчитать:
  • а) Коэффициент сжатия Z.
  • б) Молярный объем газа.
  • c) На основании предыдущих результатов укажите, какие силы преобладают в данной пробе газа.
  • Данные: R = 0,082 л атм / моль К

Решение для

  1. Зная, что V настоящий на 12% больше, чем Vидеальный :
  2.  Vнастоящий = 1,12 Видеальный
  3. Z = V настоящий / Vидеальный = 1.12

Решение б

П. Vнастоящий = Z. R. T → Vнастоящий = (1,12 x 0,082 x 350/12) л / моль = 2,14 л / моль.

Решение c

Силы отталкивания преобладают, так как объем образца увеличился.

Упражнение 2.

  • В объеме 4,86 ​​л при 27 ° C содержится 10 моль этана. Найдите давление этана по формулам:
  • а) Модель идеального газа
  • б) Уравнение Ван-дер-Ваальса
  • c) Найдите коэффициент сжатия из предыдущих результатов.
  • Данные для этана
  • Коэффициенты Ван-дер-Ваальса:

а = 5,489 дм6. атм. моль-2 и b = 0,06380 дм3. моль-1.

Критическое давление: 49 атм. Критическая температура: 305 К

Решение для

Температура переводится в Кельвин: 27 º C = 27 + 273 K = 300 K, также помните, что 1 литр = 1 л = 1 дм3.

Затем предоставленные данные подставляются в уравнение идеального газа:

P.V = n.R.T → P = (10 x 0,082 x 300 / 4,86 ​​л) атм = 50,6 атм

Решение б

Уравнение состояния Ван-дер-Ваальса:

Где a и b — коэффициенты, указанные в заявлении. При очистке P:

Решение c

Рассчитываем пониженное давление и температуру:

пр = 35.2/ 49 = 0.72

Тр = 300 /305 = 0.98 ≈ 1

С этими значениями мы ищем значение Z на графике на рисунке 2, обнаруживая, что Z составляет приблизительно 0,7.

 Ссылки

  1. Аткинс, П. 1999. Физическая химия. Издания Омега.
  2. Ценгель, Ю. 2012. Термодинамика. 7ма Издание. Макгроу Хилл.
  3. Энгель, Т. 2007. Введение в физико-химию: термодинамика. Пирсон.
  4. Левин, И. 2014. Основы физико-химии. 6-е. Издание. Макгроу Хилл.
  5. Википедия. Фактор сжимаемости. Получено с: en.wikipedia.org.

Формулы закона Бойля Мариотта

P1/P2=V2/V1

или

P1V1=P2V2

При пользовании этими формулами безразлично, в каких единицах вы будете измерять объем и давление, лишь бы оба объема и оба давления были измерены в одинаковых единицах. Например, если одно давление измерено в килограммах на квадратный сантиметр, то в тех же единицах должно быть измерено и другое давление. Если один объем измерен в кубических сантиметрах, то так же должен быть измерен и другой.

Применение закона Бойля Мариотта в быту

Пылесос состоит главным образом из вентилятора, приводимого в движение электромотором. Вентилятор выталкивает воздух своими лопастями и создает за ними разреженное пространство. Так как воздух, который из-за разности давлений внутри и снаружи устремляется по трубке в камеру вентилятора, проходит через ковер, то пыль уносится с ковра. В некоторых пылесосах применяется, кроме того, вращающаяся щетка, подметающая и выбивающая ковер. Воздух, прошедший вентилятор, поступает в мешок или другой отстойник для пыли и грязи, которые потом могут быть опорожнены различными способами в зависимости от типа пылесоса.

Водолазные колокола и водолазные костюмы. Когда водолазный колокол погружается в воду, воздух тоже сжимается, но при помощи компрессора, находящегося снаружи. Воздух нагнетается под колокол, поэтому вода совсем не входит в колокол. При этом необходимо все время накачивать в колокол свежий воздух в количестве, необходимом для работающих там людей. Излишек воздуха будет пузырями вырываться наружу. Важной частью водолазного костюма является шлем, который привинчивается к верхней части водонепроницаемого костюма. Обычно шлем снабжают воздухом таким же образом, как водолазный колокол. В некоторых типах костюмов водолаз имеет при себе собственный запас сжатого воздуха. 

Одно из своеобразных проявлений закона Бойля — наше дыхание. Когда мускулы, сокращаясь, тянут диафрагму вниз, объем пространства, где помещаются легкие, увеличивается, отчего давление внутри становится меньше наружного. В результате воздух из пространства с большим давлением поступает в легкие, где давление меньше. Обратное движение диафрагмы уменьшает объем легочного пространства и делает давление внутри легких большим наружного. Поэтому воздух и ненужные газы выходят из легких.

Задача 1. В цилиндре ДВС адиабатно сжимается воздух с начальными параметрами p1 = 0.1 МПа и T1 = 300 К. Степень сжатия воздуха e = 10. К сжатому воздуху в изохорном процессе подводится теплота q = 288 кДж/кг. Определить параметры воздуха в узловых точках и рассчитать работу сжатия.

Формула адиабатического сжатия

Изображаем адиабатный и изохорный процессы в диаграммах р-u и T-S. Процесс 1-2 адиабатного сжатия воздуха от V1 до V2 = V1/10 и процесс 2-3 изохорного подвода тепла. Из уравнения состояния определяем значение удельного объема в точке 1:

Задача 2. Начальные параметры воздуха, адиабатно сжимаемого в компрессоре ГТУ.

р1=0,1 Мпа и Т1=29 К.. Степень повышения давления в компрессоре β = 5. Затем воздух подается в камеру сгорания, где при постоянном давлении к нему подводится теплота в количестве 242 кДж/кг. Определить параметры воздуха в узловых точках и работу сжатия компрессора.

Формула адиабатического сжатия

Изобразим адиабатный и изобарный процессы в диаграммах p-u и T-S. Процесс 1-2 повышения давления воздуха от p1 = 0,1 МПа до p2 = 0,5 МПа, и процесс 2-3 изобарного (при p2 = const) подвода тепла.

  1. Определяем из уравнения состояния значение удельного объема в точке 1:
  2. Формула адиабатического сжатия
  3. Из уравнения соотношения давлений и температур для адиабатного процесса определяем значение температуры в точке 2:
  4. Определяем работу сжатия :
  5. Удельный объем в точке 2 находим из уравнения состояния:
  6. p2 x v2 = RT2
  7. Откуда:
  8. Процесс 2-3 изобарный, поэтому:
  9. P2 = P3 = 0,5 МПа
  10. В процессе 2-3 подведено тепло:
  11. q = Cp (T3 — T2)
  12. Отсюда:
  13. Удельный объем в точке 3:

Задача 3. Воздух, начальные параметры которого р1=0,1 МПа и Т1=300 К адиабатно сжимается в компрессоре турбонагнетателя ДВС до давления p2 = 0,28 МПа, затем при р=const воздух охлаждается в холодильнике до температуры t3=37С°. Определить работу сжатия компрессора и количество теплоты отводимой от 1 кг воздуха.

  • Из уравнений адиабатного процесса определяем температуру Т2 в конце процесса сжатия компрессора.
  • Откуда:
  • Количество отводимой теплоты:
  • Работа сжатия компрессора:

Источник: https://tehnar.net.ua/adiabatnyiy-protsess-primeryi-resheniya-zadach/

Теория горения и взрыва

Качественное отличие взрывного горения от дефлаграционного связано с особо благоприятными условиями для взаимодействия горючего и окислителя. При взрывном горении выделение теплоты происходит настолько быстро, что формируется ударная (взрывная) волна, движущаяся по объёму горящей смеси.

Процессы взрывного горения всегда связаны с протеканием цепных реакций. Такие химические реакции обычно ускоряются не за счет разветвления цепей, а за счет саморазогрева газовой смеси, что в дальнейшем может приводить к возникновению теплового взрыва.

Определяющую роль при взрывном горении играют источник инициирования реакции, теплопроводность вещества и диффузия активных центров, вызывающих протекание цепной реакции.

Механизм протекания цепной реакции, описанный академиком Н.Н. Семеновым, присущ многим реальным процессам. В 1924 году его ученик Ю.Б. Харитон фактически дал старт новому научному направлению, экспериментально показав существование разветвленных цепных химических реакций.

Измеряя интенсивность свечения фосфора при его окислении, он заметил, что даже при самых малых изменениях условий проведения опыта (концентрации реагентов, температуры, примесей и даже размера сосуда) реакция ускорялась скачкообразно.

Механизм цепных реакций в 1926 году описал его научный руководитель Н.Н. Семенов, через тридцать лет получивший за эти исследования Нобелевскую премию по химии. На основе работ Н.Н. Семенова были разработаны в дальнейшем теории цепного и теплового взрыва.

Они явились химическими аналогами того, что происходит в атомной и водородной бомбах.

Предложенная Н.Н. Семеновым теория сразу вошла в моду, так как дала объяснение причине чудовищного и загадочного взрыва, произошедшего в 1921 году на одном из немецких складов: на воздух взлетело сразу несколько тысяч тонн аммиачной селитры.

При этом для разрушения массива слежавшейся селитры применяли небольшие взрывы. Харитон Ю.Б. подсчитал, что в огромной массе материала, до того казавшегося инертным, время разлета сжатого вещества превысило время реакции.

В дальнейшем такой подход (принцип Харитона) пригодился и при создании сверхмощных отечественных авиабомб и боезарядов для артиллерии, включая системы «Катюши».

При анализе взрывных явлений многие ученые отмечали, что причинами ускорения скорости распространения пламени (интенсификации горения) могут быть различные газодинамические и теплофизические явления, например, подогрев смеси газов и воздуха, повышение давления и др. При таких определенных условиях взрывное горение далее может перейти в детонационное.

В процессах взрыва газовоздушных смесей развиваются ударные волны, на фронте которых достигаются высокие параметры: скорость распространения пламени, давление и температура.

Иногда они могут инициировать возникновение детонации. Реальная вероятность возникновения детонационного горения взрывоопасных сред на производстве весьма мала, т. к.

в большинстве случаев критических параметров достичь не удается.

Взрывное горение сопровождается ударной волной, которая представляет собой рас­пространяющуюся волну скачка уплотнения газа.

Она создается при эффективной видимой скорости пламени, равной примерно 0,2. Здесь — число Маха, определяемое отношением фактической скорости перемещения газа к скорости звука в данной среде.

Для углеводородовоздушных смесей это соответствует видимой скорости движения пламени около 60 м/с.

Наиболее широкое применение взрывные явления нашли в военном деле, где для этого используются различные конденсированные взрывчатые вещества.

Эти вещества (неядерные) относятся к химическим взрывчатым веществам, так как энергия при их взрыве выделяется за счет протекания химических реакций горючего и окислителя, которые содержатся во взрывчатом веществе.

Большая часть используемых на практике взрывчатых веществ –  твердые вещества. Вместе с тем широко применяются и могут образоваться в промышленности газообразные взрывоопасные смеси.

Источник: http://ido.tsuab.ru/mod/book/view.php?id=10764&chapterid=3106

ПОИСК

    Принципиальная схема детандерного расширения представлена на рис. 41. Детандерное расширение характеризуется постоянством энтропии процесса. Газ засасывается компрессором К при давлении pi и температуре Ti и изотермически сжимается до давления р2 (линия 1—2).

Сжатый газ расширяется в детандере Д-Р до первоначального давления рь Теоретически расширение в детандере происходит при постоянной энтропии (линия 2—3) и газ должен охладиться при этом до температуры Тг. При этом работа, совершаемая 1 кг газа в детандере, равна /i2—h-л.

В действительности процесс в детандере отклоняется от адиабатического и расширение происходит по политропе (линия 2—< ).

Энтальпия газа после расширения будет при этом h i, и работа, затрачиваемая в детандере, составит /дет = /1г— з-Отношение действительной работы к теоретической называется коэффициентом полезного действия детандера [c.

124]     При адиабатическом сжатии газа тепло извне не подводится и не отводится, поэтому вся работа, затрачиваемая на сжатие газа, идет на увеличение его энтальпии, т. е. температуры. Работа, затрачиваемая на адиабатическое сжатие газа, равна [c.107]

    Затрата энергии на сжатие газа в адиабатическом процессе будет больше, чем в изотермическом. При политропическом процессе затрата работы на сжатие газа составит [c.107]

    Охлаждение газов при их расширении в детандере. В данном случае расширение предварительно сжатого газа происходит в газовом двигателе, который одновременно совершает внешнюю работу последняя может быть использована для любых целей, например для перекачки жидкостей или нагнетания газов.

Расширение сжатого газа в детандере происходит без обмена теплом с окружающей средой, и совершаемая при этом газом работа производится за счет его внутренней энергии, в результате чего газ охлаждается.

Предельная температура охлаждения определяется по общему уравнению (IV, 1) для адиабатического расширения идеального газа. [c.652]

    Соответственно для адиабатического процесса сжатия газа уравнение (7-29) выразится следующим образом  [c.218]

    Задача 111.23. Метан при 20° С подвергается многоступенчатому сжатию от 1,5 до 90 ат с промежуточным охлаждением до начальной температуры. Определить увеличение потребляемой мощности при нарушении работы промежуточных холодильников и охлаждении газа только до 40° С, Сжатие считать адиабатическим (показатель адиабаты A=l,31). [c.95]

    Газ засасывается компрессором К при давлении р, и температуре Г, и изотермически сжимается до давления р2- Сжатый газ расширяется в детандере до первоначального давления р,.

Теоретически расширение в детандере происходит при постоянной энтропии, и газ должен охладиться при этом до температуры Гз- В действительности процесс в детандере несколько отклоняется от адиабатического.

[c.128]

    Поскольку теплопроводность разреженного газа очень мала и теплообмен со стенками цилиндра практически отсутствует, сжатие газа в сухих вакуум-насосах происходит адиабатически. Как следует из уравнения (IV,8), удельная работа адиабатического сжатия 4д — = О при Р2/Р1 = 1, т. е. в начальный момент, когда = 1 ат, и при достижении [c.173]

    Процесс адиабатического сжатия газа характеризуется полным отсутствием теплообмена между газом и окружающей средой. При адиабатическом сжатии газа dQ = О и из уравнения (IV,2) следует, что dS = 0. [c.154]

    В компрессорах, работающих без охлаждения газа, происходит дополни гельный нагрев его в результате отсутствия отвода тепла, выделяемого при трении быстро движущихся деталей машины о газ, вследствие гидравлических сопротивлений и других причин.

Сжатие газа в таких машинах протекает по политропе, показатель которой пг Н> к. Поэтому мощность сжатия в неохлаждаемых компрессорах принято сравнивать с мощностью сжатия в условной машине, сжимающей газ по адиабате (изоэнтропно).

Эта машина называется изоэнтропной и является наиболее экономичной машиной из класса компрессоров, работающих без охлаждения газа. Отношение мощности сжатия изоэнтропной машины Л т.

ад к мощности N данного компрессора, работающего без охлаждения газа, называется изоэнтропным (адиабатическим) к. п. д.т)ад  [c.156]

    Теоретически процесс сжатия газа в компрессоре может быть адиабатическим или изотермическим. [c.217]

    Как известно, площадь диаграммы выражает работу, совершаемую в процессе сжатия газа. Легко видеть, что эта работа будет наименьшей при изотермическом сжатии и наибольшей — при адиабатическом. При охлаждении газа в компрессоре через рубашку процесс сжатия приближается к изотермическому, причем соответственно снижается расход энергии на сжатие газа. [c.224]

    Истинная мольная теплоемкость газообразных углеводородов с повышением температуры и молекулярного веса возрастает.

При одном и том Hie числе углеродных атомов в молекуле наибольшая теплоемкость соответствует углеводородам парафинового ряда. Отпо-Hienne pj v к является показателем адиабаты.

Им пользуются при вычислении истинной мольной теплоемкости при постоянном объеме, а также в расчетах адиабатического сжатия газов по формуле [c.64]

    Адиабатическое расширение сжатого газа с производством внешней работы. Этот метод также используется для получения глубокого холода. В данном случае адиабатическое расширение рабочего газа производят в специальной расширительной машине — детандере.

Детандер — это поршневой (при методе Клода) или центробежный (при методе Капицы) двигатель, работающий за счет расширения сжатого рабочего газа. Мощность, развиваемая детандером, обычно используется для частичного покрытия потребности в энергии самой холодильной установки.

[c.475]

    Идеальный цикл сжижения газа. Определим, пользуясь Т — «-диаграммой (рис. XVI1-2), минимальную затрату работы при идеальном обратимом процессе сжижения газа.

Начальное состояние газа характеризуется точкой / (Г), г,), а его состояние после сжижения — точкой 3.

1 1деяльпый процесс осуществляется путем изотермического сжатия газа (линия /—2) и его адиабатического, или нзоэнтропического, расширения (линия 2—3). [c.649]

    Отношение изобарной теплоемкости к изохорно Ср1Су называется показателем адиабаты и используется пзи расчетах адиабатического сжатия газа (рис. 6). Чаш,е всего приходится иметь дело с политропическим сжатием или расширением. Для инженерных расчетов показатель политропы берется равным /г = 0,95 Ср/Су. [c.46]

    При возбуждении ударной волны в химически реагирующем горючем газе под влиянием адиабатического сжатия смеси наряду с ударной волной возникает волна горения. Совокупность этих волн представляет собой детонационную волну.

В детонационной волне потери на трение и теплоотдачу при ее движении по трубе компенсируются энергией, выделяющейся в волне горения. Благодаря этому при распространении по трубе детонационной волны становится возможным стационарный режим, когда скорость детонации (О) остается постоянной.

Условие существования стационарного режима определяется правилом Чемпена — Жуге, согласно которому стабильность детонационной волны достигается, если скорость потока сжатого газа за фронтом детонационной волны равна или выше скорости звука в этом газе.

Правило Чемпена — Жуге позволяет найти на адиабате Гюгоньо точку с такими значениями Рг и Уг, которые обеспечивают стабильность детонационной волны и позволяют вычислить скорость детонации В  [c.141]

    Принимая сжатие газа в каждой ступени адиабатическим, по уравнению (40) получим  [c.130]

    Адиабатическое воспламенение возможно, например, при работе компрессоров. Поэтому очень важен отвод тепла, образующегося при сжатии газов. Адиабатическое воспламенение — одна из причин возникновения наиболее опасного детонационного горения. [c.204]

    В газообразных системах причиной местного адиабатического сжатия газа может служить ударная волна, возникающая при резком открывании вентилей и прО  [c.28]

    Минимальная затрата работы будет при идеальном процессе сжижения газа, который можно представить осуществляемым путем изотермического сжатия и адиабатического расширения. Как видно из Т—5-диаграммы (рис. 482), в таком процессе газ сжимается изотермически при температуре Тх от точки А до точки В по прямой АВ.

После сжатия газ адиабатически расширяется по вертикали ВС, превращаясь в жидкость. Газ подвергается также охлаждению, причем при помощи охлаждающей воды от него отнимают не только тепло в количестве, необходимом для сжижения, но и тепло, выделившееся в результате изотермического сжатия [c.

706]

    Линии сжатия и расширения — политропы с переменным показателем, что наглядно показано на диаграмме 5, Т (рис. 18.1, б). В начале сжатия (точка а) температура газа ниже температуры стенок цилиндра и поршня. Поэтому процесс сжатия происходит с подводом тепла при показателе политропы большем, чем показатель адиабаты.

При сжатии температура газа повышается, и направление теплообмена изменяется, как только температура газа превышает температуру стенок цилиндра и поршня. Газ начинает отдавать тепло, а показатель политропы изменяется от п > /г в начале сжатия до и < /г в конце сжатия.

При равенстве температур газа и окружающих стенок на мгновение теплообмен прекращается, и сжатие становится адиабатическим (п = к). [c.231]

    Допустим, что состоя51ие сжатого газа перед детандером характеризуется температурой Т, = 205 К и давлением = 100 ат — точка 1. Процесс адиабатического расширения газа с отдачей пненшей работы осушествляется при S = onst.

Поэтому опустив из точки 1 вертикаль вниз до пересечения с изобарой, отвечающей заданному конечному давлению Рз = сип, найдем точку 4, характеризующую состояние газа в конце детандирования.

Этой точке соответствует температура Т4 = 82 К и, следовательно, понижение температуры газа ЛГ  [c.653]

    Первый член правой части этого уравнения будет иметь различные значения в зависимости от характера теплообмена с окружающей средой. Весьма характерным является адиабатический к. п. д., при котором в качестве эталона для сравнения принимается работа сжатия газа в идеальных условиях отсутствия теплообмена и потерь, [c.34]

    Газ сжимается изотермически по линии / — 5 до необходимого давления Рз, и выделяющаяся при сжатии теплота отводится охлаждающей водой в холодильнике. Сжатый газ адиабатически расширяется по линии 3 — Ос совершением внешней работы, его температура понижается и в конце расширения (точка 0) це.ликом сжижается. [c.83]

    Характерные особенности имеет так называемое адиабатическое воспламенение в результате адиабатического сжатия газов.

Если нагреть горючую смесь, находящуюся в сосуде с холодными стенками, путем адиабатического сжатия, т. е. достаточно быстро, то она может воспламениться.

Это произойдет в том случае, если вследствие начавшейся реакции тепла выделяется больше, чем отводится. [c.204]

    Для третьей стадии цикла работа будет отрицательна, так как происходит сжатие газа и д = —nRT n VJV ,), где по условию Кд = ЗКь а объем должен быть получен согласно указанию о том, что после адиабатического сжатия газ должен вернуться в исходное состояние, следовательно, должно быть равенство [c.69]

    Энергетическое разделение сжатого газа на охлажденный и нагретый потоки в адиабатических условиях осуществляют в вихревой трубе (ВТ) (1) при [c.9]

    Процесс сжатия газа в турбокомпрессорах аналогичен сжатию газа в турбогазодувках. Как видно из рис.

IV-15, после сжатия в группе неохлаждаемых колес турбокомпрессора (линии АС, DE и FG) газ имеет температуру более высокую, чем температура в конце адиабатического сжатия (точки В).

Так же как и в турбогазодувках, увеличение температуры газа сверх адиабатической происходит вследствие дополнительного нагрева газа за счет тепла, выделяемого при трении его о лопатки и плоскости вращающихся рабочих колес. [c.170]

    Сравнение выражений для ад. И /из. показывает, что при изотермическом сжатии газа расход энергии меньше, чем при адиабатическом процессе.

Поэтому стараются по возможности осуществлять процесс сжатия газа изотермически, для чего приходится отнимать от сжимаемого газа определенное количество тепла.

С этой целью цилиндры компрессоров снабжают либо наружными ребрами для воздушного охлаждения, либо специальными рубашками для водяного охлаждения. Однако [c.175]

    Для процесса адиабатического сжатия в идеально изолированном цилиндре, учитывая, что dQ = 0, дифференциал работы процесса адиабатического сжатия газа в соответствии с зависимостями (111-120) и (111-22) равен [c.248]

    Процессы сжатия газа в компрессоре изображаются на диаграмме Т—5 следующим образом. При адиабатическом сжатии q = 0, следовательно по формуле (7-31) AS = 0, т. е.

процесс идет без изменения энтропии (S = onst). Поэтому.

процесс изображается вертикальной линией 1—2, причем точка 1 характеризует состояние газа до сжатия и лежит на пересечении изобары р и изотермы Т] точка 2 отвечает [c.219]

    Отличительной особенностью многоступенчатого теоретического цикла (рис. 23) от одноступенчатого является ступенчатое сжатие газа адиабатическое или политропическое сжатие в цилиндрах чередуется с изобарическим сжатием в промежуточных холодильниках. Процесс многоступенчатого сжатия в V, Р- и s, Г-диаграм-мах представлен на рис. 23. [c.58]

    Дросселирование сжатого газа. Дросселирование, т. е. пропускание газа через узкую щель, приводит к его адиабатическо-лу расширению без отдачи внешней работы. При этом в случае [c.474]

    Если время адиабатического сжатия газа нри прохождении звуковой волны заметно превышает время колебательной релаксации Ткол то молекулярную колебательную теплоемкость можно считать близкой к равновесной колебательной теплоемкости С ол- В тех же случаях, когда полупериод колебаний меньше вс личины Ткол (большие частоты), колебательная теплоемкость будет практически равна нулю, т. е. вся заключенная в данном элементе газа энергия будет иметь форму поступательной и вращательной энергии. [c.77]

    Процессы сжатия газа. При изменяющихся давлении и объеме в зависимости от характера теплообмена с окружающей средой изменение состояния газа может происходить изотермически, адиабатически и политропически. [c.106]

    Практический интерес представляют а) адиабатическое, или изоэнтропическое, расширение предварительно сжатых газов в расширительной машине (детандере) и б) изоэнталъпическое их расширение при пропускании через дросселирующий вентиль. [c.206]

Источник: https://www.chem21.info/info/94679/

12. Адиабатический процесс. Уравнение Пуассона для адиабатического процесса. Показатель адиабаты

Адиабатический,
процесс
 — термодинамический
процесс в
макроскопической системе, при котором
система не обменивается теплотой с
окружающим пространством. Адиабатические
процессы обратимы только
тогда, когда в каждый момент времени
система остаётся равновесной (например,
изменение состояния происходит достаточно
медленно) и изменения энтропии не
происходит.

Обратимый
адиабатический процесс для идеального
газа описывается
уравнением
Пуассона.

Линия, изображающая адиабатный процесс
на термодинамической диаграмме,
называется адиабатой
Пуассона
.
Примером необратимого адиабатического
процесса может быть распространение ударной
волны в
газе. Такой процесс описывается ударной
адиабатой
.

где —
изменениевнутренней
энергии тела, —работа,
совершаемая системой.

Изменения энтропии S системы
в обратимом адиабатическом процессе
вследствие передачи тепла через границы
системы не происходит:

Здесь —
температура системы,—
теплота, полученная системой. Благодаря
этому адиабатический процесс может
быть составной частью обратимого цикла.

Адиабата
Пуассона

Для идеальных
газов,
чью теплоёмкость можно считать постоянной,
в случае квазистатического
процесса адиабата
имеет простейший вид и определяется
уравнением

где —
егообъём, 

png» width=»64″>—показатель
адиабаты, и

png» width=»24″>—теплоёмкости газа
соответственно при постоянном давлении
и постоянном объёме.

График
адиабаты (жирная линия) на диаграмме
для газа.

давление газа;—
объём.

С
учётом уравнения
состояния идеального газа уравнение
адиабаты может быть преобразовано к
виду

Поскольку всегда
больше 1, из последнего уравнения следует,
что при адиабатическом сжатии (то есть
при уменьшении

png» width=»14″>)
газ нагревается (возрастает),
а при расширении — охлаждается, что
всегда верно и для реальных газов.

Нагревание при сжатии больше для того
газа, у которого больше коэффициент.

При
адиабатическом процессе показатель
адиабаты

равен .

Для
нерелятивистского невырожденного
одноатомного идеального газа ,
для двухатомного

png» width=»64″>,
для трёхатомного

png» width=»64″>,
для газов, состоящих из более сложных
молекул, показатель адиабатыопределяется
числомстепеней
свободы (i)
конкретной молекулы, исходя из
соотношения .

Для
реальных газов показатель адиабаты
отличается от показателя адиабаты для
идеальных газов, особенно для низких
температур, когда большую роль начинает
играть межмолекулярное
взаимодействие.
Один из методов для экспериментального
определения показателя был предложен
в 1819 г. Клеманом и Дезормом.

Стеклянный
баллон вместимостью несколько литров
наполняется исследуемым газом при
давлении Затем
открывается кран, газ адиабатически
расширяется, и давление падает до
атмосферного —

png» width=»20″>.
Затем происходит егоизохорное нагревание
до температуры окружающей среды. Давление
повышается до .
В результате такого эксперимента k можно
вычислить как

png» width=»89″>

Источник: https://studfile.net/preview/6154627/page:8/

На чтение 6 мин Просмотров 2.5к. Опубликовано 04.07.2019

Содержание

  1. 4.Показатель степени сжатия файлов
  2. Пошаговая инструкция
  3. Узнаём степень сжатия архива

Все алгоритмы сжатия оперируют входным потоком информации с целью получения более компактного выходного потока при помощи некоторого преобразования. Основными техническими характеристиками процессов сжатия и результатов их работы являются:

·степень сжатия — отношение объемов исходного и результирующего потоков;

·скорость сжатия — время, затрачиваемое на сжатие некоторого объема информации входного потока, до получения из него эквивалентного выходного потока;

·качество сжатия — величина, показывающая, на сколько сильно упакован выходной поток при применении к нему повторного сжатия по тому же или другому алгоритму.

Алгоритмы, которые устраняют избыточность записи данных, называются алгоритмами сжатия данных, или алгоритмами архивации. В настоящее время существует огромное множество программ для сжатия данных, основанных на нескольких основных способах.

Все алгоритмы сжатия данных делятся на:

) алгоритмы сжатия без потерь, при использовании которых данные на приемной восстанавливаются без малейших изменений;

)алгоритмы сжатия с потерями, которые удаляют из потока данных информацию, незначительно влияющую на суть данных, либо вообще невоспринимаемую человеком.

Существует два основных метода архивации без потерь:

алгоритм Хаффмана (англ. Huffman), ориентированный на сжатие последовательностей байт, не связанных между собой,

алгоритм Лемпеля-Зива (англ. Lempel, Ziv), ориентированный на сжатие любых видов текстов, то есть использующий факт неоднократного повторения «слов» — последовательностей байт.

Практически все популярные программы архивации без потерь (ARJ, RAR, ZIP и т.п.) используют объединение этих двух методов — алгоритм LZH.

Алгоритм основан на том факте, что некоторые символы из стандартного 256-символьного набора в произвольном тексте могут встречаться чаще среднего периода повтора, а другие, соответственно, — реже. Следовательно, если $+o записи распространенных символов использовать короткие последовательности бит, длиной меньше 8, а для записи редких символов — длинные, то суммарный объем файла уменьшится.

Алгоритм Лемпеля-Зива. Классический алгоритм Лемпеля-Зива -LZ77, названный так по году своего опубликования, предельно прост. Он формулируется следующим образом: если в прошедшем ранее выходном потоке уже встречалась подобная последовательность байт, причем запись о ее длине и смещении от текущей позиции короче чем сама эта последовательность, то в выходной файл записывается ссылка (смещение, длина), а не сама последовательность.

4.Показатель степени сжатия файлов

Сжатие информации в архивных файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Алгоритмы подобного сжатия информации реализованы в специальных программах-архиваторах (наиболее известные из которых arj/arjfolder, pkzip/pkunzip/winzip, rar/winrar) применяются определенные Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Поэтому основным показателем эффективности той или иной программы-архиватора является степень сжатия файлов.

Степень сжатия файлов характеризуется коэффициентом Кс, определяемым как отношение объема сжатого файла Vc к объему исходного файла Vо, выраженное в процентах (в некоторых источниках используется обратное соотношение):

Степень сжатия зависит от используемой программы, метода сжатия и типа исходного файла.

Наиболее хорошо сжимаются файлы графических образов, текстовые файлы и файлы данных, для которых коэффициент сжатия может достигать 5 — 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей Кс = 60 — 90%. Почти не сжимаются архивные файлы. Это нетрудно объяснить, если знать, что большинство программ-архиваторов используют для сжатия варианты алгоритма LZ77 (Лемпеля-Зива), суть которого заключается в особом кодировании повторяющихся последовательностей байт (читай — символов). Частота встречаемости таких повторов наиболее высока в текстах и точечной графике и практически сведена к нулю в архивах.

Кроме того, программы для архивации все же различаются реализациями алгоритмов сжатия, что соответственно влияет на степень сжатия.

В некоторые программы-архиваторы дополнительно включаются средства, направленные на уменьшение коэффициента сжатия Кс. Так в программе WinRAR реализован механизм непрерывного (solid) архивирования, при использовании которого может быть достигнута на 10 — 50% более высокая степень сжатия, чем дают обычные методы, особенно если упаковывается значительное количество небольших файлов однотипного содержания.

Характеристики архиваторов — обратно зависимые величины. То есть, чем больше скорость сжатия, тем меньше степень сжатия, и наоборот.

На компьютерном рынке предлагается множество архиваторов — у каждого свой набор поддерживаемых форматов, свои плюсы и минусы, свой круг почитателей, свято верящих в то, что используемый ими архиватор самый лучший. Не будем никого и ни в чем разубеждать — просто попытаемся беспристрастно оценить самые популярные архиваторы в плане функциональности и эффективности. К таковым отнесем WinZip, WinRAR, WinAce, 7-Zip — они лидируют по количеству скачиваний на софтовых серверах. Рассматривать остальные архиваторы вряд ли целесообразно, поскольку процент применяющих их пользователей (судя по числу скачиваний) невелик.

Пошаговая инструкция

В этом пошаговом руководстве я покажу Вам, как узнать степень сжатия файлов архива. Для этого щелкнем правой кнопкой мыши по заархивированному файлу и выбираем графу «Свойства».

В новом диалоговом окне переходим во вкладку «Архив» и в графе «Степень сжатия» Вы видите процент сжатия документа. Это все! Если информация помогла Вам – жмите Спасибо!

Приветствую!
В этой подробной пошаговой инструкции, с фотографиями, мы покажем вам, как узнать степень сжатия файлов в архиве.
Воспользовавшись этой инструкцией, вы с легкостью справитесь с данной задачей.

Узнаём степень сжатия архива

Для определения степени сжатия на компьютере должен быть установлен архиватор WinRar. Если он у вас не установлен, то вот в этой подобной пошаговой инструкции рассказывается о том, где его бесплатно скачать и как установить.

Вызовите контекстное меню, кликнув правой клавишей мышки на интересующем архиве, для которого требуется определить степень сжатия.

В нём выберите пункт Свойства.

В открывшемся окне перейдите во вкладку Архив. Там в строке Степень сжатия будет указан интересующий нас параметр.

Если у вас остались вопросы, вы можете задать их в комментариях.

В свою очередь, Вы тоже можете нам очень помочь.

Просто поделитесь статьей в социальных сетях с друзьями.

Поделившись результатами труда автора, вы окажете неоценимую помощь как ему самому, так и сайту в целом. Спасибо!

  • Помогла понравилась статья? Поделись ею в соцсетях!
  • Спасибо!

Привет.
Не секрет, что в экономике ныне дела обстоят не лучшим образом, цены растут, а доходы падают. И данный сайт также переживает нелёгкие времена 🙁
Если у тебя есть возможность и желание помочь развитию ресурса, то ты можешь перевести любую сумму (даже самую минимальную) через форму пожертвований, или на следующие реквизиты:

Номер банковской карты: 5331 5721 0220 5546
Кошелёк Яндекс Деньги: 410015361853797
Кошелёк WebMoney: P865066858877
PayPal: paypal@it-actual.ru
QIWI кошелёк: +79687316794
BitCoin: 1DZUZnSdcN6F4YKhf4BcArfQK8vQaRiA93

Оказавшие помощь:
Сергей И. — 500руб
— 468руб
— 294руб
Мария М. — 300руб
Валерий С. — 420руб
— 600руб
Полина В. — 240руб

Так как я уйму народа замучил вопросом о своей компрессии, нагло копирую и выкладываю информацию о сжатии (поможет мне модернизировать ДВС под газ) и компрессии (спать спокойно)
Суть такая: формула не 1,2-1,3 х ст.сжатия, а ст.сжатия возводится в степень 1,2!
Ну это 1,2 — для ДВС с отличным состоянием и высокого уровня исполнения или плотного конструктивного исполнения. Например для ВАЗа этот к-т от 1,12 идёт (но вспоминаем, что в некторые машины можно лить синтетику 5W20, а в некторые не меньше 5w40 и то полусинтетику) + влияет горячий был ДВС или нет)

А вот доказательство человека у которого (да простит меня он) дублировал эту запись и спасибо ему за вывод формулы!))) Lifehack

Для начала рассмотрим Степень Сжатия, и о том как и почему изменение толищны прокладки на пол миллиметра, может влиять на Степень Сжатия.
Многие вообще не понимают, что такое степень сжатия, и как ее рассчитать (да, да — помоему редята из мазды и форда не понимают, говоря мне про компрессию в районе 8=)).

Степень сжатия — это отношение полного объема цилиндра к объему камеры сгорания.

Полный объем цилиндра — это сумма рабочего объема и объема камеры сгорания

Рабочий объем — это объем цилиндра ограниченный ходом поршня, то есть объем между НМТ (Нижняя Мертвая точка — точка ниже, которой поршень не может опуститься, из за конструкционных особенностей кривошипа) и ВМТ (Верхняя Мертвая Точка) .
Как известно из математики, Объем цилиндра равен произведению площади сечения на высоту цилиндра.

Объем камеры сгорания — надпоршневое пространство при нахождении поршня в ВМТ. Объем ограниченный поршнем и головкой блока.
Объем камеры сгорания трудно вычислить, обычно ее измеряют.
Тогда Степень сжатия можно записать следующим образом

Для чего нужны эти формулы?
Но допустим мы имеем мотор 2ZZ-GE
Диаметр цилиндра = 82мм
Ход поршня = 85 мм
Степень сжатия = 11.5
И хотим уменьшить СЖ, для того чтобы немного вдуть. Технология проста. Допустим измерив толщину заводской прокладки, мы получили значение в 0.5мм.
Как изменится степень сжатия, при установки 2ух таких прокладок вместо одной?
Как сильно влияют эти несчастные полмиллиметра на СЖ ?
По выше приведенным формулам может записать следующие равенства:

Таким образом, мы вычислили заводской объем камеры сгорания нашего мотора.
при увеличении толщины прокладки на 0.5 мм, мы просто добавляем к объему камеры сгорания, объем цилиндра с высотой 0.5, ну или математическим языком?

Таким образом «плюс полмиллиметра» уменьшили степень сжатия на 0.6 единиц.
Компрессия. В заводском исполнение вышеописанный двигатель обладает достаточно высокой степенью сжатия CR = 11.5
Очень часто встречаюсь с напуганными людьми, выходящими из сервиса с шарообразными глазами… С диагнозом механика
«Ваш 2ZZ скорее мертв, чем жив»
«Компрессия у него 17 атмосфер… Нормальная должна быть 12…»
И выглядишь ты перед этим механиком с 20 летним стажем, как неуч… И никакие потрясания мануалом с записью
«Давление конца такта сжатия НЕ НИЖЕ 14» вам не помогут. Так как гуру здесь только один… у него за плечами опыт.

Компрессия в двигателе — это процесс сжатия газа, поршнем при его движении из НМТ в ВМТ (такт сжатия), сопровождающийся при этом движении повышением давления и температуры газа.
С давлением все понятно — это как раз и будет искомая нами величина компрессии или давление конца такта сжатия
Но если компрессия измеряется на заглушенном двигателе, причем здесь изменение температуры?
Все дело в том, что при измерении компрессии, происходит сжатие не топливной смеси, а обычного воздуха… И двигатель, вращаемый стартером, превращается в простой поршневой насос, в котором протекает процесс с газом неизменной массы… Сжатие в таком процессе, называется адиабатическим и описывается уравнением Пуассона.

Конечно это уравнение термодинамического процесса для идеального газа, в изолированной системе, с множеством упрощений, но для показательного описания, я могу спокойно допустить эти упрощения.
И так… В конце такта сжатия, процесс можно описать, следующим уравнением

P — давление
V — объем сжатого газа, то есть над поршневое пространство, при занятии поршнем Верхней Мертвой Точки
y — показатель адиабаты
Так же рассмотрим начало такта сжатия

Чтобы делать формулы а затем из них картинки, занимает время, поэтому я опустил несколько шагов, в частности
V = Vр + Vc = Это объем занимаемый газом в начале такта сжатия, логично предположить, что это надпоршневое пространство, при занятии поршнем НМТ. И состоит, оно из рабочего объема цилиндра, и объема камеры сгорания.
Предположив, что адиабатический процесс происходит в изолированной системе, следующее равенство, должно быть справедливым

Выполнив простые математические действия, приведем равенство к такому виду

Пытливый ум должен был уже увидеть знакомую формулу из рассмотрения Степени Сжатия

Дальнейшие преобразования уже не нужны
P0 — давление воздуха в начале такта сжатия, равно атмосферному

показатель адиабаты, для двухатомного газа, а воздух, которым дышим мы и мотор — является смесью 2ухатомных газов, равен

Но система ДВС не является полностью изолированной, в процессе сжатия происходит теплообмен со стенками цилиндров, утечки и т.д.
показатель адиабаты принято считать 1.2

Вот эта волшебная формула про компрессию!

Нетрудно вычислить, что для мотора 2ZZ-GE, со степенью сжатия 11.5, НОРМАЛЬНАЯ компрессия в лучшем случае, может быть 18.7 атмосфер.
Но моторы у нас не новые… соответственно и потери больше.
P.S. ещё раз спасибо огромное Lifehack, за эту ценнейшую для меня запись! Напомню, расчёты не мои!

А теперь что касаемо моего ДВС Duratec 2.0 почти он же MZR LF.
Pсж=10.8, следовательно 10,8^1,2=17.382
как раз то, что пишет в своих руководствах более адеватная Мазда в сравнении с Фордом!

Всем спасибо за внимание, за копирование не пинать!)))) Запись должна быть у меня на виду!

Понравилась статья? Поделить с друзьями:
  • Как русскому найти работу в норвегии
  • Наушники huawei потерял как найти freebuds
  • Как найти фильм белые росы
  • Все буквы пишутся заглавными как исправить
  • Как найти джи по формуле