Формула ускорения физика как найти время

Прямолинейное равноускоренное движение — это прямолинейное движение, при котором скорость тела изменяется (увеличивается или уменьшается) на одну и ту же величину за равные промежутки времени.

Ускорение — физическая величина, характеризующая быстроту изменения скорости тела. То есть, показывает, на какую величину изменяется скорость за единицу времени.

Примеры равноускоренного движения:

  • разгон самолета перед взлетом;
  • падающая с крыши сосулька;
  • торможение лыжника на горном склоне;
  • разгоняющийся на склоне сноубордист;
  • свободное падение в результате прыжка с парашютом;
  • камень брошенный под углом к горизонту;

Равномерное прямолинейное движение является частным случаем равноускоренного движения, при котором ускорение равно нулю.

Равноускоренное движение: формулы

Формула для скорости при равноускоренном движении:

Vк=Vн+at

где: Vк — конечная скорость тела,
Vн — начальная скорость тела,
a=const — ускорение (a>0 при ускорении, a<0 при замедлении)
t — время.

Формула для ускорения при равноускоренном движении:

a=(Vк-Vн)/t

Во время движения тела ускорение остается постоянным.

Задача 1

Кирилл ехал на велосипеде со скоростью 6 м/с, затем начал разгоняться на горке. Чему будет равна его скорость через 10 секунд, если ускорение равно 0,5 м/с?
Решение. Vн=6м/с, ускорение a=0,5м/с, время разгона t=10 секунд.
Получаем: Vн= 6 + 0,5 · 10 = 11 м/с.
Ответ: за 10с Кирилл разгонится до скорости 11 м/с.

Формула расстояния при равноускоренном движении

  • Если известны  время, скорость начальная и скорость конечная

S = t*(Vн+ Vк)/2 

  • Если известны время, скорость начальная и ускорение

S = Vнt + at2/2 = t*(Vн + at/2)

где: S — путь, пройденный за время t,
Vн — начальная скорость,
Vк — конечная скорость,
a — ускорение тела,
t — время.

В случае равноускоренного движения с неизвестным временем движения, но с заданными начальной и конечной скоростями пройденный путь можно найти с помощью следующей формулы:

2аS = Vк2−Vн2 

где S — путь, пройденный за время t ,
V0 — начальная скорость,
V — скорость в момент времени t,
a — ускорение тела.

Задача 2

Таксист получил заказ и начал движение с ускорением 0,1 м/с2. На каком расстоянии от начала движения его скорость станет равной 15м/с?
Решение. Так как таксист начал движение, начальная скорость равна нулю (Vн=0), Vк=15м/с, ускорение a=0,1м/с2.
Получаем: ​
S = 15^2 — 0^2 =1125 м.
Ответ: на расстоянии 1 125 м от начала движения скорость такси станет равной 15 м/с.

Перемещение при равноускоренном движении

Важно напомнить разницу между путем и перемещением тела.

  • Путьдлина траектории. Если тело движется в любом направлении, то его путь увеличивается. Путь — всегда положительное значение.
  • Перемещениевектор, соединяющий начальное и конечное положение тела. Проекция перемещения может принимать отрицательное значение.

Например, если путник прошел в одну сторону расстояние S1, а обратно — S2, то: путь тела равен S1 + S2, а перемещение равно S1 − S2. В некоторых задачах путь и перемещение могут совпадать, но не всегда.

Равноускоренное движение: графически

График зависимости ускорения от времени:
Во время движения тела ускорение остается постоянным.

Взаимосвязь скорости, времени и расстояния:
На рисунке показан график,  в котором скорость равномерно увеличивается.
С помощью графика скорости можно определить ускорение тела как тангенс угла наклона графика к оси времени.

Из графика скорости получим формулу пути при равноускоренном движении тела.

Пройденный телом путь при равноускоренном движении численно равен площади фигуры под графиком зависимости скорости от времени. Вычислим площадь трапеции как сумму площадей прямоугольника Vнt и треугольника at2/2. Получим: S = Vнt + at2/2.

Математически зависимость координаты от времени при равноускоренном движении представляет собой квадратичную функцию, ее график — парабола.

Задача 3

Лыжник подъехал со скоростью 3 м/с к спуску длиной 36 м и съехал с него за несколько секунд, при этом его конечная скорость составила 15 м/с. Определите местонахождение лыжника спустя 2с после начала движения из начала координат.

Дано:
Vн = 3 м/с, начальная координата (t) равна нулю,
Vк = 15м/с, 
a —  скорость лыжника увеличивается, поэтому ускорение — положительное число,
S = 36м — путь с горы,
t — 2с.

Решение:
Найдем ускорение из формулы пути при равноускоренном движении: 2аS = Vк2−Vн2 
Получим:  а = (Vк2−Vн2 )/2S = (225-9)/(2*36) = 3 м/с2.
Составим уравнение движения лыжника исходя из формулы: S = Vнt + at2/2.
Получаем: x(t) =  3t + 1,5t2 
По уравнению определим координату лыжника в момент времени t = 2с:
Получаем: x(2) =  3*2 + 1,5*22 =6+6=12 м.

Ответ: через 2 с после начала движения координата лыжника будет равна 12 м.

Для того, чтобы проверить правильность решения задач на равноускоренное движение, воспользуйтесь калькулятором равноускоренного движения.

Для того, чтобы перевести единицы измерения, воспользуйтесь конвертерами единиц измерения:

  • Конвертер единиц измерения расстояния (длины)
  • Конвертер единиц измерения скорости
  • Конвертер единиц измерения времени

Равноускоренное движение.

  • Зависимость скорости от времени.

  • Закон движения.

  • Прямолинейное равноускоренное движение.

  • Свободное падение.

  • Горизонтальный бросок.

  • Бросок под углом к горизонту.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное падение.

Равноускоренное движение — это движение с постоянным вектором ускорения vec a. Таким образом, при равноускоренном движении остаются неизменными направление и абсолютная величина ускорения.

к оглавлению ▴

Зависимость скорости от времени.

При изучении равномерного прямолинейного движения вопрос зависимости скорости от времени не возникал: скорость была постоянна в процессе движения. Однако при равноускоренном движении скорость меняется с течением времени, и эту зависимость нам предстоит выяснить.

Давайте ещё раз потренируемся в элементарном интегрировании. Исходим из того, что производная вектора скорости есть вектор ускорения:

frac{displaystyle dvec{v}}{displaystyle dt}=vec{a}. (1)

В нашем случае имеем vec a = const. Что надо продифференцировать, чтобы получить постоянный вектор vec a? Разумеется, функцию vec a t. Но не только: к ней можно добавить ещё произвольный постоянный вектор vec c (ведь производная постоянного вектора равна нулю). Таким образом,

vec{v}=vec{c} + vec{a}t. (2)

Каков смысл константы vec c? В начальный момент времени t=0 скорость равна своему начальному значению: vec v=vec v_{0}. Поэтому, полагая t=0 в формуле (2), получим:

vec v_{0}=vec c.

Итак, константа vec c — это начальная скорость тела. Теперь соотношение (2) принимает свой окончательный вид:

vec v=vec v_{0}+vec {a}t. (3)

В конкретных задачах мы выбираем систему координат и переходим к проекциям на координатные оси. Часто хватает двух осей OX и OY прямоугольной декартовой системы координат, и векторная формула (3) даёт два скалярных равенства:

v_{displaystyle x}=v{displaystyle 0x}+a_{displaystyle x}t, (4)

v_{displaystyle y}=v{displaystyle 0y}+a_{displaystyle y}t. (5)

Формула для третьей компоненты скорости,v_{displaystyle z} если она необходима, выглядит аналогично.)

к оглавлению ▴

Закон движения.

Теперь мы можем найти закон движения, то есть зависимость радиус-вектора от времени. Вспоминаем, что производная радиус-вектора есть скорость тела:

frac{displaystyle dvec{r}}{displaystyle dt}=vec{v}

Подставляем сюда выражение для скорости, даваемое формулой (3):

frac{displaystyle dvec{r}}{displaystyle dt}=vec v_{0}+vec {a}t (6)

Сейчас нам предстоит проинтегрировать равенство (6). Это несложно. Чтобы получить vec v_{0}, надо продифференцировать функцию vec v_{0}t. Чтобы получить vec {a} t, нужно продифференцировать vec {a} t^{2} /2. Не забудем добавить и произвольную константу vec c:

vec r=vec c+vec v_{0} t+frac{displaystyle vec a t^{2}}{displaystyle 2}.

Ясно, что vec c — это начальное значение vec r_{0} радиус-вектора vec r в момент времени t=0. В результате получаем искомый закон равноускоренного движения:

vec r=vec r_{0}+vec v_{0} t+frac{displaystyle vec a t^{2}}{displaystyle 2}. (7)

Переходя к проекциям на координатные оси, вместо одного векторного равенства (7) получаем три скалярных равенства:

x=x_{0}+ v_{displaystyle 0x} t+frac{displaystyle a_{displaystyle x} t^{2}}{displaystyle 2}. (8)

y=y_{0}+ v_{displaystyle 0y} t+frac{displaystyle a_{displaystyle y} t^{2}}{displaystyle 2}. (9)

z=z_{0}+ v_{displaystyle 0z} t+frac{displaystyle a_{displaystyle z} t^{2}}{displaystyle 2}. (10)

Формулы (8) (10) дают зависимость координат тела от времени и поэтому служат решением основной задачи механики для равноускоренного движения.

Снова вернёмся к закону движения (7). Заметим, что vec r - vec r_{0}=vec s — перемещение тела. Тогда
получаем зависимость перемещения от времени:

vec s= vec v_{0} t+frac{displaystyle vec a t^{2}}{displaystyle 2}.

к оглавлению ▴

Прямолинейное равноускоренное движение.

Если равноускоренное движение является прямолинейным, то удобно выбрать координатную ось вдоль прямой, по которой движется тело. Пусть, например, это будет ось OX. Тогда для решения задач нам достаточно будет трёх формул:

v_{displaystyle x}=v_{displaystyle 0x}+a_{displaystyle x}t,

x=x_{0}+ v_{0 displaystyle x} t+frac{displaystyle a_{displaystyle x} t^{2}}{displaystyle 2},

s_{x}= v_{0x} t+frac{displaystyle a_{x} t^{2}}{displaystyle 2},

где s_{x}= x-x_{0} — проекция перемещения на ось OX.

Но очень часто помогает ещё одна формула, являющаяся их следствием. Выразим из первой формулы время:

t=frac{displaystyle v_{displaystyle x}-displaystyle v_{displaystyle 0x}}{displaystyle a_{displaystyle x}}

и подставим в формулу для перемещения:

s_{x}= v_{0x} frac{displaystyle v_{displaystyle x}-displaystyle v_{displaystyle 0x}}{displaystyle a_{displaystyle x}}+frac{displaystyle a_{x}}{2} (frac{displaystyle v_{displaystyle x}-displaystyle v_{displaystyle 0x}}{displaystyle a_{displaystyle x}})^{2} .

После алгебраических преобразований (проделайте их обязательно!) придём к соотношению:

s_{x}=frac{displaystyle v_{displaystyle x}^{displaystyle 2}-displaystyle v_{displaystyle 0x}^{displaystyle 2}}{displaystyle 2a_{displaystyle x}}.

Эта формула не содержит времени t и позволяет быстрее приходить к ответу в тех задачах, где время не фигурирует.

к оглавлению ▴

Свободное падение.

Важным частным случаем равноускоренного движения является свободное падение. Так называется движение тела вблизи поверхности Земли без учёта сопротивления воздуха.

Свободное падение тела, независимо от его массы, происходит с постоянным ускорением свободного падения vec g, направленным вертикально вниз. Почти во всех задачах при расчётах полагают g=10 м/с^{2}.

Давайте разберём несколько задач и посмотрим, как работают выведенные нами формулы для равноускоренного движения.

Задача. Найти скорость приземления дождевой капли, если высота тучи h=2 км.

Решение. Направим ось OY вертикально вниз, расположив начало отсчёта в точке отрыва капли. Воспользуемся формулой

s_{y}=frac{displaystyle v_{displaystyle y}^{displaystyle 2}-displaystyle v_{displaystyle 0y}^{displaystyle 2}}{displaystyle 2a_{displaystyle y}}.

Имеем: s_{y}=h, v_{y}=v — искомая скорость приземления, v_{0y}=0, a_{y}=g. Получаем: h^{2}=frac{v^{2}}{2g}, откуда v=sqrt{2gh}. Вычисляем: v=sqrt{2 cdot 10 cdot 2000}=200м/с. Это 720 км/ч, порядка скорости пули.

На самом деле капли дождя падают со скоростью порядка нескольких метров в секунду. Почему такое расхождение? Сопротивление воздуха!

Задача. Тело брошено вертикально вверх со скоростью v_{0}=30 м/с. Найти его скорость через t=5c.

Решение. Направим ось OY вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу

v_{displaystyle y}=v_{displaystyle 0y}+a_{displaystyle y}t.

Здесь v_{displaystyle 0y}=v_{0}, a_{y}=-g, так что v_{displaystyle y}=v_{displaystyle 0}-gt. Вычисляем: v_{displaystyle y}=30-10 cdot 5=-20м/с. Значит, скорость будет равна 20 м/с. Знак проекции указывает на то, что тело будет лететь вниз.

Задача. С балкона, находящегося на высоте h=15м, бросили вертикально вверх камень со скоростью v_{0}=10 м/с. Через какое время камень упадёт на землю?

Решение. Направим ось OY вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу

y=y_{0}+ v_{displaystyle 0y} t+frac{displaystyle a_{displaystyle y} t^{2}}{displaystyle 2}.

Имеем: y=0, y_{0} = h, v_{0y}=v_{0}, a_{y}=-g, так что 0=h+v_{0}t-frac{displaystyle g t^{2}}{displaystyle 2}=15+10t-5t^{2}, или t^{2}-2t-3=0. Решая квадратное уравнение, получим t=3 c.

к оглавлению ▴

Горизонтальный бросок.

Равноускоренное движение не обязательно является прямолинейным. Рассмотрим движение тела, брошенного горизонтально.

Предположим, что тело брошено горизонтально со скоростью v_{0} с высоты h. Найдём время и дальность полёта, а также выясним, по какой траектории происходит движение.

Выберем систему координат OXY так, как показано на рис. 1.

Рис. 1. Горизонтальный бросок

Используем формулы:

x=x_{0}+ v_{displaystyle 0x} t+frac{displaystyle a_{displaystyle x} t^{2}}{displaystyle 2}

y=y_{0}+ v_{displaystyle 0y} t+frac{displaystyle a_{displaystyle y} t^{2}}{displaystyle 2}

В нашем случае x_{0} = 0, v_{0x}=v_{0}, a_{x}=0, y_{0} = h, v_{0y}=0, a_{y}=-g . Получаем:

x=v_{0}t, y=h-frac{displaystyle g t^{2}}{displaystyle 2}. (11)

Время полёта T найдём из условия, что в момент падения координата тела y обращается в нуль:

y(T)=0Rightarrow h-frac{displaystyle gT^{displaystyle 2}}{displaystyle 2}=0Rightarrow T=sqrt{frac{displaystyle 2h}{displaystyle g}}.

Дальность полёта L — это значение координаты x в момент времени T:

L=x(T)=v_{0}T=v_{0} sqrt{frac{displaystyle 2h}{displaystyle g}}.

Уравнение траектории получим, исключая время из уравнений (11). Выражаем t из первого уравнения и подставляем во второе:

t=frac{displaystyle x}{displaystyle v_{displaystyle 0}}Rightarrow y=h-frac{displaystyle g}{displaystyle 2}(frac{displaystyle x}{displaystyle v_{displaystyle 0}})^{displaystyle 2}=displaystyle h-frac{displaystyle gx^{displaystyle 2}}{displaystyle 2v^{displaystyle 2}_{displaystyle 0}}.

Получили зависимость y от x, которая является уравнением параболы. Следовательно, тело летит по параболе.

к оглавлению ▴

Бросок под углом к горизонту.

Рассмотрим несколько более сложный случай равноускоренного движения: полёт тела, брошенного под углом к горизонту.

Предположим, что тело брошено с поверхности Земли со скоростью v_{0} , направленной под углом alpha к горизонту. Найдём время и дальность полёта, а также выясним, по какой траектории двигается тело.

Выберем систему координат OXY так, как показано на рис. 2.

Рис. 2. Бросок под углом к горизонту

Начинаем с уравнений:

x=x_{0}+ v_{displaystyle 0x} t+frac{displaystyle a_{displaystyle x} t^{2}}{displaystyle 2},

y=y_{0}+ v_{displaystyle 0y} t+frac{displaystyle a_{displaystyle y} t^{2}}{displaystyle 2}.

В нашем случае x_{0} =y_{0}=0, v_{0x}=v_{0}cos alpha, v_{0y}=v_{0}sin alpha , a_{x}=0, a_{y}=-g. Получаем:

x=(v_{0}cos alpha )t, y=(v_{0}sin alpha)t- frac{displaystyle g t^{2}}{displaystyle 2}.

Дальше действуем так же, как и в случае горизонтального броска. В результате приходим к соотношениям:

T=frac{displaystyle 2v_{displaystyle 0}sinalpha }{displaystyle g},

L=frac{displaystyle v_{displaystyle 0}^{displaystyle 2}sin2alpha }{displaystyle g},

y=x tgalpha -frac{displaystyle gx^{displaystyle 2}}{displaystyle 2v^{displaystyle 2}_{0}cos^{displaystyle 2}alpha }.

(Обязательно проделайте эти вычисления самостоятельно!) Как видим, зависимость y от x снова является уравнением параболы.Попробуйте также показать, что максимальная высота подъёма определяется формулой:

H=frac{displaystyle v_{displaystyle 0}^{displaystyle 2}sin^{2} alpha }{displaystyle 2g}.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Равноускоренное движение.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.05.2023

Равноускоренное движение


Равноускоренное движение

4.7

Средняя оценка: 4.7

Всего получено оценок: 68.

Обновлено 28 Июля, 2021

4.7

Средняя оценка: 4.7

Всего получено оценок: 68.

Обновлено 28 Июля, 2021

Одним из видов движения, изучаемых кинематикой, является равноускоренное движение. Равноускоренное движение — это достаточно распространённый вид движения, даже большинство равномерных движений начинались с разгона и были некоторое время равноускоренными. Рассмотрим эту тему подробнее, получим формулу равноускоренного движения, приведём примеры такого движения.

Ускорение

Если некоторое тело начинает движение из состояния покоя, то его скорость изменяется от нуля до некоторого максимального значения. Следовательно, при таком движении можно указать быстроту изменения скорости.

Например, в рекламе автомобилей указывается время разгона до 100 км/ч. Ясно, что модель, достигающая такой скорости за 5 секунд, значительно резвее, чем модель со временем разгона 15 секунд, хотя конечная скорость в обоих случаях одинакова. В чем же здесь разница, с точки зрения кинематики?

Разница в быстроте набора скорости.

Быстрота набора скорости называется ускорением. Ускорение (обозначается латинской буквой $a$) равно отношению величины набранной скорости ко времени этого увеличения:

$$overrightarrow a={overrightarrow {Δv}over t}={overrightarrow v- overrightarrow {v_0} over t}$$

где:

  • $overrightarrow a$ — ускорение тела;
  • $overrightarrow v$ — скорость тела в момент $t$;
  • $overrightarrow {v_0}$ — начальная скорость тела (при $t=0$).

Из данной формулы можно получить размерность ускорения. Скорость измеряется в метрах в секунду, а время — в секундах, значит, ускорение измеряется в метрах в секунду за секунду (или метров в секунду в квадрате).

В приведённом примере первый автомобиль разгоняется с ускорением 5,56 метров в секунду за секунду, а второй — с ускорением 1,85 метров в секунду за секунду.

Ускорение в физике

Рис. 1. Ускорение в физике.

Равноускоренное движение

Движение, при котором ускорение тела постоянно, называется равноускоренным. При этом знак ускорения не играет роли. Движение с постоянным отрицательным ускорением также является равноускоренным, несмотря на то, что скорость уменьшается.

Наиболее частым примером равноускоренного движения является свободное падение тел в первые секунды, когда сопротивление воздуха ещё не играет большой роли. Другим примером может служить разгон автомобиля при постоянном нажатии на педаль «газа», пока не будет набрана необходимая скорость.

Примеры равноускоренного движения

Рис. 2. Примеры равноускоренного движения

Формулы равноускоренного движения

Найдём формулы скорости и координаты при равноускоренном движении. Из приведённого выше определения ускорения следует, что скорость при постоянном ускорении равна:

$$overrightarrow v= overrightarrow {v_0} + overrightarrow a t$$

Это — линейная зависимость. Её график представляет собой прямую, наклон которой зависит от значения $a$. Чем оно больше, тем круче поднимается график.

Из курса физики 9 класса известно, что перемещение тела равно площади под графиком скорости. А площадь под данной прямой представляет собой трапецию с высотой $t$ и основаниями $v$ и $v_0$. Как известно из геометрии, площадь трапеции равна произведению полусуммы оснований на высоту. То есть:

$$overrightarrow x= {(overrightarrow {v_0} + overrightarrow v)over 2} t$$

Подставив значение $v$ из предыдущей формулы и учтя, что в начальный момент времени координата была равна $x_0$, мы получим:

$$overrightarrow x= overrightarrow {x_0}+overrightarrow {v_0}t + {overrightarrow at^2 over 2}$$

Это основная формула равноускоренного движения, позволяющая найти координату $overrightarrow x$ материальной точки в момент времени $t$ при условии, что начальная координата была равна $overrightarrow x_0$, начальная скорость — $overrightarrow {v_0}$, а ускорение — $overrightarrow a$. В задачах она используется, как правило, совместно с предыдущей.

Формулы равноускоренного движения

Рис. 3. Формулы равноускоренного движения

Заключение

Что мы узнали?

Ускорение — это физическая величина, характеризующая быстроту набора скорости материальной точкой. Движение с постоянным ускорением называется равноускоренным. Хорошим примером равноускоренного движения является свободное падение тел.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.7

Средняя оценка: 4.7

Всего получено оценок: 68.


А какая ваша оценка?

Определение

Равноускоренным движением называется движение при котором скорость за одинаковое время изменяется на одно и то же значение. В физике это самый простой вид движения с ускорением.

К примерам движения тела с постоянным ускорением можно отнести падение камня с обрыва, полёт гранаты, после выстрела из гранатомёта, скатывание санок с горы. Равномерное движение можно считать частным случаем равноускоренного, при котором ускорение всегда остаётся равным нулю.

Давайте подробно рассмотрим движение тела под действием постоянного поля силы тяжести вблизи земли. Пусть оно будет брошено под углом к горизонту. Это одновременно и равномерное и равноускоренное движение. Равномерное – по горизонтали (оси X), равноускоренное – по вертикали (оси Y). Сопротивлением воздуха, влиянием на движение вращения Земли и другими подобными факторами пренебрегаем.

Равноускоренное движение 1

В каждой точке пути на тело действует постоянное ускорение g. Оно не меняется ни по величине, ни по направлению.

Основные формулы равноускоренного движения и график равноускоренного движения

Формула

Скорость при равноускоренном движении тела вычисляется с помощью выражения:

[v=v0+at];

[v0 – text { начальная скорость тела; }]

[a=const – text { —ускорение; }]

Равноускоренное движение 2

Ускорение здесь определяется, как угол наклона графика скорости. Посмотрите на треугольник ABC.

a=(v-v0)/t=BC/AC.

Чем больше угол β, тем более наклонно выглядит график ускорения по отношению к оси времени. Следовательно, тем большее значение имеет ускорение тела.

Для первого из графиков положим V0=-2м/с. a=0,5м/с².

Для второго графика положим V0=3м/с. a=(-1/3)м/с².

зависимости равноускоренного движения

Указанный график позволяет понять многие зависимости равноускоренного движения и вычислить его основные параметры при проецировании на направление движения. Сначала нужно выделить на графике крохотный отрезок времени Δt. Будем считать его настолько коротким, что движение на нём можно принять за равномерное со значением скорости равным скорости в середине указанного временного промежутка. Тогда, перемещение Δs за Δt можно принять равным Δs=vΔt. Заштрихованная область на первом из графиков.

Разделим всё время движения тела на такие бесконечно короткие промежутки Δt. Перемещение s за указанное время t будет равняться площади трапеции обозначаемой ODEF.

S=(|OD|+|EF|/2)*OF|= [(v+v0)/2]*t =[2v0+(v-v0)]*t/2;

Как известно, v-v0=at, исходя из этого окончательная формула равноускоренного движения выглядит следующим образом:

S=v0*t+at²/2

Чтобы узнать, какой будет координата тела в любое время его движения, к начальной координате следует ещё вписать перемещение. Изменение координаты в зависимости от времени есть закон равноускоренного движения по оси Y:

Y=y0+v0*t+at²/2.

зависимости равноускоренного движения 2

Нет времени решать самому?

Наши эксперты помогут!

Закон равноускоренного движения

Формула

[Y=y0+v0*t+at²/2];

Из него видна зависимость равноускоренного движения от начального положения и начальной скорости тела. Если то и другое равно нулю, график равноускоренного движения приобретает вид параболы, пересекающей начало координат и обращённой своими ветвями вниз. Само движение при этом будет происходить по прямой вертикальной линии. Выражение станет законом равноускоренного прямолинейного движения.

S=at²/2

Это самый простой класс равноускоренного движения. Вектор скорости тела в нём всегда направлен по оси Y, меняет только свой знак. С формулами равноускоренного прямолинейного движения работать легче всего, поэтому при решении задач нужно стараться выбрать систему отсчёта именно таким образом.

 Подставляя разные начальные значения скорости и координаты, меняя знак ускорения, можно получить самые разные значения. Вы спросите –«Зачем менять знак ускорения? Оно ведь всегда постоянно и направлено точно вниз.» При решении задач, чтобы найти равноускоренное движение, часто бывает удобно изменить направление оси Y, вместе с этим меняется и знак ускорения, оно становится положительным.

Как найти равноускоренное движение тела, если неизвестно время

Часто возникает задача нахождения координаты тела при заданной начальной скорости движения тела, конечной скорости его движения и ускорении, но не заданном времени. Как быть в этой ситуации.

Рассмотрим уравнения:

v=v0+at;

S=v0*t+at²/2

Как систему уравнений. Для её решения, нужно исключить переменную t.

Сначала находим t из первого уравнения

t=(v-v0)/a

Затем подставляем его в выражение для перемещения. В результате получаем уравнение равноускоренного движения, не содержащее время.

s=[v²- (v0)²]/2a

Из данного выражения уже достаточно легко вычислить скорость. Она равна:

V=√(v0)²-2as   

При v0=0 s=v²/2a и v=√2as

Skip to content

Равномерное движение (движение тела с постоянной скоростью)

Формула скорости движения при равномерном движении:
Формула скорости движения равномерное движение
v=const
a=0
v — скорость, м/с
s — перемещение, м
t — время, с
Формула перемещения при равномерном движении:
Формула перемещения физика
Координата вычисляются через кинематическое уравнение равномерного прямолинейного движения по  формуле:
Формула нахождения координат при равномерном движении
Равномерное прямолинейное движение график

График — Равномерного прямолинейного движения

Равноускоренное движение

Формула скорости при равноускоренном движении:
Формула скорости при равноускоренном движении
a=const
v0 — начальная скорость, м/с
a — ускорение, м/с2
Формула для нахождения перемещения при равноускоренном движении:
Формула перемещения при равноускоренном движении
или
Формула перемещения равноускоренное движение
Уравнение равноускоренного движения в проекции на оси координат:
Уравнение равноускоренного движения в проекции на оси координат
Формула для определения ускорения при равноускоренном прямолинейном движении:
Формула ускорения при равноускоренном прямолинейном движении
v0 — начальная скорость, м/с
v — мгновенная скорость, м/с
Формула для определения средней скорости движения:
формула средней скорости
Равноускоренное движение график

График — Равноускоренное движение при a>0

Равнозамедленное движение

Равнозамедленное движение — это движение тела, при котором модуль скорости равномерно уменьшается с течением времени, а вектор ускорения остается постоянным как по модулю, так и по направлению.

Формула скорости при равнозамедленном движении:
Формула скорости при равнозамедленном движении
Формула перемещения при равнозамедленном движении:
Формула перемещения при равнозамедленном движении
Равнозамедленное движение график

График — Равнозамедленное движение при a<0

Свободное падение

Постоянная величина скорости свободного падения тела равна g=9,8 м/с2
Формула для вычисления скорости при свободном падении тела:
Формула скорости при свободном падении тела
Формула для вычисления перемещения при свободном падении тела:
Формула перемещения свободное падение тел
формула
Формула координаты при свободном падении тела:
Формула координаты при свободном падении
Формула высоты с которой тело свободно падает:
формула высоты свободное падение тела
Формула для определения скорости тела в конце свободного падения:
скорость в конце свободного пути
Время свободного падения тела равно:
формула время свободного падения тела

61956


Понравилась статья? Поделить с друзьями:
  • Как найти адрес функции
  • Как правильно найти картинки
  • Как найти координаты середины отрезка в пространстве
  • Как найти сюжет для своей книги
  • Как найти вес одной части