Формулы по физике как найти массу тела

Содержание:

  • Определение и формула массы тела
  • Инертная масса
  • Гравитационная масса
  • Формула расчета массы через плотность тела
  • Масса в специальной теории относительности
  • Примеры решения задач

Определение и формула массы тела

Определение

В механике Ньютона массой тела называют скалярную физическую величину, которая является мерой инерционных его свойств и
источником гравитационного взаимодействия. В классической физике масса всегда является положительной величиной.

Масса – аддитивная величина, что означает: масса каждой совокупности материальных точек (m) равна
сумме масс всех отдельных частей системы (mi):

$$m=sum_{i=1}^{n} m_{i}(1)$$

В классической механике считают:

  • масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
  • выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.

Инертная масса

Свойство инертности материальной точки состоит в том, что если на точку действует внешняя сила, то у нее возникает конечное по модулю ускорение.
Если внешних воздействий нет, то в инерциальной системе отсчета тело находится в состоянии покоя или движется равномерно и прямолинейно. Масса входит во второй закон Ньютона:

$$bar{F}=m bar{a}(2)$$

где масса определяет инертные свойства материальной точки (инертная масса).

Гравитационная масса

Масса материальной точки входит в закон всемирного тяготения, при этом она определяет гравитационные свойства данной точки.при этом она носит
название гравитационной (тяжелой) массы.

Эмпирически получено, что для всех тел отношения инертных масс к гравитационным являются одинаковыми. Следовательно, если правильно избрать
величину постоянной гравитации, то можно получить, что для всякого тела инертная и гравитационная массы одинаковы и связываются с силой
тяжести (Ft) избранного тела:

$$m=frac{F_{t}}{g}(3)$$

где g – ускорение свободного падения. Если проводить наблюдения в одной и той же точке, то ускорения свободного падения одинаковы.

Формула расчета массы через плотность тела

Масса тела может быть рассчитана как:

$$m=int_{V} rho d V(4)$$

где $rho$ – плотность вещества тела, где интегрирование
проводится по объему тела. Если тело однородное ( $rho = const$ ),
то масса может быть рассчитана как:

$m = rho V (5)$

Масса в специальной теории относительности

В СТО масса инвариантна, но аддитивной не является. Она здесь определена как:

$$m=sqrt{frac{E^{2}}{c^{4}}-frac{p^{2}}{c^{2}}}$$

где E – полная энергия свободного тела, p- импульс тела, c – скорость света.

Релятивистская масса частицы определяется формулой:

$$m=frac{m_{0}}{sqrt{1-frac{v^{2}}{c^{2}}}}(7)$$

где m0 – масс покоя частицы, v – скорость движения частицы.

Основной единицей измерения массы в системе СИ является: [m]=кг.

В СГС: [m]=гр.

Примеры решения задач

Пример

Задание. Две частицы летят навстречу друг другу со скоростями равными v (скорость близка к скорости света).
При их соударении происходит абсолютно неупругий удар. Какова масса частицы, которая образовалась после соударения? Массы частиц
до соударения равны m.

Решение. При абсолютно неупругом соударении частиц, которые до удара имели одинаковые массы и скорости образуется одна покоящаяся частица (рис.1) энергия покоя которой равна:

$$E^{prime}=M c^{2}(1.1)$$

В нашем случае выполняется закон сохранения механической энергии. Частицы обладают только кинетической энергией.
По условию задачи скорость частиц близка к скорости света, следовательно? оперируем понятиями релятивистской механики:

$$E_{1}=frac{m c^{2}}{sqrt{1-frac{v^{2}}{c^{2}}}}=E_{2}(1.2)$$

где E1 – энергия первой частицы до удара, E2 – энергия второй частицы до соударения.

Закон сохранения энергии запишем в виде:

$$E_{1}+E_{2}=E^{prime} ; frac{m c^{2}}{sqrt{1-frac{v^{2}}{c^{2}}}}+frac{m c^{2}}{sqrt{1-frac{v^{2}}{c^{2}}}}=M c^{2} rightarrow frac{2 m c^{2}}{sqrt{1-frac{v^{2}}{c^{2}}}}=M c^{2}(1.3)$$

Из выражения (1.3) следует, что масса полученной в результате слияния частицы равна:

$$M=frac{2 m}{sqrt{1-frac{v^{2}}{c^{2}}}}$$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Какова масса 2м3 меди?

Решение. Будем считать, что медь однородна и для решения задачи используем формулу:

$$m=rho V$$

При этом если известно вещество (медь), то можно при помощи справочника найти ее плотность. Плотность меди будем считать равной
$rho$ Cu=8900 кг/м3 . Для расчета все величины известны. Проведем вычисления:

$m=8900 cdot 2=17800$ (кг)

Ответ. $m=8900 cdot 2=17800$ (кг)

Читать дальше: Формула момента силы.

Масса является одним из важных свойств материи. Это понятие применяют при решении задач различного характера, начиная от проблем в механике и заканчивая химическими расчетами. Рассмотрим в статье, с помощью каких формул массу в физике можно рассчитать.

Что это такое?

Прежде чем приводить формулы массы в физике, дадим ей определение. Этим термином называется физическая величина, которая пропорциональна количеству материи, заключенной в данном теле. Следует не путать ее с количеством вещества, которое выражается в молях. Масса в СИ вычисляется в килограммах. Другими ее единицами являются тонны и граммы.

Слово "кворум". Значение и происхождение термина. Нюансы определенияВам будет интересно:Слово «кворум». Значение и происхождение термина. Нюансы определения

Масса бывает двух важных видов:

  • инерционная;
  • гравитационная.

Первый вид рассматриваемой физической величины характеризует инерционные свойства тела, то есть способность некоторой силы изменять скорость тела, а также кинетическую энергию, которой оно обладает.

Гравитационная масса связана с интенсивностью притяжения между любыми телами. Она играет важную роль в космосе, поскольку благодаря притяжению между звездами и планетами существует наша галактика и наша Солнечная система. Однако гравитационная масса проявляет себя и в повседневной жизни в виде наличия у всех тел некоторого веса.

Формулы для инерции

Инерционная масса

В физике формула нахождения массы инерционной имеет следующий вид:

m = F / a

Здесь F — сила, которая на тело действует и вызывает появление у него ускорения a. Формула показывает, что чем больше будет действующая сила и чем меньше она сообщит ускорение телу, тем больше инерционная масса m.

Помимо записанного выражения, следует привести еще одну формулу нахождения массы в физике, которая связана с явлением инерции. Эта формула имеет вид:

m = p / v

Здесь p — количество движения (импульс), v — скорость тела. Чем большим количеством движения обладает тело и чем меньше его скорость, тем большую инерционную массу оно имеет.

Формула для гравитации

Масса и гравитация

Математическое описание явления гравитации стало возможным благодаря многочисленным наблюдениям за движением космических тел. Результаты всех этих наблюдений в XVII веке обобщил Исаак Ньютон в рамках закона всемирного тяготения. Согласно этому закону, два тела, которые имеют массы m1 и m2, друг к другу притягиваются с такой силой F:

F = G * m1 * m2 / r2

Где r — расстояние между телами, G — некоторая постоянная.

Если в данное выражение подставить значение массы нашей планеты и ее радиус, тогда мы получим следующую формулу массы в физике:

m = F / g

Здесь F — сила тяжести, g — ускорение, с которым тела падают на землю вблизи ее поверхности.

Как известно, наличие силы тяжести обуславливает то, что все тела имеют вес. Многие путают вес и массу, полагая, что это одна и та же величина. Обе величины действительно связаны через коэффициент g, однако вес — величина изменчивая (она зависит от ускорения, с которым движется система). Кроме того, вес измеряется в ньютонах, а масса в килограммах.

Весы, которыми человек пользуется в быту (механические, электронные), показывают массу тела, однако измеряют его вес. Перевод между этими величинами является лишь вопросом калибровки прибора.

Весы для определения массы

Плотность и объем

Как было отмечено, масса — это неотъемлемое свойство материи, поэтому ее можно вычислить с помощью других физических характеристик тел. Этими характеристиками являются объем и плотность.

Объем представляет собой некоторую часть пространства, которая ограничена поверхностью тела. Измеряется он в кубических единицах длины, например, в м3.

Плотность — это свойство вещества, которое отражает количество материи, помещенной в единице объема.

Формула массы вещества через объем и плотность записывается так:

m = ρ * V

Чем больше объем тела и чем выше его плотность, тем большей массой оно обладает. В связи с этим фактом полезно вспомнить знаменитую загадку про то, что имеет большую массу: 1 тонна пуха или 1 тонна железа. В отсутствии выталкивающей архимедовой силы массы обоих веществ равны. Пух имеет гораздо меньшую плотность, чем железо, однако разница в плотности компенсируется аналогичной разницей в объеме.

Относительная

Понятие об относительной массе применяется в атомной физике и в химии. Поскольку массы атомов и молекул имеют очень маленькие значения (≈10-27 кг), то оперировать ими на практике при решении задач оказывается крайне неудобно. Поэтому сообществом ученых было решено использовать так называемую относительную массу, то есть рассматриваемая величина выражается в единицах массы по отношению к массе известного эталона. Этим эталоном стала 1/12 массы атома углерода, которая равна 1,66057*10-27 кг. Соответствующая относительная величина получила название атомной единицы (а. е. м.).

Массы атомов

Формулу относительной массы M можно записать так:

M = ma / (1 / 12 * mC)

Где ma — масса атома в килограммах, mC — масса атома углерода в килограммах. Например, если в это выражение подставить значение массы атома кислорода, то его а. е. м. будет равна:

M = 26,5606 * 10-27 / (1,66057 * 10-27) = 15,9949.

Поскольку а. е. м. является относительной величиной, то она не имеет размерности.

Удобство применения этого термина на практике заключается не только в небольших и целых значениях этой единицы измерения. Дело в том, что значение а. е. м. совпадает по величине с молярной массой, выраженной в граммах. Последняя представляет собой массу одного моль вещества.

Энергия

Масса и энергия

Выше были приведены разные формулы, как найти массу в физике. Завершая статью, хотелось бы отметить связь массы и энергии. Это связь носит фундаментальный характер, который отражает пространственно-временные свойства нашей Вселенной. Соответствующая формула массы в физике, полученная Альбертом Эйнштейном, имеет вид:

E = m * c2

Квадрат скорости света c является коэффициентом перевода между массой и энергией. Это выражение говорит о том, что обе величины, по сути, являются одной и той же характеристикой материи.

Записанное выражение было подтверждено экспериментально при изучении ядерных реакций и реакций элементарных частиц.


Загрузить PDF


Загрузить PDF

Масса – это количество материи, содержащейся в данном теле. Материя – это все, что можно физически ощутить. В большинстве случаев масса зависит от размеров тела, но это не всегда так – например, размеры воздушного шара могут быть больше размеров определенного тела, но при этом масса шара будет меньше массы этого тела. Эта статья расскажет вам, как найти массу.

  1. 1

    Используйте трехрычажные весы. Любые весы используются для нахождения массы тел. В рассматриваемых весах есть три рычага, на каждом из которых имеется передвижная гиря.[1]
    Также каждый рычаг снабжен шкалой, вдоль которой двигается гиря определенной массы.[2]

    • На показания трехрычажных весов не влияет сила тяжести, что позволяет произвести точные измерения массы. В таких весах неизвестная масса сравнивается с известной массой.
    • Средняя шкала имеет шаг 100 г. Дальняя шкала имеет шаг 10 г. Ближняя шкала измеряет вес в диапазоне 0-10 г.
    • При помощи трехрычажных весов можно произвести очень точные измерения массы тела. В случае использования таких весов ошибка измерения составит всего 0,06 г. Принцип работы таких весов похож на принцип работы детской карусели.[3]
  2. 2

    Передвиньте гири в крайнее левое положений. Это нужно сделать тогда, когда чаша весов пустая. В этом случае весы будут показывать 0.

    • Если индикатор, расположенный справа, не совпадает с фиксированной меткой, откалибруйте весы, поворачивая калибровочный винт (он находится слева под чашей весов).
    • Калибруют весы для того, чтобы масса чаши не влияла на показания весов, то есть когда чаша пустая, весы должны показывать 0 г. Масса чаши называется весом тары.
    • Для того чтобы с чашей весы показывали 0 г, покрутите калибровочный винт, расположенный под чашей. Затем положите на чашу предмет (тело), массу которого вы хотите найти (это делается при помощи передвижных гирь).
  3. 3

    Двигайте гири по одной. Для начала передвиньте гирю по средней шкале (с шагом 100 г). Передвигайте гирю вправо до тех пор, пока индикатор не опустится ниже фиксированной метки. Деление, находящееся слева от гири, указывает на число сотен граммов. За один раз передвигайте гирю на одно деление.

    • Затем передвиньте гирю по дальней шкале (с шагом 10 г). Передвигайте гирю вправо до тех пор, пока индикатор не опустится ниже фиксированной метки. Деление, находящееся слева от гири, указывает на число десятков граммов.
    • Ближняя шкала делений не имеет. Вы можете перемещать гирю по ней в любом направлении. Числа на этой шкале обозначают граммы, а штриховые метки между числами – десятые грамма.
  4. 4

    Найдите массу тела. Теперь вы можете определить массу тела, находящегося на чаше весов. Для этого сложите показания трех шкал.

    • Показания каждой шкалы читаются аналогично показаниям линейки. При этом учитывают показания до ближайшей середины между делениями.
    • Например, измерим массу банки с содовой. Если дальняя шкала показывает 70 г, средняя шкала показывает 300 г, а ближняя шкала показывает 3,34 г, то масса банки равна 373,34 г.

    Реклама

  1. 1

    Вычисление массы через объем и плотность. Формула для вычисления плотности: плотность = масса / объем. Для того чтобы воспользоваться этой формулой, вам нужно знать объем и плотность тела.[4]

    • Согласно этой формуле масса тела равна произведению плотности на объем: масса = объем Х плотность. Например, объем алмаза равен 0,00500 кубическим метрам, а его плотность равна 3,520 кгм^3. Для вычисления массы алмаза перемножьте эти значения: 0,00500 Х 3,520.
    • Для перемножения значений воспользуйтесь онлайн-калькулятором. Его можно найти на разных сайтах.[5]
      [6]
    • Вы можете воспользоваться специальным калькулятором для вычисления объема тела. Например, вы можете найти объем конуса, если вам известны радиус его основания и высота.[7]
  2. 2

    Уясните разницу между массой и весом. Это разные величины. Масса – это количество материи, содержащейся в данном теле. Вес – это сила, с которой тело действует на опору и которая возникает в поле силы тяжести. Вес тела возрастает с увеличением его массы.

    • Помните, что вес тела зависит от его местоположения, потому что при этом меняется сила тяжести. Масса тела не зависит от его местоположения.[8]
      Не забудьте вычислить массу тела в соответствующих единицах измерения (килограммах и граммах), а для обозначения массы используйте специальный символ (букву латинского алфавита).
    • Вес тел одинаковой массы может быть различным (в зависимости от силы тяжести). Например вес тела на Земле будет отличаться от веса того же тела на Луне.[9]
    • Не измеряйте массу тела в фунтах и унциях.[10]
  3. 3

    Вычисление массы через силу и ускорение. Формула для вычисление силы: F = m Х a.

    • Таким образом, формула для вычисления массы: m = F/a, то есть масса равна силе, деленной на ускорение. Масса тела присутствует в формулировке второго закона Ньютона, который гласит, что ускорение прямо пропорционально вызывающей его силе и обратно пропорционально массе тела.
    • Масса измеряется в килограммах (кг). Сила измеряется в ньютонах (Н).[11]

    Реклама

Советы

  • Масса обозначается буквой m. Масса считается постоянной величиной.

Реклама

Об этой статье

Эту страницу просматривали 19 901 раз.

Была ли эта статья полезной?

Тогда ускорение свободного падения (g) относительно Земли определяется действием сил: гравитационной силы относительно Земли () и инерционной силы (). Гравитация является результатом действия этих сил:

Формула массы тела

В ньютоновской механике масса тела — это скалярная физическая величина, которая является мерой его инерционных свойств и источником гравитационного взаимодействия. В классической физике масса всегда является положительной величиной.

Масса является аддитивной величиной, т.е: Масса каждой группы материальных точек (m) равна сумме масс всех отдельных частей системы (mi):

В классической механике предполагается, что:

  • масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
  • выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.

Инертная масса

Инерционное свойство материальной точки заключается в том, что при приложении к ней внешней силы точка имеет конечное по модулю ускорение. Когда внешняя сила не приложена, тело находится в состоянии покоя в инерциальной системе координат или движется равномерно и прямолинейно. Масса входит во второй закон движения Ньютона:

Масса определяет инерционные свойства материальной точки (инерционная масса).

Гравитационная масса

Масса материальной точки входит в закон всемирного тяготения, тем самым определяя гравитационные свойства конкретной точки; она называется гравитационной (тяжелой) массой.

Эмпирически установлено, что отношение инерционной массы к гравитационной массе одинаково для всех тел. Если значение гравитационной постоянной выбрано правильно, то из этого следует, что для каждого тела инерционная и гравитационная массы равны и относятся к гравитационной силе (Ft) выбранного тела:

Где g — ускорение свободного падения. Если наблюдения проводятся в одной и той же точке, то ускорение, вызванное гравитацией, будет одинаковым.

Энергия

Масса и энергия

Выше были приведены различные формулы для определения массы в физике. В заключение статьи я хотел бы указать на взаимосвязь между массой и энергией. Эта связь является фундаментальной и отражает пространственно-временные свойства нашей Вселенной. Соответствующая формула для массы в физике, выведенная Альбертом Эйнштейном, имеет вид:

Квадрат скорости света c является коэффициентом преобразования между массой и энергией. Это выражение показывает, что обе величины по сути являются одним и тем же свойством материи.

Написанное выражение было подтверждено экспериментально при изучении ядерных реакций и реакций элементарных частиц.

Формулы для инерции

В физике формула для определения инерционной массы имеет следующий вид:

Здесь F — сила, действующая на тело и придающая ему ускорение a. Формула показывает, что чем больше действующая сила и чем меньше ускорение, которое она придает телу, тем больше инерционная масса m.

Помимо письменного выражения, для определения массы в физике необходимо привести еще одну формулу, которая связана с инерционным эффектом. Эта формула имеет вид:

Где p — масса движения (импульс), v — скорость тела. Чем больше движение тела и чем меньше его скорость, тем больше инерционная масса тела.

Примеры решения задач

Задача 1

Имеется алюминиевый стержень со сторонами 3, 5 и 7 см. Какова его масса?

Читайте также.

Определим объем стержня:

V = 3 * 5 * 7 = 105 см3 ,

Значение таблицы плотности алюминия: 2800 кг/м 3 или 2,8 г/см 3 ,

Вычислим массу стержня:

m = 105 * 2,8 = 294 г.

Задача 2

Проблема по смежной теме.

Сколько энергии необходимо для доведения воды комнатной температуры (20 градусов Цельсия) из стакана (емкостью 200 мл) до температуры кипения?

Математическое описание явления гравитации стало возможным благодаря многочисленным наблюдениям за движением космических тел. Результаты всех этих наблюдений были обобщены в 17 веке Исааком Ньютоном в законе всемирного тяготения. Согласно этому закону, два тела с массами m1 и m2 перемещаются под действием силы F

F = G * m1 * m2 / r2

Где r — расстояние между телами, G — константа.

Если мы подставим в это выражение массу нашей планеты и ее радиус, то получим следующую формулу массы в физике:

Где F — сила тяжести, а g — ускорение, с которым тело падает на землю вблизи ее поверхности.

Хорошо известно, что наличие гравитации гарантирует, что все тела имеют вес. Многие люди путают вес и массу и считают, что это одно и то же. Хотя эти две величины связаны между собой коэффициентом g, масса является переменной величиной (она зависит от ускорения, с которым движется система). Кроме того, вес измеряется в ньютонах, а масса — в килограммах.

Читайте также: Металлоискатель ручной работы — 96 фото конструкции чувствительного прибора.

Весы, которыми человек пользуется дома (механические, электронные), показывают вес тела, но они измеряют вес тела. Пересчет между этими величинами — это просто вопрос калибровки прибора.

Формула зависимости массы от объема и плотности

Для определения плотности жидкости или твердого тела существует основная формула: Плотность равна массе, деленной на объем. Она записывается следующим образом: p = m / V

Формула объема в физике

Отсюда можно вывести еще две формулы. Формула для объема тела: V = m / p А также формула для расчета массы: m = V * p Как видите, запомнить последнюю очень легко: это единственная формула, где нужно перемножить две единицы. Для запоминания этой зависимости можно использовать фигуру в виде «пирамиды», разделенной на три части, с массой в верхней части и плотностью и объемом в нижних углах. Ситуация с газами несколько иная. Вычислить их вес гораздо сложнее, поскольку газы не имеют постоянной плотности: Они рассеиваются и занимают весь доступный им объем. Именно здесь возникает понятие молекулярной массы, которую можно определить, сложив массы всех атомов в формуле вещества, используя данные из периодической таблицы.

Как найти массу газа

Вторая необходимая нам единица — это количество вещества в молях. Это можно рассчитать с помощью уравнения реакции. Подробнее об этом вы можете узнать на уроке химии. Другой способ найти количество молей — разделить объем газа на 22,4 литра. Последнее число — это константа объема, которая называется s

Плотность многих веществ известна заранее и может быть легко получена из соответствующей таблицы. При работе с устройством важно обращать внимание на размеры и помнить, что все данные собраны при нормальных условиях: Температура в помещении 20 градусов Цельсия, а также определенное давление, влажность и так далее.

Таблица плотности некоторых веществ

Плотности других, более редких веществ можно найти в Интернете. Стоит запомнить хотя бы одно значение плотности, так как оно часто встречается в задачах. Это плотность воды — 1000 кг/м3 или 1 г/см3.

Таблица плотностей веществ

Состояние: Имеется алюминиевый стержень с длиной стороны 3, 5 и 7 см. Какова его масса? Решение. Ответ: m = 294 г.

Примеры решения задач

Задача 1

Проблема по смежной теме. Ситуация: Сколько энергии требуется, чтобы довести воду комнатной температуры (20 градусов Цельсия) из стакана (емкостью 200 мл) до температуры кипения? Решение: Найдем недостающую информацию: температура кипения воды t

Алюминиевый брусок

Задача 2

= 100 градусов Цельсия, удельная теплоемкость воды c = 4200 Дж/кг*C, плотность воды 1 г/см 3, 1 мл воды = 1 см 3. Найти массу воды: m = V * p, m = 200 * 1 = 200 г = 0,2 кг, найти энергию: Q = c * m * (t2Q = 4200 * 0,2 * (100 — 20) = 67200 Дж = 67,2 кДж. Ответ: Q = 67,2 кДж.2– t1Проблема молекулярной массы. Условие: Определите массу CO

Кипяток в стакане

Задача 3

объемом 5,6 л. Решение: Определите молярную массу CO2M = 12 + 16 * 2 = 44 г/моль; определите объем вещества: n = 5,6 / 22,4 = 0,25 моль; определите массу: m = n * M; m = 0,25 * 44 = 11 г. Ответ: m = 11 г.2

Содержание:

  1. Масса
  2. Второй закон Ньютона
  3. Масса — мера инертности тела
  4. Система единиц измерения механических величин
  5. Примеры решения задач на второй закон Ньютона

Масса — это физическая величина, одна из основных характеристик материи, определяющая её инертные и гравитационные свойства, масса рассматривается как мера инертности тела по отношению к действующей на него силе и как источник поля тяготения равны (принцип эквивалентности), в международной системе единиц (си) обозначается в килограммах.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Масса

Всякое тело притягивается Землёй. Сила, с которой Земля притягивает тело, называется весом тела. С понятием веса тела тесно связано другое, более общее
понятие — масса тела.

Массой тела называется количество вещества, содержащегося в этом теле.

Масса литра воды в 1000 раз больше массы 1 см3 воды, масса бревна во много раз больше массы полена из такого же дерева. Словом, массы однородных тел тем больше, чем больше объёмы этих тел. При равенстве их объёмов равны и массы. Так, например, массы двух одинакового объёма кусков железа равны между собой. Если положить эти куски на чашки весов, то они окажутся в равновесии. Это даёт нам возможность измерять массы тел взвешиванием.

Масса в физике

Рис. 98. Измерение массы тела.

Массы двух тел равны, если эти тела одинаково притягиваются Землёй в одном и том же месте,
т. е. если они уравновешивают друг друга на чашках рычажных весов. При этом совершенно безразлично, из каких веществ состоят эти тела. Если массу одного из этих тел принять за единицу массы, то и масса другого тела, которое уравновешивается первым, будет также равна единице массы.

За единицу массы принята масса платинового цилиндра, хранящегося в Сере (близ Парижа). Эта масса называется килограммом. В отличие от единицы силы, обозначаемой кГ, единица массы сокращённо обозначается кг.

В физике за единицу массы принимают 0,001 кг. Эта единица называется граммом (сокращённое обозначение—г).

В практике эталоны масс изготовляют в виде гирь различной величины.

Чтобы измерить массу тела, надо положить на одну чашку весов это тело, а на другую—гири. При равновесии весов масса тела равна массе гир,,. На рисунке 98 показано, что масса тела равна 0,5 кг.

Второй закон Ньютона

Во втором законе Ньютона устанавливается связь между силой, действующей на тело, массой тела и ускорением, с которым движется это тело.

Масса в физике
Рис. 99. Прибор для установления зависимости ускорения от силы, действующей на тело.

Рассмотрим сначала, как зависит ускорение одного и того же тела от величины силы, действующей на тело. Проделаем следующий опыт (рис. 99). К тележке, которая может (с малым трением) двигаться по столу, прикреплён динамометр. К другому концу динамометра прикреплена нитка с грузом М, переброшенная через блок. По показаниям динамометра мы сможем определить силу, действующую на тележку. Пользуясь капельницей, отметим пути, пройденные тележкой при ускоренном движении за различные промежутки времени под действием постоянной силы. Измерения показывают, что пути эти пропорциональны квадратам времён. Таким образом, движение под действием постоянной силы есть равноускоренное движение.

Измерив длину пройденного тележкой пути за какой-нибудь промежуток времени t, по формуле Масса в физике определяем ускорение а.

Будем подвешивать к концам нити различные грузы, каждый раз измеряя динамометром силу и вычисляя соответствующее этой силе ускорение тележки.

Результаты таких измерений и вычислений отражены в таблице.

Масса в физике

Из таблицы видно, что с увеличением силы в 1,5 раза ускорение увеличивается тоже в 1,5 раза; если сила увеличивается в 2 раза, в 2 раза увеличивается и ускорение, и т. д., т. е. ускорение тележки прямо пропорционально силе, действующей на тележку.

Математически это можно записать в виде формулы:

Масса в физике

Чтобы установить, как зависит ускорение от массы тела, будем действовать на тележку какой-нибудь постоянной силой.

Нагружая тележку гирями, изменим массу движущихся тел.

Ускорение, получаемое тележкой, будем вычислять так же, как и в первом случае.

Результаты опытов снова занесём в таблицу.

Масса в физике

Данные таблицы показывают, что при неизменной силе увеличение массы тела в два раза приводит к уменьшению ускорения в два раза, и наоборот, при уменьшении массы в два раза ускорение увеличивается в два раза, т. е. ускорение тележки с грузами обратно пропорционально их общей массе. Математически этот вывод можно
выразить формулой:

Масса в физике

Итак, результаты опытов показывают, что ускорение, с которым движется тело, пропорционально действующей на тело силе и обратно пропорционально массе этого тела.

Кроме того, ускорение тела совпадает с этой силой по направлению.

Этот вывод, как показал Ньютон, имеет всеобщий характер; он носит название второго закона Ньютона.

Во втором законе Ньютона говорится о действии одной силы. Но практически на тело всегда действуют несколько сил. Нам уже известно, что в расчётных целях мы действие нескольких сил можем заменить действием одной силы — равнодействующей. Поэтому в случае, когда на тело действуют несколько сил, под силой, вызывающей ускорение тела, подразумевается их равнодействующая.

Второй закон Ньютона математически можно выразить в виде следующей формулы:

Масса в физике откуда Масса в физике

Величина силы равна произведению массы тела на ускорение.

Таким образом, второй закон Ньютона позволяет вычислить величину силы, если известна масса тела и ускорение, с которым оно движется.

В частности, на основании второго закона Ньютона вес тела Р можно выразить через массу этого тела т и ускорение свободного падения g:

Р = mg.

Из сопоставления формулы F=ma и P=mg видно, что

Масса в физике

т. е. ускорение движения тела под действием некоторой силы во столько же раз больше или меньше ускорения свободного падения, во сколько раз действующая сила больше или меньше веса тела.

При решении задач с помощью указанного выше отношения однородные величины должны быть выражены в одних и тех же единицах.

Пример. Санки с седоком весят 70 кГ и скатываются с горы с ускорением Масса в физике Определить силу, движущую санки.

Р=70 кГ;

g=Масса в физике
а =Масса в физике
F = ?

Из формулы Масса в физике определим F: 

Масса в физике

Масса — мера инертности тела

Первый закон Ньютона утверждает, что всякое тело обладает свойством инерции, иначе говоря, всякое тело инертно. Какова мера инертности тела? Обратимся к следующему примеру.

Пусть по горизонтальному пути с одинаковой скоростью движутся два вагона, один пустой, другой гружёный. Пусть на каждый из них одновременно начали действовать одинаковые силы, тормозящие их движение. Какой из этих вагонов будет дольше сохранять своё движение? Опыт показывает, что гружёный вагон будет двигаться дольше, следовательно, можно сказать, что он обладает и большей инертностью. Но масса гружёного вагона больше массы пустого; отсюда следует, что чем больше масса тела, тем более оно инертно.

Масса в физике
Рис. 100. Масса наковальни значительно больше массы молота.

Этот вывод непосредственно вытекает из второго закона Ньютона. Действительно, по второму закону Ньютона Масса в физике т. е. ускорение обратно пропорционально массе, а так как масса гружёного вагона больше массы пустого, то и ускорение его движения будет меньше (ускорение направлено против движения). Следовательно, гружёный вагон дольше будет сохранять своё движение.

Итак, масса тела является мерой его инертности. 

Из второго закона Ньютона Масса в физике следует,что любая сколь угодно малая сила может вызвать ускоренное движение тела.

Не противоречит ли этому то, что мы иногда, толкая тяжёлый предмет, не можем сдвинуть его с места? Нисколько не противоречит. Дело в том, что между предметом и полом существует трение, и нам, чтобы привести его в движение,надо преодолеть это трение, а для этого сила, с которой мы толкаем предмет, должна быть больше силы трения, что не всегда бывает.

Изменение скорости тела зависит от массы тела и от времени действия силы на тело. Это видно хорошо на следующем опыте.

Положим на одну чашку весов тяжёлую плиту и уравновесим её гирями или каким-нибудь другим грузом. Если резко ударить небольшим молоточком по плите, то равновесие весов не нарушится.

Если же положить на чашки весов тела с малой массой, то уже при самом незначительном ударе равновесие весов нарушится.

Чем больше масса тела, тем меньшее изменение скорости вызывает действующая на него сила. Это учитывается в технике.

Масса в физике
Рис. 101. Машина на массивном фундаменте.

Так, например, для уменьшения сотрясений от ударов делают массивными и прочно соединяют с землёй мостовые „быки“ и упоры; массивными делают наковальни: относительные размеры молота и наковальни видны на рисунке 100. По этой же причине станки и машины делают массивными и устанавливают их на массивные фундаменты. На рисунке 101 изображена машина, установленная на массивном основании.

Нам известен способ определения массы тела с помощью взвешивания тела на рычажных весах. Второй закон Ньютона даёт нам другой способ определения массы — как меры инертности тела по величине силы и ускорению:

Масса в физике

Опытом проверено, что оба эти способа определения массы тела (по весу и по инертности) дают совершенно одинаковые результаты.

Система единиц измерения механических величин

Чтобы применять формулы для числовых расчётов, необходимо установить, в каких единицах измеряются физические величины.

Физические законы связывают физические величины определёнными зависимостями. Поэтому если произвольно выбрать единицы для измерения некоторых величин, то единицы для измерения других величин получатся на основе соответствующих законов. Например, в формуле s = vt дана зависимость между тремя величинами. Если мы произвольно выберем единицы каких-нибудь двух величин, то единица третьей величины определится из этого уравнения. Условившись, например, измерять путь в метрах, а время в секундах, мы должны будем измерять скорость в Масса в физике

Зависимости, существующие между физическими величинами, дают возможность составить такую совокупность единиц, в которой для измерения механических величин достаточно выбрать произвольно три единицы: единицу длины, единицу массы, или силы, и единицу времени; такая совокупность единиц называется системой единиц.

Выбранные произвольно единицы системы называются основными единицами, а все другие — производными единицами.

В физике принята система единиц, в которой основными единицами являются: единица длины—1 см (сотая часть международного метра), единица массы— 1 г (тысячная часть международного килограмма) и единица времени—1 сек ( Масса в физике средних солнечных суток, измеряемая весьма точными часами, которые систематически проверяются астрономическими наблюдениями) (Солнечные сутки—промежуток времени между двумя следующими друг за другом полуднями. Так как продолжительность солнечных суток в разные времена года несколько различна, то в практику введены средние солнечные сутки, продолжительность которых равна средней длительности суток за год).

Эта система называется системой единиц CGS (по первым буквам слов—сантиметр, грамм, секунда).

Единица скорости в этой системе Масса в физике единица ускорения Масса в физике

Полагая в формуле F=ma второго закона Ньютона m = 1 г, получим единицу силы в системе CGS:

Масса в физике

За единицу силы в системе CGS принимается такая сила, под действием которой масса в 1 г движется с ускорением, равным Масса в физике Эта единица называется диной (сокращённо дн).
Масса в физике

В системе единиц, применяемой в настоящее время в СССР при электрических и магнитных измерениях, за основные единицы принимаются:

единица длины  — 1  м,

единица массы  — 1  кг,

единица времени  — 1 сек,

единица тока  — 1  ампер.

Сокращённо мы эту систему единиц будем называть MKSA (по первым буквам слов—метр, килограмм, секунда, ампер).

Единицей силы в системе MKSA будет такая сила, под действием которой масса в 1 кг движется с ускорением Масса в физике Эта единица называется ньютон (сокращённо н). Таким образом,

Масса в физике

Вычислим, сколько в одном ньютоне содержится дин.Масса в физике или Масса в физике 
В практике довольно широко распространена так называемая техническая система единиц. В этой системе основными единицами являются:

единица длины —1 м,

единица силы —1 кГ,

единица времени—1 сек.

Единица массы в этой системе единиц является производной и может быть определена из равенства Масса в физике т. е. единицей массы в технической системе единиц является масса, которая под действием силы в 1 кГ движется с ускорением Масса в физике

Сокращённое обозначение этой единицы—т. е. м. Таким образом,

Масса в физике
Между различными единицами массы и силы существуют следующие соотношения:

1 кГ есть сила, с которой Земля притягивает массу в 1 кг и сообщает ей ускорение Масса в физике Отсюда: Масса в физике или округлённо:

Масса в физике

Так как Масса в физике то 1 кГ = 9,8 н.
Масса в физике

Примеры решения задач на второй закон Ньютона

1.    Постоянная сила, равная 2 кГ, действует на тело, вес которого 19,6 кГ. С какой скоростью будет двигаться тело в горизонтальном направлении по прошествии 5 сек., если начальная скорость движения равна нулю?

Расчёты ведём в системе CGS.

Дано: F = 2 кГ=2*980000 дн = 1960000 дн;

m=19600 г; t = 5 сек. Найти Масса в физике

Под действием постоянной силы тело будет двигаться равноускоренно. Скорость этого тела определим по формуле:

Масса в физике

Время t дано по условиям задачи.

Ускорение найдем на основании второго закона: Масса в физике
Масса в физике
Ответ: Масса в физике
2.    Тело весом 98 кГ движется со скоростью, равной Масса в физике
Какую силу надо приложить, чтобы остановить это тело в течение 5 мин.? Расчёты провести в технической системе единиц.

Дано: Р = 98 кГ; Масса в физике t = 300 сек. Найти F.

Искомую силу найдём на основании второго закона:

F = mа.

Под действием этой силы тело будет двигаться равнозамедленно, отрицательное ускорение его а определим по формуле;

Масса в физике Так как Масса в физике то

Масса в физике и Масса в физике

По второму закону Ньютона Р = mg, откуда
 

Масса в физике

Ответ. Масса в физике

3. На тело, движущееся с начальной скоростью в Масса в физике подействовали силой в 10 Г в направлении движения, после чего тело прошло за 5 сек. путь в 200 м. Определить вес тела. Расчёты провести в системе CGS.

Вес тела в системе CGS, выражаемый в динах, найдётся на основании второго закона Ньютона: 

Масса в физике

Надо найти массу в граммах. Для этого воспользуемся тем F же вторым законом, Масса в физикеускорение а по условиям задачи вычислим по формуле:

Масса в физике

откуда

Масса в физике

Масса тела 

Масса в физике

Ответ. Масса в физике

При решении физических задач мы производим математические действия не только с числовыми значениями величин, но и над их наименованиями. Если предварительно все величины, указанные в задаче, выразить в единицах одной системы единиц и правильно применить соотношения, существующие между физическими величинами, то ответ всегда получится в единицах этой системы. Это позволяет нам не загромождать вычисления наименованиями единиц; достаточно указать наименование величины только в окончательном результате.

Пример. Тело массой 0,01 кг, двигаясь равноускоренно без начальной скорости, за 1 мин. прошло в горизонтальном направлении путь, равный 18 м. Определить силу, действующую на тело.

Дано: m = 0,01 кг; t = 1 мин.; s = 18 м. Найти F.

Выражаем все данные в задаче величины в единицах одной системы, например в системе CGS.

m = 10 г; t = 60 сек.; s = 1800 см.

По второму закону Ньютона F = ma.    (1)

Масса дана, ускорение а находим по формуле пути равноускоренного движения: Масса в физике откудаМасса в физике

Подставим значение а из равенства (2) в равенство (1), получим:

Масса в физике

Подставляя численные значения величин в равенство (3), определим величину силы F:

Масса в физике

Услуги по физике:

  1. Заказать физику
  2. Заказать контрольную работу по физике
  3. Помощь по физике

Лекции по физике:

  1. Физические величины и их измерение
  2. Основные законы механики
  3. Прямолинейное равномерное движение
  4. Прямолинейное равнопеременное движение
  5. Сила
  6. Взаимодействия тел
  7. Механическая энергия
  8. Импульс
  9. Вращение твердого тела
  10. Криволинейное движение тел
  11. Колебания
  12. Колебания и волны
  13. Механические колебания и волны
  14. Бегущая волна
  15. Стоячие волны
  16. Акустика
  17. Звук
  18. Звук и ультразвук
  19. Движение жидкости и газа
  20. Молекулярно-кинетическая теория
  21. Молекулярно-кинетическая теория строения вещества
  22. Молекулярно — кинетическая теория газообразного состояния вещества
  23. Теплота и работа
  24. Температура и теплота
  25. Термодинамические процессы
  26. Идеальный газ
  27. Уравнение состояния идеального газа
  28. Изменение внутренней энергии
  29. Переход вещества из жидкого состояния в газообразное и обратно
  30. Кипение, свойства паров, критическое состояние вещества
  31. Водяной пар в атмосфере
  32. Плавление и кристаллизация
  33. Тепловое расширение тел
  34. Энтропия
  35. Процессы перехода из одного агрегатного состояния в другое
  36. Тепловое расширение твердых и жидких тел
  37. Свойства газов
  38. Свойства жидкостей
  39. Свойства твёрдых тел
  40. Изменение агрегатного состояния вещества
  41. Тепловые двигатели
  42. Электрическое поле
  43. Постоянный ток
  44. Переменный ток
  45. Магнитное поле
  46. Электромагнитное поле
  47. Электромагнитное излучение
  48. Электрический заряд (Закон Кулона)
  49. Электрический ток в металлах
  50. Электрический ток в электролитах
  51. Электрический ток в газах и в вакууме
  52. Электрический ток в полупроводниках
  53. Электромагнитная индукция
  54. Работа, мощность и тепловое действие электрического тока
  55. Термоэлектрические явления
  56. Распространение электромагнитных волн
  57. Интерференционные явления
  58. Рассеяние
  59. Дифракция рентгеновских лучей на кристалле
  60. Двойное лучепреломление
  61. Магнитное поле и электромагнитная индукция
  62. Электромагнитные колебания и волны
  63. Природа света
  64. Распространение света
  65. Отражение и преломление света
  66. Оптические приборы и зрение
  67. Волновые свойства света
  68. Действия света
  69. Линзы и получение изображений с помощью линз
  70. Оптические приборы и глаз
  71. Фотометрия
  72. Излучение и спектры
  73. Квантовые свойства излучения
  74. Специальная теория относительности в физике
  75. Теория относительности
  76. Квантовая теория и природа поля
  77. Строение и свойства вещества
  78. Физика атомного ядра
  79. Строение атома

Понравилась статья? Поделить с друзьями:
  • Как хорошо что я тебя нашла картинки
  • Как найти угольные пласты
  • Как найти приложение по фото интерфейса
  • Как найти кисти в крите
  • Как найти e mail на youtube