Квадрат – это геометрическая фигура; правильный четырехугольник, т.е. четырехугольник, имеющий равные стороны и углы (90°).
- Формула вычисления площади
- Примеры задач
Формула вычисления площади
1. По длине стороны:
Площадь квадрата (S) равняется квадрату длины его стороны:
S = a2
Данная формула следует из того, что квадрат является частным случаем прямоугольника, площадь которого находится путем умножения его смежных сторон:
S = a*b
А т.к. все стороны квадрата равны, то вместо стороны b мы снова подставляем в формулу сторону a, т.е. S = a*a = a2.
2. По по длине диагонали
Площадь квадрата равняется половине квадрата длины его диагонали:
S = d2/2
Соотношение стороны и диагонали квадрата: d=a√2.
Примеры задач
Задание 1
Найдите площадь квадрата, сторона которого равна 7 см.
Решение:
Используем формулу по длине стороны, т.е. S = 72 = 49 см2.
Задание 2
Найдите площадь квадрата, диагональ которого равняется 4 см.
Решение 1:
Воспользуемся второй формулой (по длине диагонали): S = 42/2 = 8 см2.
Решение 2:
Мы можем выразить длину стороны через диагональ: a = 4/√2. И тогда, используя первую формулу, S = (4/√2)2 = 8 см2.
Квадрат — определение и свойства
Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.
Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
Квадрат относится к правильным многоугольникам. У правильного многоугольника все стороны равны и все углы равны.
Перечислим свойства квадрата:
- Все углы квадрата — прямые, все стороны квадрата — равны.
- Диагонали квадрата равны и пересекаются под прямым углом.
- Диагонали квадрата делятся точкой пересечения пополам.
- Диагонали квадрата являются биссектрисами его углов (делят его углы пополам).
- Диагонали квадрата делят его на 4 равных прямоугольных равнобедренных треугольника:
Периметр квадрата P в 4 раза больше его стороны и равен:
Площадь квадрата равна квадрату его стороны: .
Теорема 1. Диагональ квадрата равна произведению его стороны на , то есть
.
Доказательство:
Рассмотрим квадрат ABCD. Проведем диагональ квадрата AC.
Треугольник АВС – прямоугольный с гипотенузой АС. Запишем для треугольника АВС теорему Пифагора:
что и требовалось доказать.
Теорема 2. Радиус вписанной в квадрат окружности равен половине его стороны:
Доказательство:
Пусть окружность с центром в точке О и радиусом r вписана в квадрат АВСD и касается его сторон в точках
P, M, N, K.
Тогда поскольку AB параллельно CD. Через точку О можно провести только одну прямую, перпендикулярную АВ, поэтому точки Р, О и N лежат на одной прямой. Значит, PN – диаметр окружности. Поскольку АРND – прямоугольник, то PN = AD, то есть
, что и требовалось доказать.
Теорема 3. Радиус описанной около квадрата окружности равен половине его диагонали:
Доказательство:
Диагонали квадрата АС и BD равны, пересекаются в точке О и делятся точкой пересечения пополам. Поэтому OA=OB=OC=OD, т.е. точки A, B, C и D лежат на одной окружности, радиус которой R = d/2 (d=AC=BD). Это и есть описанная около квадрата АВСD окружность.
По теореме
Тогда , что и требовалось доказать.
Заметим, что периметр квадрата тоже можно связать с радиусами вписанной и описанной окружностей:
Четырехугольник является квадратом, если выполняется хотя бы одно из условий:
- Все стороны равны и среди внутренних углов есть прямой угол.
- Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.
Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.
Задача 1. Найдите сторону квадрата, диагональ которого равна .
Решение:
Мы знаем, что . Тогда
.
Ответ: 2.
Задача 2. Найдите площадь квадрата, если его диагональ равна 1.
Первый способ решения:
Зная связь между стороной и диагональю квадрата (теорема 1), выразим сторону квадрата через его диагональ:
Тогда по формуле площади квадрата:
Второй способ решения:
Воспользуемся формулой для площади ромба:
Ответ: 0,5
Задача 3. Найдите радиус окружности, описанной около квадрата со стороной, равной .
Решение:
Радиус описанной окружности равен половине диагонали квадрата, поэтому
Ответ: 2.
Задача 4. Найдите сторону квадрата, описанного около окружности радиуса .
Решение:
Диаметр окружности равен стороне квадрата: .
Ответ: 8.
Задача 5. Радиус вписанной в квадрат окружности равен . Найдите диагональ этого квадрата.
Решение:
Сторона квадрата в два раза больше радиуса вписанной окружности:
Диагональ найдем, зная сторону квадрата:
Ответ: 56.
Задача 6. Радиус вписанной в квадрат окружности равен . Найдите радиус окружности, описанной около этого квадрата.
Решение:
Радиус окружности, вписанной в квадрат, равен половине стороны квадрата, а радиус описанной окружности равен половине диагонали квадрата:
Поэтому
Ответ: 22.
Задача 7. Найдите периметр квадрата, если его площадь равна 9.
Решение:
Найдем сторону квадрата:
Периметр квадрата со стороной 3 равен:
Ответ: 12.
Задача 8. Найдите площадь квадрата, в который вписан круг площадью .
Решение:
Площадь круга откуда радиус круга равен 2.
Сторона квадрата в два раза больше радиуса вписанного круга и равна 4. Площадь квадрата равна 16.
Ответ: 16.
Задача 9. Найдите радиус окружности, вписанной в квадрат ABCD, считая стороны квадратных клеток равными .
Решение:
Сторону квадрата найдем как диагональ другого квадрата со стороной 2 клеточки. Поскольку длина одной клеточки равна ., то сторона малого квадрата равна
. А сторона квадрата ABCD равна
Радиус вписанной окружности в два раза меньше стороны квадрата и равен 2.
Ответ: 2.
Задача 10. Найдите радиус r окружности, вписанной в четырехугольник ABCD. В ответе укажите .
Решение:
Считаем стороны клеток равными единице. Четырехугольник ABCD — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.
Найдем на чертеже прямоугольный треугольник. По теореме Пифагора найдем сторону, например, AB.
Она равна . Тогда радиус вписанной окружности равен
. В ответ запишем
.
Ответ: 5.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Квадратu0026nbsp;u0026mdash; определение иu0026nbsp;свойства» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.05.2023
-
1
Write it down. Let’s say you’re working with a square with a side length of 3 centimeter (1.2 in). Write it down.
-
2
Understand the formula for the area of a square(Area=side^2). To calculate the area of any rectangle, you need to multiply its length by width. But since all squares have equal length sides, you can just multiply the distance by itself. If the length of a side of a square is 3 centimeter (1.2 in), then you just have to square 3 centimeter (1.2 in) to find the area of a square. 3 centimeter (1.2 in) x 3 centimeter (1.2 in) = 9 cm2.[1]
Advertisement
-
3
Be sure to state your answer in square units. Then you’re done.[2]
- Squaring the side of a square is the same thing as multiplying the square’s height times its base.
Advertisement
-
1
Take the measurement of the length of the diagonal of the square.
-
2
Understand the formula for the area using a known diagonal. Area = (diagonal^2)/2.[3]
-
3
Multiply the length of this diagonal’s measurement by itself. Square the length of the diagonal. Let’s say you’re working with a square with a diagonal that is 5 centimeter (2.0 in) long. Now, square this number. 5 centimeter (2.0 in) x 5 centimeter (2.0 in) = 25 cm2.
-
4
Divide the current number by 2. Continuing the calculation, 25 cm2 is divided by 2. This gives 12.5 cm2. You’re done.
Advertisement
-
1
Multiply the perimeter by 1/4 to find the length of a side. This is the same as dividing the perimeter by 4. Since there are four sides to a square and each side is of equal length, you can find the length of a square just by dividing the perimeter by 4. Let’s say the perimeter of the square you’re working with is 20 centimeter (7.9 in). Just multiply 20 centimeter (7.9 in) by 1/4: 20 centimeter (7.9 in) x 1/4 = 5 centimeter (2.0 in). You know that the length of a side of the square is 5 centimeter (2.0 in).[4]
-
2
Multiply the length of the side by itself. Square the length of the side. Now that you know that the length of a side is 5 centimeter (2.0 in), you can square it to get the area of the square. Area = (5 cm)2 = 25 centimeter (9.8 in).2[5]
Advertisement
Add New Question
-
Question
If the area of the square is 9 cm, what is the volume of the cube?
Take the square root of 9 and cube it. The answer will be expressed in cm³.
-
Question
What is the formula to calculate the area of an isosceles triangle that has a base and equal sides?
Multiply the length of the base of the triangle by 0.5, and then multiply the length from the base to the highest point of the triangle. A = 0.5 x b x h.
-
Question
A square is 1 cm by 1 cm; what is the area?
Multiply 1 cm by 1 cm: the area is 1 square cm.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
References
About This Article
Article SummaryX
To find the area of a square, use the formula a = side^2, where side is the length of one of the sides of the square. If you only know the perimeter of the square, you can find the area by dividing the perimeter by 4, which will give you the length of each side, and then plugging the side into the formula a = side^2. If you want to learn how to find the area of a square if you only know the length of a diagonal, keep reading!
Did this summary help you?
Thanks to all authors for creating a page that has been read 248,746 times.
Reader Success Stories
-
«This article really helped me in my assignment. I answered all of it and got a high score.»
Did this article help you?
Загрузить PDF
Загрузить PDF
Вычислить площадь квадрата очень просто, если вам известна длина стороны, периметр или длина диагонали. Вот, как это можно сделать.
-
1
Запишите длину стороны. Предположим, у вас есть квадрат с длиной стороны 3 см. Запишите это значение.
-
2
Возведите длину стороны в квадрат. Это все, что от вас требуется. Если длина сторон квадрата равна 3 см, то для вычисления площади квадрата нужно просто возвести ее в квадрат: 3 см x 3 см = 9 см2.
-
3
Не забудьте записать ответ в квадратных единицах.
- Возвести сторону в квадрат — это то же самое, что умножить высоту на ширину, так как у квадрата высота и ширина равны.
Реклама
-
1
Измерьте или найдите в условиях длину диагонали квадрата.
-
2
Запомните, как рассчитывается площадь квадрата на основании длины диагонали. Длину диагонали нужно возвести в квадрат и затем разделить на 2: S = (диагональ^2)/2.
-
3
Возведите в квадрат длину диагонали. Предположим, у вас есть квадрат с диагональю 5 см. Возведите ее в квадрат: 5 см x 5 см = 25 см2.
-
4
Теперь разделите результат на 2. 25 см2/2 = 12,5 см2. Площадь нашего квадрата составляет 12,5 см2.
Реклама
-
1
Умножьте периметр на 1/4, чтобы узнать длину стороны. Это то же самое, что разделить его на 4. Поскольку у квадрата четыре стороны равной длины, длину стороны можно узнать, просто разделив периметр на 4. Предположим, вам дан квадрат с периметром 20 см. Умножьте 20 на 1/4: 20 см x 1/4 = 5 см. Теперь мы знаем, что длина стороны составляет 5 см.
-
2
Возведите длину стороны в квадрат. Теперь, когда мы знаем, что длина стороны равна пяти сантиметрам, ее можно возвести в квадрат и получить площадь: (5 см)2 = 25 см2.
Реклама
Об этой статье
Эту страницу просматривали 217 124 раза.
Была ли эта статья полезной?
Площадь квадрата можно найти с помощью двух основных формул:
1) Через сторону.
2) Через диагональ.
Как найти площадь квадрата, если известна его сторона.
Как известно, квадрат — это частный случай прямоугольника, у которого все стороны равны.
Площадь прямоугольника равна произведению 2 его сторон:
Sпр = a * b, a и b — стороны прямоугольника.
В случае с квадратом a = b.
Таким образом, площадь квадрата будет находиться по формуле:
Sкв = a².
Например, если сторона квадрата равна 10 см., то его площадь = 10 * 10 = 100 см².
Как найти площадь квадрата, если известна его диагональ.
Диагональ делит квадрат на 2 прямоугольных треугольника. При этом диагональ является гипотенузой, а стороны квадрата — катетами.
Нам нужно выразить квадрат стороны через теорему Пифагора. Согласно данной теореме:
a*a + b*b = c*c.
a и b — катеты, c — гипотенуза.
В нашем случае a = b, а гипотенуза — это диагональ d.
Перепишем формулу в виде:
2a² = d².
a² = d² / 2.
Таким образом, если известна диагональ квадрата, то его площадь равна половине квадрата этой диагонали.
Например, если диагональ равна 10 см., то площадь квадрата = 10 * 10 / 2 = 50 см².