Геометрия как найти наибольшую высоту

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. Наименьшая высота — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника, можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Задача 1.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

nayti naimenshuyu vyisotu treugolnika

Дано:

∆ ABC,

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Решение:

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

kak nayti naimenshuyu vyisotu treugolnika

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. Площадь треугольника по сторонам можно найти с помощью формулы Герона. Поэтому

    [{h_a} = frac{{2sqrt {p(p - a)(p - b)(p - c)} }}{a},]

где

    [p = frac{{a + b + c}}{2}.]

Вычисляем:

    [p = frac{{7 + 8 + 9}}{2} = 12(cm),]

    [{h_a} = frac{{2sqrt {12(12 - 9)(12 - 7)(12 - 8)} }}{9} = ]

    [ = frac{{2sqrt {12 cdot 3 cdot 5 cdot 4} }}{9} = frac{{2sqrt {36 cdot 5 cdot 4} }}{9} = ]

    [ = frac{{2 cdot 6 cdot 2sqrt 5 }}{9} = frac{{8sqrt 5 }}{3}(cm).]

Ответ:

    [frac{{8sqrt 5 }}{3}cm.]

Задача 2.

Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

nayti naibolshuyu vyisotu treugolnika

Дано:

∆ ABC,

AC=25 см, AB=11 см, BC=30 см.

Найти:

наибольшую высоту треугольника ABC.

Решение:

kak nayti naibolshuyu vyisotu treugolnika

Наибольшая высота треугольника проведена к его наименьшей стороне.

Значит, нужно найти высоту CD, проведенную к стороне AB.

Для удобства обозначим

BC=a,

AC=b,

AB=c,

CD=hc.

    [{h_c} = frac{{2sqrt {p(p - a)(p - b)(p - c)} }}{c}.]

Вычисляем:

    [p = frac{{30 + 25 + 11}}{2} = 33(cm),]

    [{h_c} = frac{{2sqrt {33(33 - 30)(33 - 25)(33 - 11)} }}{{11}} = ]

    [ = {h_c} = frac{{2sqrt {33 cdot 3 cdot 8 cdot 22} }}{{11}} = frac{{2sqrt {3 cdot 11 cdot 3 cdot 4 cdot 2 cdot 2 cdot 11} }}{{11}} = ]

    [ = frac{{2 cdot 3 cdot 11 cdot 2 cdot 2}}{{11}} = 2 cdot 3 cdot 2 cdot 2 = 24(cm).]

Ответ: 24 см.

Найти наибольшую высоту треугольника

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. Наименьшая высота — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника, можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. Площадь треугольника по сторонам можно найти с помощью формулы Герона. Поэтому

Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

AC=25 см, AB=11 см, BC=30 см.

наибольшую высоту треугольника ABC.

Наибольшая высота треугольника проведена к его наименьшей стороне.

Значит, нужно найти высоту CD, проведенную к стороне AB.

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

источники:

Так , как площадь треугольника со сторонами a , b , c равна S = a * h(a) = b * h(b) = c * h(c).И так как площадь для одного и того же треугольника величина постоянная , наибольшая сторона там , где наименьшая сторона.

Для начала определим площадь треугольника по формуле Герона.

S = √ p *( p-a )*( p-b )*( p-c ), где p — полупериметр , a , b , c — стороны треугольника.

Полупериметр p = 12(11+25+30)=662=33 .

S = √ 33*(33 — 11)*(33 — 25 )*(33 — 30) = √ 33*22*8*3 = 11^2*3^2*16=√ 3*11*11*2*8*3 = 11*4*3 = 132 .

Так как мы находим наибольшую высоту треугольника , то она опущена на наименьшую сторону , равную 11.

Тогда максимальная высота равна h(11) = S/11 = 132/11= 12

Как найти большую высоту

Высотой многоугольника называют перпендикулярный одной из сторон фигуры отрезок прямой, который соединяет ее с вершиной противолежащего угла. Таких отрезков в плоской выпуклой фигуре существует несколько, и длины их не одинаковы, если хоть одна из сторон многоугольника имеет отличную от других величину. Поэтому в задачах из курса геометрии иногда требуется определить длину большей высоты, например, треугольника или параллелограмма.

Как найти большую высоту

Инструкция

Определите, которая из высот многоугольника должна иметь наибольшую длину. В треугольнике это отрезок, опущенный на самую короткую сторону, поэтому если в исходных условиях даны размеры всех трех сторон, то гадать не придется.

Если кроме длины самой короткой из сторон треугольника (a) в условиях приведена площадь (S) фигуры, формула расчета большей из высот (Hₐ) будет достаточно проста. Удвойте площадь и разделите полученное значение на длину короткой стороны — это и будет искомая высота: Hₐ = 2*S/a.

Не зная площади, но имея длины всех сторон треугольника (a, b и c), тоже можно найти самую длинную из его высот, однако математических операций будет значительно больше. Начните с вычисления вспомогательной величины — полупериметра (р). Для этого сложите длины всех сторон и разделите результат пополам: р = (a+b+c)/2.

Трижды умножьте полупериметр на разность между ним и каждой из сторон: р*(р-a)*(р-b)*(р-c). Из полученного значения извлеките квадратный корень √(р*(р-a)*(р-b)*(р-c)) и не удивляйтесь — вы использовали формулу Герона для нахождения площади треугольника. Для определения длины наибольшей высоты осталось заменить полученным выражением площадь в формуле из второго шага: Hₐ = 2*√(р*(р-a)*(р-b)*(р-c))/a.

Большая высота параллелограмма (Hₐ) вычисляется еще проще, если известна площадь этой фигуры (S) и длина ее короткой стороны (a). Разделите первое на второе и получите нужный результат: Hₐ = S/a.

Если известна величина угла (α) в какой-либо из вершин параллелограмма, а также длины сторон (a и b), образующих этот угол, найти большую из высот тоже будет не очень несложно. Для этого величину длинной стороны умножьте на синус известного угла, а результат разделите на длину короткой стороны: Hₐ = b*sin(α)/a.

Источники:

  • как найти меньшую высоту параллелограмма

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Найти наибольшую высоту треугольника

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. Наименьшая высота — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника, можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

nayti naimenshuyu vyisotu treugolnika

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

kak nayti naimenshuyu vyisotu treugolnika

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. Площадь треугольника по сторонам можно найти с помощью формулы Герона. Поэтому

Как найти наибольшую высоту треугольника со сторонами 11,25,30 см?

Как найти наибольшую высоту треугольника со сторонами 11 , 25 , 30 см?

Так , как площадь треугольника со сторонами a , b , c равна S = a * h(a) = b * h(b) = c * h(c).И так как площадь для одного и того же треугольника величина постоянная , наибольшая сторона там , где наименьшая сторона.

Для начала определим площадь треугольника по формуле Герона.

S = √ p *( p-a )*( p-b )*( p-c ), где p — полупериметр , a , b , c — стороны треугольника.

Полупериметр p = 12(11+25+30)=662=33 .

S = √ 33*(33 — 11)*(33 — 25 )*(33 — 30) = √ 33*22*8*3 = 11^2*3^2*16=√ 3*11*11*2*8*3 = 11*4*3 = 132 .

Так как мы находим наибольшую высоту треугольника , то она опущена на наименьшую сторону , равную 11.

Как найти высоту треугольника зная основание. Высота треугольника. Визуальный гид (2020). Что мы узнали

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника , можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. можно найти с помощью формулы Герона. Поэтому

Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

AC=25 см, AB=11 см, BC=30 см.

наибольшую высоту треугольника ABC.

Наибольшая высота треугольника проведена к его наименьшей стороне.

Значит, нужно найти высоту CD, проведенную к стороне AB.

Для удобства обозначим

Высота треугольника это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону, или на ее продолжение (сторона, на которую опускается перпендикуляр, в данном случае называется основанием треугольника).

В тупоугольном треугольнике две высоты падают на продолжение сторон и лежат вне треугольника. Третья внутри треугольника.

В остроугольном треугольнике все три высоты лежат внутри треугольника.

В прямоугольном треугольнике катеты служат высотами.

Как найти высоту по основанию и площади

Напомним формулу для вычисления площади треугольника. Площадь треугольника вычисляется по формуле: A = 1/2bh .

  • А — площадь треугольника
  • b — сторона треугольника, на которую опущена высота.
  • h — высота треугольника

Посмотрите на треугольник и подумайте, какие величины вам уже известны. Если вам дана площадь, обозначьте ее буквой «А» или «S». Вам также должно быть дано значение стороны, обозначьте ее буквой «b». Если вам не дана площадь и не дана сторона, воспользуйтесь другим методом.

Имейте в виду, что основанием треугольника может быть любая его сторона, на которую опущена высота (независимо от того, как расположен треугольник). Чтобы лучше понять это, представьте, что вы можете повернуть этот треугольник. Поверните его так, чтобы известная вам сторона была обращена вниз.

Например, площадь треугольника равна 20, а одна из его сторон равна 4. В этом случае «‘А = 20″‘, ‘»b = 4′».

Подставьте данные вам значения в формулу для вычисления площади (А = 1/2bh) и найдите высоту. Сначала умножьте сторону (b) на 1/2, а затем разделите площадь (А) на полученное значение. Таким образом, вы найдете высоту треугольника.

В нашем примере: 20 = 1/2(4)h

Вспомните свойства равностороннего треугольника. В равностороннем треугольнике все стороны и все углы равны (каждый угол равен 60˚). Если в таком треугольнике провести высоту, вы получите два равных прямоугольных треугольника.
Например, рассмотрим равносторонний треугольник со стороной 8.

Вспомните теорему Пифагора. Теорема Пифагора гласит, что в любом прямоугольном треугольнике с катетами «а» и «b» гипотенуза «с» равна: a2+b2=c2. Эту теорему можно использовать, чтобы найти высоту равностороннего треугольника!

Разделите равносторонний треугольник на два прямоугольных треугольника (для этого проведите высоту). Затем обозначьте стороны одного из прямоугольных треугольников. Боковая сторона равностороннего треугольника – это гипотенуза «с» прямоугольного треугольника. Катет «а» равен 1/2 стороне равностороннего треугольника, а катет «b» – это искомая высота равностороннего треугольника.

Итак, в нашем примере с равносторонним треугольником с известной стороной, равной 8: c = 8 и a = 4.

Подставьте эти значения в теорему Пифагора и вычислите b2. Сначала возведите в квадрат «с» и «а» (умножьте каждое значение само на себя). Затем вычтите a2 из c2.

42 + b2 = 82
16 + b2 = 64
b2 = 48

Извлеките квадратный корень из b2, чтобы найти высоту треугольника. Для этого воспользуйтесь калькулятором. Полученное значение и будет высотой вашего равностороннего треугольника!

Как найти высоту с помощью углов и сторон

Подумайте, какие значения вам известны. Вы можете найти высоту треугольника, если вам известны значения сторон и углов. Например, если известен угол между основанием и боковой стороной. Или если известны значения всех трех сторон. Итак, обозначим стороны треугольника: «a», «b», «c», углы треугольника: «А», «В», «С», а площадь — буквой «S».

Если вам известны все три стороны, вам понадобится значение площади треугольника и формула Герона.

Если вам известны две стороны и угол между ними, можете использовать следующую формулу для нахождения площади: S=1/2ab(sinC).

Если вам даны значения всех трех сторон, используйте формулу Герона. По этой формуле придется выполнить несколько действий. Сначала нужно найти переменную «s» (мы обозначим этой буквой половину периметра треугольника). Для этого подставьте известные значения в эту формулу: s = (a+b+c)/2.

Для треугольника со сторонами а = 4, b = 3, c = 5, s = (4+3+5)/2. В результате получается: s=12/2, где s=6.

Затем вторым действием мы находим площадь (вторая часть формулы Герона). Площадь = √(s(s-a)(s-b)(s-c)). Вместо слова «площадь» вставьте эквивалентную формулу для поиска площади: 1/2bh (или 1/2ah, или 1/2ch).

Теперь найдите эквивалентное выражение для высоты (h). Для нашего треугольника будет справедливо следующее уравнение: 1/2(3)h = (6(6-4)(6-3)(6-5)). Где 3/2h=√(6(2(3(1))). Получается, 3/2h = √(36). С помощью калькулятора вычислите квадратный корень. В нашем примере: 3/2h = 6. Получается, что высота (h) равна 4, сторона b – основание.

Если по условию задачи известны две стороны и угол, вы можете использовать другую формулу. Замените площадь в формуле эквивалентным выражением: 1/2bh. Таким образом, у вас получится следующая формула: 1/2bh = 1/2ab(sinC). Ее можно упростить до следующего вида: h = a(sin C), чтобы убрать одну неизвестную переменную.

Теперь осталось решить полученное уравнение. Например, пусть «а» = 3, «С» = 40 градусов. Тогда уравнение будет выглядеть так: «h» = 3(sin 40). С помощью калькулятора и таблицы синусов подсчитайте значение «h». В нашем примере h = 1,928.

Для решения многих геометрических задач требуется найти высоту заданной фигуры. Эти задачи имеют прикладное значение. При проведении строительных работ определение высоты помогает вычислить необходимое количество материалов, а также определить, насколько точно сделаны откосы и проемы. Часто для построения выкроек требуется иметь представление о свойствах

У многих людей, несмотря на хорошие оценки в школе, при построении обычных геометрических фигур возникает вопрос о том, как найти высоту треугольника или параллелограмма. Причем является самым сложным. Это происходит потому, что треугольник может быть острым, тупым, равнобедренным или прямоугольным. Для каждого из существуют свои правила построения и расчета.

Как найти высоту треугольника, в котором все углы острые, графическим способом

Если все углы у треугольника острые (каждый угол в треугольнике меньше 90 градусов), то для нахождения высоты необходимо сделать следующее.

  1. По заданным параметрам выполняем построение треугольника.
  2. Введем обозначения. А, В и С будут вершинами фигуры. Углы, соответствующие каждой вершине — α, β, γ. Противолежащие этим углам стороны — a, b, c.
  3. Высотой называется перпендикуляр, опущенный из вершины угла к противоположной стороне треугольника. Для нахождения высот треугольника проводим построение перпендикуляров: из вершины угла α к стороне a, из вершины угла β к стороне b и так далее.
  4. Точку пересечения высоты и стороны a обозначим H1, а саму высоту h1. Точка пересечения высоты и стороны b будет H2, высота соответственно h2. Для стороны c высота будет h3, а точка пересечения H3.

Высота в треугольнике с тупым углом

Теперь рассмотрим, как найти высоту треугольника, если один (больше 90 градусов). В этом случае высота, проведенная из тупого угла, будет внутри треугольника. Остальные две высоты будут находиться за пределами треугольника.

Пусть в нашем треугольнике углы α и β будут острыми, а угол γ — тупой. Тогда для построения высот, выходящих из углов α и β, надо продолжить противоположные им стороны треугольника, чтобы провести перпендикуляры.

Как найти высоту равнобедренного треугольника

У такой фигуры есть две равные стороны и основание, при этом углы, находящиеся при основании, также являются равными между собой. Это равенство сторон и углов облегчает построение высот и их вычисление.

Сначала нарисуем сам треугольник. Пусть стороны b и c, а также углы β, γ будут соответственно равными.

Теперь проведем высоту из вершины угла α, обозначим ее h1. Для эта высота будет одновременно биссектрисой и медианой.

Для основания можно сделать только одно построение. Например, провести медиану — отрезок, соединяющий вершину равнобедренного треугольника и противоположную сторону, основание, для нахождения высоты и биссектрисы. А для вычисления длины высоты для двух других сторон можно построить только одну высоту. Таким образом, чтобы графически определить, как вычислить высоту равнобедренного треугольника, достаточно найти две высоты из трех.

Как найти высоту прямоугольного треугольника

У прямоугольного треугольника определить высоты намного проще, чем у других. Это происходит потому, что сами катеты составляют прямой угол, а значит, являются высотами.

Для построения третьей высоты, как обычно, проводится перпендикуляр, соединяющий вершину прямого угла и противоположную сторону. В итоге для того, чтобы треугольника в данном случае, требуется только одно построение.

Почти никогда не получится определить все параметры треугольника без дополнительных построений. Эти построения являются своеобразными графическими характеристиками треугольника, которые помогают определить величину сторон и углов.

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя сторонами составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, не стандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Рис. 1. Высота тупоугольного треугольника.

Как правило, высота треугольника имеет обозначение буквой h. Так же обозначается высота и в других фигурах.

Как найти высоту треугольника?

Существует три стандартных способа нахождения высоты треугольника:

Через теорему Пифагора

Этот способ применяется для равносторонних и равнобедренных треугольников. Разберем решение для равнобедренного треугольника, а потом скажем, почему это же решение справедливо для равностороннего.

Дано : равнобедренный треугольник АВС с основанием АС. АВ=5, АС=8. Найти высоту треугольника.

Рис. 2. Рисунок к задаче.

Для равнобедренного треугольника важно знать, какая именно сторона является основанием. Это определяет боковые стороны, которое должны быть равны, а так же высоту, на которую действую некоторые свойства.

Свойства высоты равнобедренного треугольника, проведенной к основания:

  • Высота совпадает с медианной и биссектрисой
  • Делит основание на две равные части.

Высоту обозначим, как ВD. DС найдем как половину от основания, так как высота точкой D делит основание пополам. DС=4

Высота это перпендикуляр, значит ВDС – прямоугольный треугольник, а высота ВН является катетом этого треугольника.

Найдем высоту по теореме Пифагора: $$ВD=sqrt=sqrt=3$$

Любой равносторонний треугольник является равнобедренным, только основание у него равно боковым сторонам. То есть, можно использовать тот же порядок действий.

Через площадь треугольника

Этим способом можно пользоваться для любого треугольника. Чтобы им воспользоваться, нужно знать значение площади треугольника и стороны, к которой проведена высота.

Высоты в треугольнике не равны, поэтому для соответствующей стороны получится вычислить соответствующую высоту.

Формула площади треугольника: $$S=*bh$$, где b – это сторона треугольника,а h – высота, проведенная к этой стороне. Выразим из формулы высоту:

Если площадь равна 15, сторона 5, то высота $$h=2*=6$$

Через тригонометрическую функцию

Третий способ подойдет, если известна сторона и угол при основании. Для этого придется воспользоваться тригонометрической функцией.

Рис. 3. Рисунок к задаче.

Угол ВСН=300 , а сторона BC=8. У нас все тот же прямоугольный треугольник BCH. Воспользуемся синусом. Синус это отношение противолежащего катета к гипотенузе, значит: BH/BC=cos BCH.

Угол известен, как и сторона. Выразим высоту треугольника:

Значение косинуса в общем случае берется из таблиц Брадиса, но значения тригонометрических функций для 30,45 и 60 градусов – табличные числа.

Что мы узнали?

Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.

Тест по теме

Оценка статьи

Средняя оценка: 4.6 . Всего получено оценок: 137.

Прежде всего, треугольник – это геометрическая фигура, которая образуется тремя, не лежащими на одной прямой, точками, которые соединены тремя отрезками. Чтобы найти, чему равна высота треугольника, необходимо, в первую очередь, определить его тип. Треугольники различаются величиной углов и количеством равных углов. По величине углов треугольник может быть остроугольным, тупоугольным и прямоугольным. По числу равных сторон выделяют равнобедренный, равносторонний и разносторонний треугольники. Высота – это перпендикуляр, который опущен на противоположную сторону треугольника из его вершины. Как найти высоту треугольника?

Как найти высоту равнобедренного треугольника

Для равнобедренного треугольника характерно равенство сторон и углов при его основании, поэтому проведенные к боковым сторонам высоты равнобедренного треугольника всегда равны друг другу. Также высота данного треугольника одновременно является медианой и биссектрисой. Соответственно, высота делит основание пополам. Рассматриваем получившийся прямоугольный треугольник и находим сторону, то есть высоту равнобедренного треугольника, посредством теоремы Пифагора. Воспользовавшись следующей формулой, вычисляем высоту: H = 1/2*√4*a 2 − b 2 , где: а — боковая сторона данного равнобедренного треугольника, b — основание данного равнобедренного треугольника.

Как найти высоту равностороннего треугольника

Треугольник с равными сторонами называется равносторонним. Высоту такого треугольника выводят из формулы высоты равнобедренного треугольника. Получается: H = √3/2*a, где a — сторона данного равностороннего треугольника.

Как найти высоту разностороннего треугольника

Разносторонним называют треугольник, у которого какие-либо две стороны не являются равными друг другу. В таком треугольнике все три высоты будут разными. Рассчитать длины высот можно при помощи формулы: H = sin60*a = a*(sgrt3)/2, где а — сторона треугольника или сначала посчитать площадь конкретного треугольника по формуле Герона, которая выглядит как: S = (p*(p-c)*(p-b)*(p-a))^1/2, где а, b, с – стороны разностороннего треугольника, а p – его полупериметр. Каждая высота = 2*площадь/сторону

Как найти высоту прямоугольного треугольника

Прямоугольный треугольник имеет один прямой угол. Высота, которая проходит к одному из катетов, в то же время является вторым катетом. Поэтому чтобы найти лежащие на катетах высоты, нужно воспользоваться изменённой формулой Пифагора: a = √(c 2 − b 2), где a, b — это катеты (a — катет, который необходимо найти), c — длина гипотенузы. Для того, чтобы найти вторую высоту надо поставить полученное значение a на место b. Для нахождения третьей, лежащей внутри треугольника, высоты применяется следующая формула: h = 2s/a, где h — высота прямоугольного треугольника, s — его площадь, a — длина стороны, к которой будет перпендикулярна высота.

Треугольник называется остроугольным в случае, если все его углы острые. В таком случае все три высоты располагаются внутри остроугольного треугольника. Треугольник называется тупоугольным при наличии одного тупого угла. Две высоты тупоугольного треугольника находятся вне треугольника и падают на продолжение сторон. Третья сторона находится внутри треугольника. Высота определяется при помощи все той же теоремы Пифагора.

Понравилась статья? Поделить с друзьями:
  • Как найти стихотворение для дедушки
  • Принтер полости при печати как исправить
  • Как исправить ошибку на стр
  • Как найти процент по графику
  • Как найти пропавшего ребенка по фото