Геометрия как найти вес

Масса сплошной детали

Это странное название статьи объясняется только тем, что детали одной и той же формы могут быть как сплошными, так и полыми (т.е. следующая статья будет называться «Масса полой детали»).

Тут самое время вспомнить, что масса тела — это его объем V, умноженный на плотность его материала rho (см. таблицы плотностей):
m~=~V~*~rho
Объем сплошной детали — это… ее объем и больше ничего.

Примечание. В приведенных ниже формулах все размеры измеряются в миллиметрах, а плотность — в граммах на кубический сантиметр.
Буквой pi обозначено отношение длины окружности к ее диаметру, составляющее примерно 3,14.

Рассмотрим несколько простых форм (более сложные, как вы помните, можно составить путем сложения или вычитания простых).


1. Масса параллелепипеда (бруска)

ПараллелепипедОбъем параллелепипеда: V~=~W~*~H~*~L, где L — длина, W — ширина, H — высота.
Тогда масса:

m~=~{{W~*~H~*~L}/1000}~*~rho


2. Масса цилиндра

ЦилиндрОбъем цилиндра: V~=~pi~*~{D^2/4}~*~H, где D — диаметр основания, H — высота цилиндра.
Тогда масса:

m~=~{{pi~*~D^2~*~H}/4000}~*~rho


3. Масса шара

шарОбъем шара: V~=~pi~*~{D^3/6}, где D — диаметр шара.
Тогда масса:

m~=~{{pi~*~D^3}/6000}~*~rho


4. Масса сегмента шара

сегмент шараОбъем сегмента шара: V~=~{1/6}pi*H*(H^2+~{3/4}D^2), где D — диаметр основания сегмента, H — высота сегмента.
Тогда масса:

m~=~{{pi~*~H~*~(4H^2+~3D^2)}/24000}~*~rho


5. Масса конуса

КонусОбъем любого конуса: V~=~{1/3}S*H, где S — площадь основания, H — высота конуса.
Для круглого конуса: V~=~{1/12}pi*D^2*H, где D — диаметр основания, H — высота конуса.
Масса круглого конуса:

m~=~{{pi~*~D^2~*~H}/12000}~*~rho


6. Масса усеченного конуса

Усеченный конусПоскольку невозможно объять необъятное, рассмотрим только круглый усеченный конус. Его объем — это разность объемов двух вложенных конусов: с основаниями D1 и D2: V~=~{1/12}pi*(D1^2*H1~-~D2^2*H2), где H1~=~H*{D1/{D1-D2}}, H2~=~H*{D2/{D1-D2}}. После никому не интересных алгебраических преобразований получаем:
V~=~{1/12}pi*H*(D1^2+D1*D2+D2^2), где D1 — диаметр большего основания, D2 — диаметр меньшего основания, H — высота усеченного конуса.
Отсюда масса:

m~=~{{pi~*~H~*~(D1^2~+~D1*D2~+~D2^2)}/12000}~*~rho


7. Масса пирамиды

ПирамидаОбъем любой пирамиды равен одной трети произведения площади ее основания на высоту (то же самое, что и для конусов (часто мы не замечаем, насколько мироздание к нам благосклонно)): V~=~{1/3}S*H, где S — площадь основания, H — высота пирамиды.
Для пирамиды с прямоугольным основанием: V~=~{1/3}W*L*H, где W — ширина, L — длина, H — высота пирамиды.
Тогда масса пирамиды:

m~=~{{W~*~L~*~H}/3000}~*~rho


8. Масса усеченной пирамиды

Усеченная пирамидаРассмотрим усеченную пирамиду с прямоугольным основанием. Ее объем — это разность объемов двух подобных пирамид с основаниями W1*L1 и W2*L2: V~=~{1/3}W1*L1*H1~-~{1/3}W2*L2*H2, где H1~=~H*{W1/{W1-W2}}, H2~=~H*{W2/{W1-W2}}.
Исчеркав половину тетрадного листа, получаем: V~=~{1/3}H*~{{W1^2L1~-~W2^2L2}/{W1~-~W2}}, где W1, L1 — ширина и длина большего основания, W2, L2 — ширина и длина меньшего основания, H — высота пирамиды.
И, оставив в покое остальную половину листа, исходя из одних соображений симметрии, мы можем написать еще одну формулу, которая отличается от предыдущей только заменой W на L и наоборот. В чем разница между длиной и шириной? Только в том, что мы их так назвали. Назовем наоборот и получим: V~=~{1/3}H*~{{L1^2W1~-~L2^2W2}/{L1~-~L2}}.
Тогда масса усеченной прямоугольной пирамиды:

m~=~{{W1^2L1~-~W2^2L2}/{W1~-~W2}}~*~{H~*~rho}/3000

или

m~=~{{L1^2W1~-~L2^2W2}/{L1~-~L2}}~*~{H~*~rho}/3000

Для пирамиды с квадратным основанием (W1=L1=A1, W2=L2=A2) формула выглядит проще:

m~=~(A1^2~+~A1A2~+~A2^2)~*~{H~*~rho}/3000


Формула для измерения веса тела

Мы часто употребляем фразы наподобие: «Пачка конфет весит 250 грамм» или «я вешу 52 килограмма». Использование таких предложений происходит автоматический. Но что такое вес? Из чего он складывается и как его посчитать?

Для начала нужно понять, что неправильно говорить: «Этот предмет весит Х килограмм». В физике существует два разных понятия – масса и вес. Масса измеряется в килограммах, граммах, тонах и так далее, а вес тела рассчитывается в ньютонах. Поэтому, когда мы говорим, например, что мы весим 52 килограмма, мы на самом деле имеем в виду массу, а не вес.

Вес в физике

Массаэто мера инертности тела. Чем тело обладает большей инертностью, тем больше времени понадобится, чтобы придать ему скорость. Грубо говоря, чем выше значение массы, тем тяжелее сдвинуть предмет. В международной системе единиц массу измеряют в килограммах. Но её также измеряют и в других единицах, например;

  • унция;
  • фунт;
  • стоун;
  • американская тонна;
  • английская тонна;
  • грамм;
  • миллиграмм и так далее.

Когда мы говорим один, два, три килограмма, мы сравниваем массу с эталонной массой (прообраз которой находится во Франции в МБМВ). Масса обозначается m.

Весэто сила, которая действует на подвес или опору за счёт предмета, притягиваемого силой тяжести. Это векторная величина, а значит у него есть направление (как и у всех сил), в отличие от массы (скалярная величина). Направление всегда идёт в центр Земли (из-за силы тяжести). Например, если мы сидим на стуле, сиденье которого располагается параллельно Земле, то вектор силы направлен строго вниз. Вес обозначается P и рассчитывается в ньютонах [Н].

Если тело находится в движении или покое, то сила тяжести (Fтяж), действующая на тело, равна весу. Это справедливо, если движение происходит вдоль прямой линии относительно Земли, и оно имеет постоянную скорость. Вес действует на опору, а сила тяжести на само тело (которое располагается на опоре). Это разные величины, и независимо от того, что они равны в большинстве случаев, не стоит их путать.

Сила тяжести – это результат притяжения тела к земле, вес – воздействие тела на опору. Так как тело изгибает (деформирует) опору своим весом, возникает ещё одна сила, она называется сила упругости (Fупр). Третий закон Ньютона гласит, что тела взаимодействуют друг с другом с одинаковыми по модулю силами, но разными по вектору. Из этого следует, что для силы упругости должна быть противоположная сила, и эта она называется – сила реакции опоры и обозначается N.

По модулю |N|=|P|. Но так как эти силы разнонаправленные, то, раскрывая модуль, мы получим N= — P. Именно поэтому вес можно измерить динамометром, который состоит из пружинки и шкалы. Если подвесить груз на это устройство, пружинка растянется до определённой отметки на шкале.

Как измерить вес тела

Второй закон Ньютона гласит, что ускорение равно силе, делённой на массу. Таким образом, F=m*a. Так как Fтяж равна P (если тело находится в покое или движется по прямой (относительно Земли) с одинаковой скоростью), то и Р тела будет равняться произведению массы и ускорения (P=m*a).

Мы знаем, как найти массу, и знаем, что такое вес тела, осталось разобраться с ускорением. Ускорение – это физическая векторная величина, которая обозначает изменение скорости тела за единицу времени. Например, объект движется первую секунду со скоростью 4 м/с, а на второй секунде его скорость увеличивается до 8 м/с, значит, его ускорение равняется 2. По международной системе единиц ускорение рассчитывается в метрах на секунду в квадрате [м/с 2 ].

Если поместить тело в специальную среду, где будет отсутствовать сила сопротивления воздуха – вакуум, и убрать опору, то объект начнёт лететь равноускоренно. Название этого явления — ускорение свободного падения, которое обозначается g и рассчитывается в метрах на секунду в квадрате [м/с 2 ].

Интересно, что ускорение не зависит от массы тела, а значит если мы кинем листок бумажки и гирю на Земле в специальных условиях, при которых отсутствует воздух (вакуум), то эти предметы приземлятся в одно и то же время. Так как листок имеет большую площадь поверхности и относительно маленькую массу, то для того чтобы упасть, ему приходятся сталкиваться с большим сопротивлением воздуха. В вакууме такого не происходит, и поэтому перо, листок бумаги, гиря, пушечное ядро и другие предметы будут лететь с одной и той же скоростью и упадут в одно время (при условии, что они начнут лететь в одно и то же время, и их первоначальная скорость будет равняться нулю).

Так как Земля имеет форму геоида (или по-другому эллипсоида), а не идеального шара, то и ускорение свободного падения в разных участках Земли разное. Например, на экваторе оно равно 9,832 м/с 2 , а на полюсах 9,780 м/с 2 . Это происходит потому, что на некоторых участках Земли расстояние до ядра больше, а на некоторых меньше. Чем ближе объект находится к центру, тем сильнее он притягивается. Чем объект дальше, тем сила тяжести меньше. Обычно, в школе округляют это значение до 10, это делается для удобства расчётов. Если же необходимо измерить более точно (в инженерном или военном деле и так далее), то берут конкретные значения.

Таким образом, формула для расчёта веса телу будет выглядеть следующим образом P=m*g.

Примеры задач для расчёта веса тела

Первая задача. На стол положили груз массой 2 килограмма. Каков вес груза?

Для решения этой задачи нам понадобится формула по расчёту веса P=m*g. Мы знаем массу тела, а ускорение свободного падения примерно составляет 9,8 м/с 2 . Подставляем эти данные в формулу и получим P=2*9,8=19,6 Н. Ответ: 19,6 Н.

Вторая задача. На стол положили парафиновый шарик, объёмом 0,1 м 3 . Каков вес шарика?

Эту задачу необходимо решать в следующей последовательности;

  1. Для начала нам надо вспомнить формулу веса P=m*g. Ускорение нам известно – 9,8 м/с 2 . Осталось найти массу.
  2. Масса рассчитывается по формуле m=p*V, где p – это плотность, а V – объём. Плотность парафина можно посмотреть в таблице, объём нам известен.
  3. Необходимо подставить значения в формулу, для нахождения массы. m=900*0,1=90 кг.
  4. Теперь подставляем значения в первую формулу, для нахождения веса. P=90*9,9=882 Н.

Видео

В этом видео уроке разбирается тема — сила тяжести и вес тела.

Вес тела

О чем эта статья:

Невесомость: что это такое

Невесомость — это состояние, при котором тело не давит на опору или подвес.

Само слово «невесомость» как бы подсказывает нам, что веса здесь быть не должно. При этом непонятно, что с ним тогда происходит. Давайте разбираться.

Вес тела

Вес — это сила, с которой тело действует на опору или подвес. Измеряется вес, как и любая другая сила, в Ньютонах.

«Но погодите! Вес же измеряют в килограммах — я вот вешу 50»

Это не совсем верно. В быту мы часто подменяем понятие «масса» понятием «вес» и говорим: вес чемодана — десять килограммам. В физике это два совершенно разных понятия, которые при этом взаимосвязаны.

Если у вас неподалеку есть весы — приглашаем в эксперимент! Один нюанс: наша затея сработает именно с механическими весами, но не с электронными. Поехали!

Шаг 1. Если встать на весы ровно и не двигаться — ваш вес будет высчитываться по формуле:

P = mg

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Здесь может возникнуть два возражения:

Это же сила тяжести, а не вес. Формула такая же!

На весах масса отображается в килограммах. И если я свою массу умножу на ускорение свободного падения, то явно получу число почти в 10 раз больше, чем показывают весы.

Точка приложения силы. Эта формула и правда аналогична силе тяжести. Вес тела в состоянии покоя численно равен массе тела, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Весы измеряют силу. Весы работают таким образом, что измеряют вес тела — силу, с которой мы на них действуем, а показывают — массу. Можно сделать вывод, что весы — это динамометр (прибор, измеряющий силу).

Шаг 2. Теперь пошалим и резко встанем на носочки! Стрелка резко отклонилась влево, а потом вернулась на место. Вы придали себе ускорение, направленное вверх — в то время, как ускорение свободного падения всегда направлено к центру Земли (вниз).

Теперь вес тела вычисляем по формуле:

P = m (g − a)

g — ускорение свободного падения [м/с 2 ]

a — ваше ускорение [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Шаг 3. Последняя часть эксперимента — резко опуститься на пятки. Теперь вы сильнее давите на весы, потому что придали ускорение, направленное вниз. Стрелка весов отклонится вправо и вернется на место, когда вы придете в состояние покоя.

Формула веса примет вид:

P = m (g + a)

g — ускорение свободного падения [м/с 2 ]

a — ваше ускорение [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Кстати, если ровно стоять на весах, но взвешиваться в лифте — все будет работать наоборот. Если лифт едет вверх, то он как будто давит весами на человека, стоящего на них, а это как раз ситуация с увеличением веса. А если вниз — весы как будто бы от вас «убегают», чтобы показать меньшее значение.

Этот случай мы можем описать через 2 закон Ньютона. Возьмем лифт, который едет вниз. Обозначим силы на рисунке.

N – сила реакции опоры [Н];

mg – сила тяжести [Н];

a – ускорение, с которым движется лифт [м/с 2 ].

При проецировании на ось y, направленную вниз, мы получаем:

А теперь нам понадобится третий закон Ньютона — по нему сила реакции опоры равна весу тела:

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

Снова невесомость

Ну что, с весом разобрались. А теперь давайте сделаем так, чтобы его не стало и получилась та самая невесомость.

Чтобы привыкнуть к ощущению невесомости в космосе, космонавты тренируется в специальных самолетах-лабораториях:

Он взлетает и начинает просто падать, чтобы ускорение самолета было равно ускорению свободного падения. В этот момент, в формуле веса из g вычитается равное ему значение и получается 0:

P = m (g − a) = m (9,8 − 9,8) = 0

Вот мы и в невесомости!

Если они летят вокруг Земли, то да. Как писал Дуглас Адамс в книге «Автоспом по галактике»: «Летать просто. Нужно просто промахнуться мимо Земли».

Когда космический корабль обращается вокруг Земли, он просто пытается на нее упасть, но промахивается. Такой процесс происходит, когда корабль движется с первой космической скоростью, равной 7.9 км/с. Это та скорость, с которой корабль становится искусственным спутником Земли.

Кстати, есть еще вторая и третья космические скорости. Вторая космическая скорость — это минимальная скорость, с которой должно двигаться тело, чтобы оно могло без затрат дополнительной работы преодолеть влияние поля тяготения Земли, т. е. удалиться на бесконечно большое расстояние от Земли. А тело, которое двигается с третьей космической скоростью, и вовсе вылетит за пределы Солнечной системы. Такие дела. 🙂

Вес тела

теория по физике 🧲 динамика

Вес тела — сила, с которой тело вследствие притяжения к Земле давит на опору или растягивает подвес.

Вес тела имеет электромагнитную природу (не путать с силой тяжести — она возникает между двумя телами и имеет гравитационную природу!). Обозначается P . Измеряется динамометром. Единица измерения — Н (Ньютон).

Вес имеет направление, противоположное силе реакции опоры или силе натяжения нити. Точкой приложения веса является точка опоры или подвеса: P ↑↓ N или P ↑↓ T .

Согласно III закону Ньютона модуль веса тела определяется одной из следующих формул:

Если тело и опора или подвес неподвижны, то модули силы реакции опоры, силы натяжения подвеса, а также силы упругости равны модулю силы тяжести. Поэтому в неподвижной системе модуль веса неподвижного тела тоже равен модулю силы тяжести:

Если тело находится в состоянии невесомости, его вес равен нулю: P = 0. Это значит, что это тело не оказывает никакого действия ни на подвес, ни на опору.

Пример №1. Гиря массой 1 пуд стоит на полу. Определить вес гири.

Так как гиря покоится, ее вес будет равен модулю силы тяжести. 1 пуд = 16,38 кг. Следовательно:

P = mg = 16,38∙10 = 163,8 (Н)

Перегрузка

Перегрузка — отношение абсолютной величины линейного ускорения, вызванного негравитационными силами, к стандартному ускорению свободного падения на поверхности.

Перегрузка определяется отношением:

Перегрузка возникает, когда система, в которой находится тело, движется с ускорением.

Вес тела в движущейся равноускоренно системе

Вес тела в движущейся системе может быть больше или меньше веса того же тела в системе, которая находится в состоянии покоя:

  1. Если система движется равноускоренно в направлении ускорения свободного падения, вес тела меньше веса тела в неподвижной системе: при a ↑↑ g —P a ↑↓ g —P > P0.
  2. Если система движется с равномерной скоростью (ускорение равно нулю) в любом направлении по отношению к ускорению свободного падения, вес тела равен весу тела в неподвижной системе: при a = 0 —P = P0.

Применение законов Ньютона для определения веса тела

Опора или подвес неподвижны


Второй закон Ньютона в векторной форме:

N + m g = m a или T + m g = m a

Проекция на ось ОУ:

N – mg = 0 или T — mg = 0

Ускорение опоры направлено вверх


Второй закон Ньютона в векторной форме:

Проекция на ось ОУ:

P = N = ma + mg = m(a + g)

Ускорение опоры направлено вниз


Второй закон Ньютона в векторной форме:

Проекция на ось ОУ:

P = N = mg – ma = m(g – a)

Вершина выпуклого моста


Второй закон Ньютона в векторной форме:

Проекция на ось ОУ:

Нижняя точка вогнутого моста


Второй закон Ньютона в векторной форме:

Проекция на ось ОУ:

Полный оборот на подвесе


Второй закон Ньютона в векторной форме:

Проекция на ось ОУ в точке А:

Вес тела в точке А:

Проекция на ось ОУ в точке В:

Вес тела в точке В:

Важно! Центростремительное ускорение всегда направлено к центру окружности.

Пример №2. Автомобиль массой 1000 кг едет по выпуклому мосту с радиусом кривизны 40 м. Какую скорость должен иметь автомобиль в верхней точке моста, чтобы пассажиры в этой точке почувствовали невесомость?

Вес тела в верхней точке выпуклого моста равен:

Чтобы пассажиры почувствовали состояние невесомости, вес тела должен быть равен 0:

Масса не может быть нулевой, поэтому:

Значит, пассажиры в верхней точке моста почувствуют невесомость, если центростремительное ускорение будет равно ускорению свободного падения. Центростремительное ускорение определяется формулой:

Отсюда скорость автомобиля в верхней точке моста должна быть равна:

Четыре одинаковых кирпича массой m каждый сложены в стопку (см. рисунок). Если убрать два верхних кирпича, то модуль силы N, действующей со стороны горизонтальной опоры на первый кирпич, уменьшится на…

источники:

http://skysmart.ru/articles/physics/ves-tela

Вес тела

Что же такое центр масс, или, как его ещё называют, центр тяжести? Формальное определение звучит так:

Точка О называется центром масс системы из n точек А1, А2, …, Аn, где каждой точке соответствует масса m1, m2, …, mn, если верно следующее равенство:

Не пугайтесь этой формулы! На деле решать задачи данным методом можно не думая про векторы. Сделаем допущение, что груз на концах отрезков не имеет размера — только массу.

Чтобы найти центр масс системы из двух точек, надо всего лишь разбить отрезок в отношении, обратно пропорциональном массам точек. Это условие делает верным наше векторное равенство.

Теперь рассмотрим
систему из трёх точек, образующих некий треугольник. Как найти его центр масс? Для большей наглядности представим большой поднос, на котором произвольно расставлены гири. И официанта, который ловко удерживает поднос на одном пальце. Точка, в которой палец соприкасается с подносом, и есть центр масс. Только условимся, что поднос обладает бесконечно малой массой.

Как же найти эту точку? Оказывается, у центра масс есть следующее полезное свойство.

Если есть система точек с массами в них и какую-то пару точек А(mA) и B(mB) мы заменим их центром масс Р(mA+mB), то центр масс исходной системы не изменится.

Доказать это свойство попробуйте самостоятельно: это несложное упражнение на векторы.

Давайте применим указанное свойство к треугольнику. Если есть треугольник с вершинами
А, В, С с массами в них, то, чтобы найти центр масс данной системы, можно сперва найти центр масс точек А и В (точку Р), а затем найти центр масс точек Р и С. В каждом из двух случаев центр масс мы находим с помощью обычного правила рычага.

Всё это здорово, но возникает резонный вопрос: а зачем? Какое отношение имеют эти рассуждения к геометрическим задачам? Терпение, друзья!


Загрузить PDF


Загрузить PDF

Вес — сила, с которой тело действует на опору (или другой вид крепления), возникающая в поле силы тяжести. Масса связана с энергией и импульсом тела и эквивалентна энергии его покоя. Масса не зависит от силы тяжести (точнее от ускорения свободного падения). Поэтому тело, на Земле имеющее массу 20 кг, на Луне будет иметь массу 20 кг, но совсем другой вес (потому что ускорение свободного падения на Луне в 6 раз меньше, чем на Земле).

  1. Изображение с названием Calculate Weight from Mass Step 1

    1

    Для вычисления веса используйте формулу {displaystyle P=mg}. Вес — это сила, с которой тело действует на опору, и его можно рассчитать, зная массу тела. В физике используется формула {displaystyle P=mg}.[1]

  2. Изображение с названием Calculate Weight from Mass Step 2

    2

    Определите массу тела. Так как ускорение свободного падения — это стандартная величина, то необходимо знать массу тела, чтобы найти его вес. Масса должна быть выражена в килограммах.

  3. Изображение с названием Calculate Weight from Mass Step 3

    3

    Узнайте величину ускорения свободного падения. На Земле, как уже было сказано выше, g = 9,8 м/с2. В других местах Вселенной эта величина меняется.[3]

    • Ускорение свободного падения на поверхности Луны приблизительно равно 1,622 м/с2 (примерно в 6 раз меньше, чем на поверхности Земли). Поэтому ваш вес на Луне будет в 6 раз меньше вашего земного веса.[4]
    • Ускорение свободного падения на Солнце приблизительно равно 274,0 м/с2 (примерно в 28 раз больше, чем на Земле). Поэтому ваш вес на Солнце будет в 28 раз больше вашего земного веса (если, конечно, вы выживете на Солнце, что еще не факт!).[5]
  4. Изображение с названием Calculate Weight from Mass Step 4

    4

    Подставьте значения в формулу {displaystyle F=mg}. Теперь, когда вы знаете массу m и ускорение свободного падения g, подставьте их значения в формулу {displaystyle F=mg}. Так вы найдете вес тела (измеряется в ньютонах, Н).

    Реклама

  1. Изображение с названием Calculate Weight from Mass Step 5

    1

    Задача № 1. Найдите вес тела массой 100 кг на поверхности Земли.

  2. Изображение с названием Calculate Weight from Mass Step 6

    2

    Задача № 2. Найдите вес тела массой 40 кг на поверхности Луны.

  3. Изображение с названием Calculate Weight from Mass Step 7

    3

    Задача № 3. Найдите массу тела, которое на поверхности Земли весит 549 Н.

    Реклама

  1. Изображение с названием Calculate Weight from Mass Step 8

    1

    Не путайте массу и вес. Самая распространенная ошибка — перепутать вес и массу (что немудрено, ведь в повседневной жизни мы обычно называем массу весом). Но в физике все не так. Запомните, масса — это постоянное свойство объекта, то, сколько в нем вещества (килограммов), где бы он ни находился. Вес — это сила, с которой объект всеми своими килограммами давит на поверхность, и эта сила на разных небесных телах будет различной.

    • Масса измеряется в килограммах или граммах. Запомните, что в этих словах, как и в слове «масса», есть буква «м».
  2. Изображение с названием Calculate Weight from Mass Step 9

    2

    Используйте правильные единицы измерения. В задачах по физике вес или силу измеряют в ньютонах (Н), ускорение свободного падения — в метрах на секунду в квадрате (м/с2), а массу — в килограммах (кг). Если для какой-либо из этих величин вы возьмете не ту единицу измерения, воспользоваться формулой будет нельзя. Если масса в условиях задачи указана в граммах или тоннах, не забудьте перевести ее в килограммы.

    Реклама

Приложение: вес, выраженный в кгс

  • Ньютон — это единица измерения силы в международной системе единиц СИ. Нередко сила выражается в килограмм-силах, или кгс (в системе единиц МКГСС). Эта единица очень удобна для сравнения весов на Земле и в космосе.
  • 1 кгс = 9,8166 Н.
  • Разделите вес, выраженный в ньютонах, на 9,80665.
  • Вес космонавта, который «весит» 101 кг (то есть его масса равна 101 кг), составляет 101,3 кгс на Северном полюсе и 16,5 кгс на Луне.
  • Международная система единиц СИ — система единиц физических величин, которая является наиболее широко используемой системой единиц в мире.

Советы

  • Самая трудная задача — уяснить разницу между весом и массой, так как в повседневной жизни слова «вес» и «масса» используются как синонимы. Вес — это сила, измеряемая в ньютонах или килограмм-силах, а не в килограммах. Если вы обсуждаете ваш «вес» с врачом, то вы обсуждаете вашу массу.
  • Ускорение свободного падения также может быть выражено в Н/кг. 1 Н/кг = 1 м/с2.
  • Плечевые весы измеряют массу (в кг), в то время как весы, работа которых основана на сжатии или расширении пружины, измеряют вес (в кгс).
  • Вес космонавта, который «весит» 101 кг (то есть его масса равна 101 кг), составляет 101,3 кгс на Северном полюсе и 16,5 кгс на Луне. На нейтронной звезде он будет весить еще больше, но он, вероятно, этого не заметит.
  • Единица измерения «Ньютон» применяется намного чаще (чем удобная «кгс»), так как можно найти множество других величин, если сила измеряется в ньютонах.

Реклама

Предупреждения

  • Выражение «атомный вес» не имеет ничего общего с весом атома, это масса. В современной науке оно заменено на выражение «атомная масса».

Реклама

Об этой статье

Эту страницу просматривали 113 770 раз.

Была ли эта статья полезной?

Сила тяжести. Вес

  1. Движение тел вблизи поверхности Земли
  2. Сила тяжести
  3. Вес тела
  4. Невесомость
  5. Задачи
  6. Лабораторная работа №7. Градуирование шкалы динамометра и измерение силы тяжести

п.1. Движение тел вблизи поверхности Земли

Вблизи поверхности Земли все тела, предоставленные самим себе, падают вниз, независимо от направления начальной скорости.

Такое движение тел называют свободным падением.

п.2. Сила тяжести

Многочисленные эксперименты показали, что в свободном падении все тела вблизи поверхности Земли падают с одинаковым ускорением (overrightarrow{g}), которое направлено вниз, к центру Земли.

В системе отсчета, связанной с Землей, на любое тело массой (m) действует сила тяжести $$ overrightarrow{F_{text{тяж}}}=m overrightarrow{g} $$

Сила тяжести Сила тяжести прямо пропорциональна массе тела.
Точка приложения силы тяжести – центр масс тела.
Сила тяжести всегда направлена вертикально вниз, к центру Земли.

Измерения показывают, что на средних географических широтах ускорение свободного падения (gapprox 9,81 text{м/с}^2). Т.е., скорость при падении увеличивается на (9,81 text{м/с}) каждую следующую секунду.

В общем случае, ускорение свободного падения зависит от широты рассматриваемого места, высоты над уровнем моря, времени суток и ещё нескольких более «тонких» факторов.
Самое низкое значение (g_{min}approx 9,7639 text{м/с}^2) зарегистрировано в Перу, на горе Уаскаран (1000 км южнее экватора).
Самое высокое значение (g_{max}approx 9,8337 text{м/с}^2) получено в 100 км от северного полюса.

В школьных задачах, если другое не оговорено, для вычислений используют приблизительное значение (gapprox 10 text{м/с}^2).
Стандартное значение, используемое для лабораторных измерений и расчетов, равно (g=9,80665 text{м/с}^2).

п.3. Вес тела

Если подвесить тело или положить его на опору, сила тяжести, действующая на тело, будет уравновешена силой, которую называют силой реакции подвеса или силой реакции опоры.

Т.к. силы уравновешивают друг друга, выполняется соотношение $$ moverrightarrow{g}=-overrightarrow{N} $$ где (moverrightarrow{g}) — сила тяжести, (overrightarrow{N}) — реакция подвеса или опоры.

По третьему закону Ньютона, если подвес или опора действуют на тело с силой (overrightarrow{N}), то и тело действует на подвес или опору с силой (overrightarrow{P}=-overrightarrow{N})

Вес тела – это сила, с которой тело действует на подвес или опору.

Получаем, что (overrightarrow{P}=moverrightarrow{g}), вес и сила тяжести равны по величине и направлению, но приложены к разным точкам: сила тяжести – к центру масс тела, вес – к подвесу или опоре.

По своей природе реакции подвеса или опоры являются силами упругости: под действием веса тела подвес или опора деформируются, и силы упругости стремятся восстановить их форму и размеры.

Равенство (overrightarrow{P}=moverrightarrow{g}) выполняется, если подвес или опора покоятся или движутся относительно Земли прямолинейно и равномерно.

Если движение подвеса или опоры равноускоренное с ускорением (overrightarrow{a}ne 0), то (overrightarrow{P}ne moverrightarrow{g}), вес будет больше (при (overrightarrow{a}) направленном вверх) или меньше (при (overrightarrow{a}) направленном вниз) силы тяжести. Подробней этот случай будет рассмотрен в курсе физики для 9 класса.

п.4. Невесомость

Если опора свободно падает вместе с телом, то под действием силы тяжести каждая частица опоры и тела двигается вниз с одним и тем же ускорением (overrightarrow{g}). Ни в опоре, ни в теле не возникают сжатия или растяжения, нет сил упругости, а значит, вес тела равен нулю.

Состояние, при котором в свободно падающих телах исчезают деформации и взаимные давления частиц тел друг на друга, называют невесомостью.

Состояние невесомости можно испытать, если подпрыгнуть – с момента отрыва от земли до момента приземления. В первые моменты прыжка до раскрытия парашюта, парашютисты также находятся в состоянии невесомости.

Движение космического корабля по орбите вокруг Земли представляет собой непрерывное свободное падение, поэтому космонавты испытывают состояние невесомости в течение всего полета, кроме тех моментов, когда передвигаются по кораблю или включают двигатели для маневрирования.

п.5. Задачи

Задача 1. Какой вес имеет человек массой 65 кг, который стоит на земле?

Дано:
(m=65 text{кг})
(gapprox 10 text{м/с}^2)
__________________
(P-?)

Вес равен силе тяжести (P=mg) $$ Papprox 65cdot 10=650 (text{Н}) $$ Ответ: 650 Н

Задача 2. Парашютист равномерно опускается на землю. Сила сопротивления воздуха 900 Н. Масса парашюта 15 кг. Найдите массу парашютиста.

Дано:
(F_{text{сопр}}=900 text{Н})
(m_1=15 text{кг})
(gapprox 10 text{м/с}^2)
__________________
(m_2-?)

Задача 2
На раскрытый парашют действуют две силы: сила сопротивления воздуха, направленная вверх, и суммарный вес (парашюта и парашютиста), направленный вниз.
Т.к. движение равномерное, ускорение (a=0). Значит, вес равен силе тяжести, и begin{gather*} F_{text{сопр}}=P=F_{text{т}}=(m_1+m_2)g\[6pt] m_1+m_2=frac{F_{text{сопр}}}{g}Rightarrow m_2=frac{F_{text{сопр}}}{g}-m_1 end{gather*} Подставляем $$ m_2=frac{900}{10}-15=75 (text{кг}) $$ Ответ: 75 кг.

Задача 3. На сколько сантиметров растянется пружина жесткостью k=267 Н/м, если подвесить к ней медный брусок размерами 5 см х 6 см х 10 см. Плотность меди 8900 кг/м3.

Дано:
(V=5 text{см}times 6 text{см}times 10 text{см}=300 text{см}^3=3cdot 10^{-4} text{м}^3)
(rho=8900 text{кг/м}^3)
(k=1000 text{Н/м})
(gapprox 10 text{м/с}^2)
__________________
(m_2-?)

Задача 3
Вес бруска равен силе тяжести и уравновешивается силой упругости: begin{gather*} mg=F_{text{упр}}=kDelta lRightarrow Delta l=frac{mg}{k}, m=rho V\[6pt] Delta l=frac{rho Vg}{k} end{gather*} Получаем: $$ Delta l=frac{8900cdot 3cdot 10^{-4}cdot 10}{267}=0,1 (text{м}=10 (text{см}) $$ Ответ: 10 см.

Задача 4*. При подвешивании гирьки массой 450 г пружина динамометра растягивается до 8 см. А при подвешивании гирьки массой 300 г – до 6 см. Найдите длину пружины динамометра без груза (ответ запишите в см).

Дано:
(m_1=450 text{г}=0,45 text{кг})
(l_1=8 text{см}=0,8 text{м})
(m_2=300 text{г}=0,3 text{кг})
(l_2=6 text{см}=0,6 text{м})
__________________
(l_0-?)

Задача 4
Вес гирьки равен силе тяжести и уравновешивается силой упругости: begin{gather*} mg=F_{text{упр}}=kDelta lRightarrow k=frac{mg}{Delta l} end{gather*} где (Delta l=l-l_0) – растяжение пружины.
Жесткость пружины begin{gather*} k=frac{m_1g}{Delta l_1}=frac{m_1g}{l_1-l_0}, k=frac{m_2g}{Delta l_2}=frac{m_2g}{l_2-l_0}\[6pt] frac{m_1g}{l_1-l_0}=frac{m_2g}{l_2-l_0} Rightarrow frac{m_1}{l_1-l_0}=frac{m_2}{l_2-l_0} Rightarrow m_2(l_2-l_0)=m_2(l_1-l_0)\[6pt] m_1l_2-m_1l_0=m_2l_1-m_2l_0 Rightarrow m_1l_2-m_2l_1=(m_1-m_2)l_0\[6pt] l_0=frac{m_1l_2-m_2l_1}{m_1-m_2} end{gather*} Получаем $$ l_0=frac{0,45cdot 0,06-0,3cdot 0,08}{0,45-0,3}=frac{0,027-0,024}{0,15}=0,02 (text{м}=2 (text{см}) $$ Ответ: 2 см.

п.6. Лабораторная работа №7. Градуирование шкалы динамометра и измерение силы тяжести

Цель работы
Исследовать зависимость силы упругости от величины деформации. Изготовить шкалу динамометра. Измерить силу тяжести для двух тел неизвестной массы; рассчитать их массу.

Теоретические сведения

Лабораторная работа №7 При подвешивании груза на пружину, его вес уравновешивается силой упругости. Для неподвижной пружины вес равен силе тяжести.
Получаем $$ P=F_{text{т}}=mg=F_{text{упр}} =kDelta l $$ Удлинение пружины $$ Delta l=frac gk m $$ При постоянном ускорении свободного падения (g) и постоянной жесткости (k), удлинение прямо пропорционально массе подвешенного груза.

В данной работе считаем, что грузу массой 100 г соответствует показание динамометра (F=1 text{Н}), т.е. (overline{g}=frac{1 text{Н}}{100 text{г}}=10frac{text{Н}}{ text{кг}}=10frac{ text{м}}{ text{с}^2}). Более точное стандартное значение (g_0=9,80665frac{ text{м}}{ text{с}^2})

Ошибка метода, связанная с величиной (g) $$ delta_g=frac{|overline{g}-g_0|}{g_0}approx 0,02=2text{%} $$ Тогда грузу массой 200 г соответствует показание 2 Н, 300 г – 3 Н и т.д.

После градуирования в целых значениях Н на динамометре наносятся промежуточные деления с ценой деления (d=0,1 text{Н}).

Ошибка градуирования определяется как степень отклонения от равномерности шкалы, (delta_{text{шк}}).

Теперь с помощью полученного прибора можно непосредственно измерять силу тяжести, действующую на тела. Ошибка метода при определении сил равна сумме (delta=delta_g+delta_{text{шк}}).

Т.к. шкала изготовлена для (overline{g}=10frac{ text{м}}{ text{с}^2}), массу тел находим по формуле (m=frac{F}{overline{g}}), где (F) — показание динамометра. При этом ошибка метода равна (delta=delta_{text{шк}}), т.к. ошибка (delta_g) нивелируется за счет пропорциональности массы и растяжения пружины.

Таким образом, за счет сокращения (overline{g}), полученный прибор позволяет точнее измерять массы по сравнению с измерениями сил.

Приборы и материалы
Лабораторный динамометр на 5Н со шкалой, закрытой чистой бумагой; набор грузиков по 100 г; линейка; карандаш; 2 тела неизвестной массы.

Ход работы
1. Закрепите динамометр в штативе.
2. Подвесьте грузик массой 100 г, сделайте отметку 1Н на шкале.
3. Сделайте отметки 2Н, 3Н, 4Н и 5Н для грузов 200 г, 300 г, 400 г и 500 г соответственно.
4. Снимите динамометр со штатива и проверьте с помощью линейки, насколько равномерной получилась шкала. Оцените относительную ошибку (delta_{text{шк}})
5. С помощью линейки нанесите по 10 промежуточных делений между основными делениями шкалы.
6. Снова закрепите динамометр в штативе и проведите измерения силы тяжести для двух тел неизвестной массы. Найдите абсолютную и относительную погрешность измерений.
7. Рассчитайте массы для обоих тел. Найдите абсолютную и относительную погрешность расчетов. 8. Сделайте выводы.

Результаты измерений и вычислений

Расчетная таблица для оценки равномерности шкалы

Отрезок шкалы Длина отрезка, мм (|x-x_{text{ср}}|)
0-1 Н 25 0
1-2 Н 25 0
2-3 Н 26 1
3-4 Н 24 1
4-5 Н 25 0
Всего 125 2

Средняя длина отрезка $$ x_{text{ср}}=frac{125}{5}=25 (text{мм}) $$ Среднее линейное отклонение $$ Delta =frac 25=0,4 (text{мм}) $$ Цена деления линейки (d_{text{л}}=1 text{мм}), абсолютная погрешность измерений (Delta_{text{л}}=0,5 text{мм})
Т.к. (Delta_{text{л}}gt Delta), принимаем погрешность равномерности шкалы (Delta=Delta_{text{л}}=0,5 text{мм})
Относительная погрешность равномерности шкалы $$ delta_{text{шк}}=frac{0,5}{25}=0,02=2text{%} $$

Относительная погрешность равномерности шкалы

Показание динамометра
(F, text{Н})
Ошибка метода
(delta=delta_g+delta_{text{шк}}, text{%})
Абсолютная погрешность
(Delta F=deltacdot F, text{Н})
1-е тело 2,7 4% 0,11 ≈ 0,1
2-е тело 1,9 4% 0,08 ≈ 0,1

Цена деления динамометра (d=0,1 text{Н}); погрешность прямых измерений (Delta_0=frac d2=0,05 text{Н})

Полученные абсолютные погрешности больше (Delta_0).

Сила тяжести для первого тела (F_1=(2,7pm 0,1) text{Н}, delta=4text_%)

Сила тяжести для второго тела (F_2=(1,9pm 0,1) text{Н}, delta=4text_%)

Расчет массы $$ m=frac{F}{10} (text{кг})=100F (text{г}) $$

Масса
(m=100F, text{г})
Ошибка метода
(delta=delta_{text{шк}}, text{%})
Абсолютная погрешность
(Delta m=deltacdot m, text{г})
1-е тело 270 2% 5
2-е тело 190 2% 4

Масса первого тела (m_1=(270pm 5) text{г}, delta=2text{%})

Масса второго тела (m_2=(190pm 4) text{г}, delta=2text{%})

Выводы
На основании проделанной работы можно сделать следующие выводы.

Для градуирования динамометра в ньютонах использовалось значение $$ overline{g}=10 frac{text{м}}{text{с}^2} $$

По сравнению со стандартным значением (g_0=9,80665 text{м/с}^2) это приводит к вкладу в ошибку метода (delta_gapprox 2text{%}).

При градуировании равномерность шкалы дала составляющую ошибки метода (delta_{text{шк}}=2text{%}).

При определении силы тяжести с помощью полученного динамометра ошибка метода равна сумме (delta+delta_g+delta_{text{шк}}=4text{%}).

Для двух тел неизвестной массы были получены следующие значения сил тяжести: $$ F_1=(2,7pm 0,1) text{Н}, F_2=(1,9pm 0,1) text{Н}, delta=4text{%} $$

При расчете массы по формуле (m=frac Fg), ошибка (delta_g) нивелируется за счет пропорциональности растяжения пружины. Ошибка метода уменьшается (delta=delta_{text{шк}}=2text{%}).

Получаем следующие значения масс: $$ m_1=(270pm 5) text{г}, m_2=(190pm 4) text{г}, delta=2text{%} $$ Таким образом, полученный в ходе работы динамометр позволяет измерять силы тяжести в интервале от 0 до 5 Н с погрешностью 4% и рассчитывать массы тел в интервале от 0 до 500 г с погрешностью 2%.

Понравилась статья? Поделить с друзьями:
  • Как можно найти абонента где он находиться
  • Как найти сумму элементов столбца питон
  • Как всегда найти работу
  • Как исправить сломанный голос
  • Как найти произведение двух квадратных матриц