Груз тянут равномерно как найти силу

Груз равномерно тянут по горизонтальной поверхности за привязанную к нему нитку.

Какая сила уравновешивает силу упругости нити ?

На этой странице находится вопрос Груз равномерно тянут по горизонтальной поверхности за привязанную к нему нитку?. Здесь же – ответы на него,
и похожие вопросы в категории Физика, которые можно найти с помощью
простой в использовании поисковой системы. Уровень сложности вопроса
соответствует уровню подготовки учащихся 5 — 9 классов. В комментариях,
оставленных ниже, ознакомьтесь с вариантами ответов посетителей страницы. С
ними можно обсудить тему вопроса в режиме on-line. Если ни один из
предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой
строке, расположенной вверху, и нажмите кнопку.


Загрузить PDF


Загрузить PDF

В физике, сила натяжения — это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.

  1. Изображение с названием Calculate Tension in Physics Step 1

    1

    Определите силы на каждом из концов нити. Сила натяжения данной нити, веревки является результатом сил, натягивающих веревку с каждого конца. Напоминаем, сила = масса × ускорение. Предполагая, что веревка натянута туго, любое изменение ускорения или массы объекта, подвешенного на веревке, приведет к изменению силы натяжения в самой веревке. Не забывайте о постоянном ускорении силы тяжести — даже если система находится в покое, ее составляющие являются объектами действия силы тяжести. Мы можем предположить, что сила натяжения данной веревки это T = (m × g) + (m × a), где «g» — это ускорение силы тяжести любого из объектов, поддерживаемых веревкой, и «а» — это любое другое ускорение, действующее на объекты.

    • Для решения множества физических задач, мы предполагаем идеальную веревку — другими словами, наша веревка тонкая, не обладает массой и не может растягиваться или рваться.
    • Для примера, давайте рассмотрим систему, в которой груз подвешен к деревянной балке с помощью одной веревки (смотрите на изображение). Ни сам груз, ни веревка не двигаются — система находится в покое. Вследствие этого, нам известно, чтобы груз находился в равновесии, сила натяжения должна быть равна силе тяжести. Другими словами, Сила натяжения (Ft) = Сила тяжести (Fg) = m × g.
      • Предположим, что груз имеет массу 10 кг, следовательно, сила натяжения равна 10 кг × 9,8 м/с2 = 98 Ньютонов.
  2. Изображение с названием Calculate Tension in Physics Step 2

    2

    Учитывайте ускорение. Сила тяжести — не единственная сила, что может влиять на силу натяжения веревки — такое же действие производит любая сила, приложенная к объекту на веревке с ускорением. Если, к примеру, подвешенный на веревке или кабеле объект ускоряется под действием силы, то сила ускорения (масса × ускорение) добавляется к силе натяжения, образованной весом этого объекта.

    • Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с2. В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
      • Ft = Fg + m × a
      • Ft = 98 + 10 кг × 1 м/с2
      • Ft = 108 Ньютонов.
  3. Изображение с названием Calculate Tension in Physics Step 3

    3

    Учитывайте угловое ускорение. Объект на веревке, вращающийся вокруг точки, которая считается центром (как маятник), оказывает натяжение на веревку посредством центробежной силы. Центробежная сила — дополнительная сила натяжения, которую вызывает веревка, «толкая» ее внутрь так, чтобы груз продолжал двигаться по дуге, а не по прямой. Чем быстрее движется объект, тем больше центробежная сила. Центробежная сила (Fc) равна m × v2/r где «m»– это масса, «v» — это скорость, и «r» — радиус окружности, по которой движется груз.

    • Так как направление и значение центробежной силы меняются в зависимости от того, как объект движется и меняет свою скорость, то полное натяжение веревки всегда параллельно веревке в центральной точке. Запомните, что сила притяжения постоянно действует на объект и тянет его вниз. Так что, если объект раскачивается вертикально, полное натяжение сильнее всего в нижней точке дуги (для маятника это называется точкой равновесия), когда объект достигает максимальной скорости, и слабее всего в верхней точке дуги, когда объект замедляется.
    • Давайте предположим, что в нашем примере объект больше не ускоряется вверх, а раскачивается как маятник. Пусть наша веревка будет длиной 1,5 м, а наш груз движется со скоростью 2 м/с, при прохождении через нижнюю точку размаха. Если нам нужно рассчитать силу натяжения в нижней точке дуги, когда она наибольшая, то сначала надо выяснить равное ли давление силы тяжести испытывает груз в этой точке, как и при состоянии покоя — 98 Ньютонов. Чтобы найти дополнительную центробежную силу, нам необходимо решить следующее:
      • Fc = m × v2/r
      • Fc = 10 × 22/1.5
      • Fc =10 × 2,67 = 26,7 Ньютонов.
      • Таким образом, полное натяжение будет 98 + 26,7 = 124,7 Ньютона.
  4. Изображение с названием Calculate Tension in Physics Step 4

    4

    Учтите, что сила натяжения благодаря силе тяжести меняется по мере прохождения груза по дуге. Как было отмечено выше, направление и величина центробежной силы меняются по мере того, как качается объект. В любом случае, хотя сила тяжести и остается постоянной, результирующая сила натяжения в результате тяжести тоже меняется. Когда качающийся объект находится не в нижней точке дуги (точке равновесия), сила тяжести тянет его вниз, но сила натяжения тянет его вверх под углом. По этой причине сила натяжения должна противодействовать части силы тяжести, а не всей ее полноте.

    • Разделение силы гравитации на два вектора сможет помочь вам визуально изобразить это состояние. В любой точке дуги вертикально раскачивающегося объекта, веревка составляет угол «θ» с линией, проходящей через точку равновесия и центр вращения. Как только маятник начинает раскачиваться, сила гравитации (m × g) разбивается на 2 вектора — mgsin(θ), действуя по касательной к дуге в направлении точки равновесия и mgcos(θ), действуя параллельно силе натяжения, но в противоположном направлении. Натяжение может только противостоять mgcos(θ) — силе, направленной против нее — не всей силе тяготения (исключая точку равновесия, где все силы одинаковы).
    • Давайте предположим, что, когда маятник отклоняется на угол 15 градусов от вертикали, он движется со скоростью 1,5 м/с. Мы найдем силу натяжения следующими действиями:
      • Отношение силы натяжения к силе тяготения (Tg) = 98cos(15) = 98(0,96) = 94,08 Ньютона
      • Центробежная сила (Fc) = 10 × 1,52/1,5 = 10 × 1,5 = 15 Ньютонов
      • Полное натяжение = Tg + Fc = 94,08 + 15 = 109,08 Ньютонов.
  5. Изображение с названием Calculate Tension in Physics Step 5

    5

    Рассчитайте трение. Любой объект, который тянется веревкой и испытывает силу «торможения» от трения другого объекта (или жидкости), передает это воздействие натяжению в веревке. Сила трения между двумя объектами рассчитывается также, как и в любой другой ситуации — по следующему уравнению: Сила трения (обычно пишется как Fr) = (mu)N, где mu — это коэффициент силы трения между объектами и N — обычная сила взаимодействия между объектами, или та сила, с которой они давят друг на друга. Отметим, что трение покоя — это трение, которое возникает в результате попытки привести объект, находящийся в покое, в движение — отличается от трения движения — трения, возникающего в результате попытки заставить движущийся объект продолжать движение.

    • Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с2. Эта проблема представляет два важных изменения — первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
      • Обычная сила (N) = 10 кг & × 9,8 (ускорение силы тяжести) = 98 N
      • Сила трения движения (Fr) = 0,5 × 98 N = 49 Ньютонов
      • Сила ускорения (Fa) = 10 kg × 1 м/с2 = 10 Ньютонов
      • Общее натяжение = Fr + Fa = 49 + 10 = 59 Ньютонов.

    Реклама

  1. Изображение с названием Calculate Tension in Physics Step 6

    1

    Поднимите вертикальные параллельные грузы с помощью блока. Блоки — это простые механизмы, состоящие из подвесного диска, что позволяет менять направление силы натяжения веревки. В простой конфигурации блока, веревка или кабель идет от подвешенного груза вверх к блоку, затем вниз к другому грузу, создавая тем самым два участка веревки или кабеля. В любом случае натяжение в каждом из участков будет одинаковым, даже если оба конца будут натягиваться силами разных величин. Для системы двух масс, подвешенных вертикально в блоке, сила натяжения равна 2g(m1)(m2)/(m2+m1), где «g» — ускорение силы тяжести, «m1» — масса первого объекта, «m2»– масса второго объекта.

    • Отметим следующее, физические задачи предполагают, что блоки идеальны — не имеют массы, трения, они не ломаются, не деформируются и не отделяются от веревки, которая их поддерживает.
    • Давайте предположим, что у нас есть два вертикально подвешенных на параллельных концах веревки груза. У одного груза масса 10 кг, а у второго — 5 кг. В этом случае, нам необходимо рассчитать следующее:
      • T = 2g(m1)(m2)/(m2+m1)
      • T = 2(9,8)(10)(5)/(5 + 10)
      • T = 19,6(50)/(15)
      • T = 980/15
      • T = 65,33 Ньютонов.
    • Отметим, что, так как один груз тяжелее, все остальные элементы равны, эта система начнет ускоряться, следовательно, груз 10 кг будет двигаться вниз, заставляя второй груз идти вверх.
  2. 2

    Подвесьте грузы, используя блоки с не параллельными вертикальными нитями. Блоки зачастую используются для того, чтобы направлять силу натяжения в направлении, отличном от направления вниз или вверх. Если, к примеру, груз подвешен вертикально к одному концу веревки, а другой конец держит груз в диагональной плоскости, то непараллельная система блоков принимает форму треугольника с углами в точках с первых грузом, вторым и самим блоком. В этом случае натяжение в веревке зависит как от силы тяжести, так и от составляющей силы натяжения, которая параллельна к диагональной части веревки.

    • Давайте предположим, что у нас есть система с грузом в 10 кг (m1), подвешенным вертикально, соединенный с грузом в 5 кг(m2), расположенным на наклонной плоскости в 60 градусов (считается, что этот уклон не дает трения). Чтобы найти натяжение в веревке, самым легким путем будет сначала составить уравнения для сил, ускоряющих грузы. Далее действуем так:
      • Подвешенный груз тяжелее, здесь нет трения, так что мы знаем, что он ускоряется вниз. Натяжение в веревке тянет вверх, так что он ускоряется по отношению к равнодействующей силе F = m1(g) — T, или 10(9,8) — T = 98 — T.
      • Мы знаем, что груз на наклонной плоскости ускоряется вверх. Так как она не имеет трения, мы знаем, что натяжение тянет груз вверх по плоскости, а вниз его тянет только свой собственный вес. Составляющая силы, тянущей вниз по наклонной, вычисляется как mgsin(θ), так что в нашем случае мы можем заключить, что он ускоряется по отношению к равнодействующей силе F = T — m2(g)sin(60) = T — 5(9,8)(0,87) = T — 42,14.
      • Если мы приравняем эти два уравнения, то получится 98 — T = T — 42,14. Находим Т и получаем 2T = 140,14, или T = 70,07 Ньютонов.
  3. Изображение с названием Calculate Tension in Physics Step 8

    3

    Используйте несколько нитей, чтобы подвесить объект. В заключение, давайте представим, что объект подвешен на «Y-образной» системе веревок — две веревки закреплены на потолке и встречаются в центральной точке, из которой идет третья веревка с грузом. Сила натяжения третьей веревки очевидна — простое натяжение в результате действия силы тяжести или m(g). Натяжения на двух остальных веревках различаются и должны составлять в сумме силу, равную силе тяжести вверх в вертикальном положении и равны нулю в обоих горизонтальных направлениях, если предположить, что система находится в состоянии покоя. Натяжение в веревке зависит от массы подвешенных грузов и от угла, на который отклоняется от потолка каждая из веревок.

    • Давайте предположим, что в нашей Y-образной системе нижний груз имеет массу 10 кг и подвешен на двух веревках, угол одной из которых составляет с потолком 30 градусов, а угол второй — 60 градусов. Если нам нужно найти натяжение в каждой из веревок, нам понадобится рассчитать горизонтальную и вертикальную составляющие натяжения. Чтобы найти T1 (натяжение в той веревке, наклон которой 30 градусов) и T2 (натяжение в той веревке, наклон которой 60 градусов), нужно решить:
      • Согласно законам тригонометрии, отношение между T = m(g) и T1 и T2 равно косинусу угла между каждой из веревок и потолком. Для T1, cos(30) = 0,87, как для T2, cos(60) = 0,5
      • Умножьте натяжение в нижней веревке (T=mg) на косинус каждого угла, чтобы найти T1 и T2.
      • T1 = 0,87 × m(g) = 0,87 × 10(9,8) = 85,26 Ньютонов.
      • T2 =0,5 × m(g) = 0,5 × 10(9,8) = 49 Ньютонов.

    Реклама

Об этой статье

Эту страницу просматривали 287 591 раз.

Была ли эта статья полезной?

Что такое сила тяги и по какой формуле её находить ?

Разберёмся в вопросе, что такое сила тяги. Как следует из самого названия – это сила, которую необходимо прикладывать к телу, чтобы оно находилось в состоянии постоянного движения.

Сила тяги

Если её убрать, то тело, будь то автомобиль, электровоз, космическая ракета или санки, со временем остановится. Это произойдёт потому, что на тело всегда действуют силы, которые заставляют его стремиться к состоянию покоя:

  • силы трения (покоя, качения, скольжения),
  • сопротивления воздуха (газа),
  • сопротивления воды и др.

Первый и второй законы Ньютона

Обратимся к законам Ньютона, которые хорошо описывают механическое движение тел. Из школьной программы мы знаем, что есть первый закон Ньютона, который описывает закон инерции. Он гласит, что любое тело, если на него не действуют силы, или если их равнодействующая равна нулю, движется прямолинейно и равномерно, или же находится в состоянии покоя. Это означает, что тело, пока на него ничто не действует, будет двигаться с постоянной скоростью v=const или пребывать в состоянии покоя сколько угодно долго, пока какое-то внешнее воздействие не выведет тело из этого состояния. Это и есть движение по инерции.

Надо сказать, что этот закон справедлив лишь в так называемых инерциальных системах отсчёта. В неинерциальных системах отсчёта этот закон не действует и нужно использовать второй закон Ньютона. В таких системах отсчёта тело тоже будет двигаться по инерции, но оно будет двигаться с ускорением, стремясь сохранять своё движение, т.е. на него также не будут действовать никакие внешние силы, кроме силы инерции, стремящейся двигать тело в том направлении, в каком оно двигалось до воздействия. Тут мы приходим к рассмотрению второго закона Ньютона, который также справедлив в инерциальных системах отсчёта, т. е. в таких системах отсчёта, в которых тело движется с постоянной скоростью либо находится в покое.

Этот закон утверждает, что для того, чтобы вывести тело из состояния покоя или равномерного движения, к нему необходимо приложить силу, равную F=m•a, где m — это масса тела, a — ускорение, сообщаемое телу. Зная эти законы, можно рассчитать силу тяги (двигателя автомобиля, ракетного двигателя или, например, лошади, тянущей нагруженную повозку).

Законы Ньютона

Примеры из жизни

Насколько вы сильны?

Рассмотрим простейший пример. Ваш ребёнок сел на санки и просит вас его покатать. С какой силой вам нужно тянуть эти санки, чтобы ребёнок остался доволен быстрой ездой ? Пока санки с ребёнком остаются в состоянии покоя, все силы, действующие на них, уравновешены. Состояние покоя — это частный случай инерции. Здесь на санки действуют две силы: тяжести Fт = m•g, направленная вертикально вниз, и нормального давления N, направленная вертикально вверх. Поскольку санки не движутся, то N – m•g = 0. Тогда из этого равенства следует, что N = m•g.

Когда вы решили покатать своего ребёнка, вы прикладываете силу тяги (Fтяги) к санкам с ребёнком. Когда вы начинаете тянуть санки, возникает сопротивление движению, вызванное силой трения (Fтр.), направленной в противоположную сторону. Это так называемая сила трения покоя. Когда тело не движется, она равна нулю. Стоит потянуть за санки — и появляется сила трения покоя, которая меняется от нуля до некоторого максимального значения (Fтр. max). Как только Fтяги превысит Fтр.max, санки с ребёнком придут в движение.

Чтобы найти Fтяги, применим второй закон Ньютона: Fтяги – Fтр.max = m•a, где a – ускорение, с которым вы тянете санки, m – масса санок с ребёнком. Допустим, вы разогнали санки до определённой скорости, которая не изменяется. Тогда a = 0 и вышеприведённое уравнение запишется в виде: Fтяги – Fтр. max = 0, или Fтяги = Fтр.max. Есть известный закон из физики, который устанавливает определённую зависимость для Fтр.max и N. Эта зависимость имеет вид: Fтр.max = fmax • N, где fmax – максимальный коэффициент трения покоя.

Если в эту формулу подставить выражение для N, то мы получим Fтр.max = fmax•m•g. Тогда формула искомой силы тяги примет вид: Fтяги = fmax•m•g = fск•m•g, где fск = fmax – коэффициент трения скольжения, g – ускорение свободного падения. Допустим, fск = 0,7, m = 30 кг, g = 9,81 м/с², тогда Fтяги = 0,7 • 30 кг • 9,81 м/с² = 206,01 Н (Ньютона).

Насколько силён ваш автомобиль?

Рассмотрим ещё пример. У вас есть автомобиль, мощность двигателя которого N. вы едете со скоростью v. Как в этом случае узнать силу тяги двигателя вашего автомобиля ? Поскольку скорость автомобиля не меняется, то Fтяги уравновешена силами трения качения, лобового сопротивления, трения в подшипниках и т. д. (первый закон Ньютона). По второму закону Ньютона она будет равна Fтяги = m•a. Чтобы её вычислить, достаточно знать массу автомобиля m и ускорение a.

Допустим, вы разогнали свой автомобиль до скорости v за какое-то время t, проехав расстояние s. Тогда Fтяги будет легко рассчитана по формуле: Fтяги = m•v/t. Как и в примере с санками, справедлива также такая формула: Fтяги = f•m•g, где f – коэффициент трения качения, который зависит от скорости автомобиля (чем больше скорость, тем меньше этот коэффициент).

Но что делать, если масса автомобиля m, коэффициент трения качения f и время разгона t неизвестны ? Тогда можно поступить по-другому. Двигатель вашего автомобиля при разгоне совершил работу A = Fтяги • s. Поскольку формула расстояния имеет вид s = v•t, то выражение для работы будет таким: A = Fтяги • v • t. Разделив обе части этого равенства на t, получим A/t = Fтяги • v. Но A/t = N – это мощность двигателя вашего автомобиля, поэтому N = Fтяги • v. Отсюда уже получим искомую формулу: Fтяги =N/v.

Допустим, вы разогнали свой автомобиль до скорости v = 180 км/ч, а мощность его двигателя N = 200 л. с. (лошадиных сил). Чтобы вычислить Fтяги двигателя, необходимо прежде перевести указанные единицы измерения в единицы СИ, т. е. международной системы измерения. Здесь 1 л. с. = 735,499 Вт, поэтому мощность двигателя составит N = 200 л. с. • 735,499 Вт/л. с. = 147099,8 Вт. Скорость в системе СИ будет равна v = 180 км/ч = 180 • 1000 м/3600 с = 50 м/с. Тогда искомое значение будет равно Fтяги = 147099,8 Вт/50 (м/с) = 2941,996 Н

2,94 кН (килоньютона).

Около 3 килоньютонов. Много это или мало ? Допустим, вы жмёте 100 килограммовую штангу. Чтобы её поднять, вам нужно преодолеть её вес, равный P = m•g = 100 кг • 9,81 м/с² = 981 Н (ньютон)

0,98 кН. Полученное для автомобиля значение Fтяги больше веса штанги в 2,94/0,98 = 3 раза. Это равносильно тому, что вы будете поднимать штангу массой в 300 кг. Такова сила тяги двигателя вашего автомобиля (на скорости 180 км/ч).

Сила трения

Таким образом, зная школьный курс физики, мы можем с лёгкостью вычислить силу тяги:

  • человека,
  • лошади,
  • паровоза,
  • автомобиля,
  • космической ракеты и всех прочих видов техники.

В нашем видео вы найдете интересные опыты, поясняющие, что такое сила тяги и сила сопростивления.

Расчет тягового усилия лебедки

Для серьезного внедорожника, особенно участвующего в соревнованиях или трофи-рейдах, мощная лебедка – это не декоративный элемент стиля, а первейшая необходимость: как бы ни был подготовлен автомобиль к бездорожью, всегда найдется место, где его возможностей не хватит. И тут помощь дополнительной силы будет неоценима.

Однако покупку обязательно должен предварять расчет усилия лебедки. В технических характеристиках любой модели обязательно указывается этот параметр, и развиваемая купленной лебедкой тяговая сила должна быть не меньше расчетной. Хотя сила, как мы помним из курса физики, и меряется в ньютонах, для удобства и наглядности в характеристиках используются килограммы (а зачастую и фунты, lbs). Пересчет здесь прост: если тяга в килограммах не указана, то число фунтов нужно умножить на 0,454. Например, у модели Rock Sports Cap-9.0S с тягой 9000 фунтов сила привода в килограммах равна 4082.

Принцип расчета

Если вспомнить физику еще раз, то для расчета тягового усилия лебедки формула должна выглядеть так:

требуемая тяга = масса автомобиля × (фактор трения + фактор подъема).

Здесь масса автомобиля – это его максимальный вес, с которым предполагается эксплуатация (то есть к паспортному нужно приплюсовать и багаж, и силовой обвес, да и саму лебедку). Фактор трения – величина, определяющая сопротивление движению. Фактор подъема зависит от того, вытягивается машина вверх или горизонтально вперед.

Расчет тяги лебедки, естественно, должен вестись исходя из самого пессимистичного варианта. Возьмем минимальное и максимальное значения обоих факторов для расчета.

Фактор трения

Сухой песок

Мокрый песок

Сухая дорога

Фактор подъема (для подъема в процентах)

Возьмем автомобиль с полной снаряженной массой 2700 кг. Тогда расчет тяги лебедки для движения по сухой горизонтальной дороге даст нам всего 405 кг, а для подъема в болоте понадобятся уже почти три тонны. Понятное дело, что, взяв расчет мощности лебедки по минимуму, в грязь заезжать не стоит.

Однако считали мы идеальный случай, не учитывающий еще одну вещь – нагрузку на сам электродвигатель. Эксплуатировать его на пределе возможностей – значит «убить» даже качественную вещь очень быстро. Поэтому расчет мощности лебедки должен учитывать еще и запас для самого мотора, а для электрооборудования его принято брать полуторным. То есть для автомобиля из примера нужно брать лебедку не на 3 тонны, а на 4 с половиной. Также учтем, что сила, с которой барабан тянет трос, максимальна на первом витке и минимальна на последнем – у барабана при намотке увеличивается диаметр, а значит, и плечо рычага, через который привод связан с тросом. Разница в тяге может доходить до 50 % в зависимости от конструкции конкретного барабана, так что для тягового усилия лебедки расчет в нашем примере окончательно даст «мощность» 6,5 тонны.

На практике же любители внедорожной езды при расчете лебедки с электрическим приводом поступают еще проще – умножают снаряженную массу автомобиля на 2–2,5. Если Вы присмотритесь к примеру выше, то обнаружите, что именно 2,5-кратное увеличение массы и дает расчетный результат по формулам. Зато в спорах с другими джиперами теперь всегда сможете обосновать, откуда эти два с половиной берутся на самом деле.

Покупка дополнительных аксессуаров

Расчет тяговой лебедки должен учитываться и при покупке сопутствующего оснащения. Приобретаемые стропы, шаклы или крюки должны гарантированно выдерживать максимальную развиваемую ей силу. В противном случае последствия могут быть самыми тяжелыми: высвободившийся под нагрузкой в несколько тонн трос, особенно с тяжелым крюком на конце, смертельно опасен.

Именно поэтому необходимо при выборе внимательно знакомиться с указываемыми в паспорте характеристиками. К примеру, возьмем шакл Kenny Мастер № 4,75. Для него производителем указывается рабочая нагрузка в 4,5 тонны, поэтому его можно смело использовать со всеми лебедками, имеющими равное и меньшее тяговое усилие.

Приобретаемой модели должно соответствовать электрооборудование для ее подключения. Тут необходимо знать максимальный ток, который она потребляет, но многими зарубежными фирмами указывается только мощность в киловаттах. Для расчета мощности электродвигателя лебедки нужно умножить значение в лошадиных силах на 735. Полученная величина в ваттах, разделенная на напряжение питания, и даст нам значение максимального потребляемого тока. Разъемы, силовые кабели для подключения берутся минимум с полуторным запасом от этого значения.

При выборе самой лебедки учтите особенности конструкции своего автомобиля, особенно если она не будет открыта на силовом бампере, а утопится под основным. Предпочтительнее модели с гибкой установкой. Так, на лебедках ComeUp корпус с рукоятью освобождения троса можно повернуть под нужный угол, иначе бы трос при установке, как на фото выше, просто нельзя было бы освободить. Вся конструкция по своим габаритам должна вписываться в заданное пространство. В то же время вопрос с расположением точек крепления не столь критичен: всегда можно изготовить переходное крепление из толстого металла.

Если у вас возникли трудности с подбором лебедки, обратитесь к специалистам компании «Крузак». В нашем каталоге можно найти лебедки известного тайваньского бренда COMEUP WINCH (Come Up) и запасные части к ним.

Что такое сила тяги

Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.

Действие силы тяги

Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.

Её прекращение

Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

1 закон Ньютона о действии

Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.

В современной физике в формулировку внесены уточнения:

  • закон применим только в системах отсчета, называемых инерциальными;
  • тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».

Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.

Состояние ускорения после воздействия силы тяги

Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.

Формулы для определения силы тяги

Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе (m), умноженной на ускорение (a). Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы( F_т-;F_{с}=m;times;a), где (F_т) — сила тяги, (F_{с}) — силы сопротивления.
При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:

  • сила тяжести mg;
  • сила реакции опоры (N);
  • сила трения( F_{тр});
  • сила тяги (F)

Сила тяги

 

При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: (F_т-;F_с-;mg;times;sinalpha=m;times;a.)

Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением (A;=;F;times;s). (s) здесь — расстояние, на которое тело переместилось.

Какое условие должно соблюдаться

Сила тяги всегда должна быть больше противодействующих ей сил.

Формула через мощность

Полезную механическую мощность (N) можно вычислить по формуле (N=F_т;times;v), где (v) — скорость. Для определения силы тяги нужно разделить мощность на скорость: (F_т;=;frac N v.)

Измерение и обозначение силы тяги

Силу тяги обозначают (F_т) или (F). Единица измерения — ньютон ((Н)).
Для решения задач недостаточно измерить усилие, приложенное к объекту, и выразить его конкретным числом, так как сила обладает еще и направлением. Чтобы подчеркнуть, что сила — векторная величина, к буквенному обозначению добавляют стрелку.

Как определить силу тяги двигателя. Примеры решения задач

Задача 1

Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.

Решение

Переведем киловатты в ватты, а километры в час — в метры в секунду:

(96;times;1000=96000;Вт)

(frac{216times1000}{3600}=60frac мс)

(F_т;=;frac N v = frac{96000}{60} = 1600 Н)

Задача 2

Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.

Решение

Переведем тонны в килограммы, а килоньютоны в ньютоны:

(12;times;1000=12000;кг)

(2,4;times;1000=2400;Н)

(F_т-;F_{тр}=m;times;a), следовательно, (F_т=mtimes a;+;F_{тр})

Чтобы определить ускорение а, воспользуемся формулой (s;=;frac{at^2}2)

Подставив численные значения величин, получаем:

(a;=;frac{2s}{t^2}^{}=frac{20}{25};=;0,8)

(F_т=;12000times0,8;+;2400;=;12000;Н;=;12;кН)

Задача 3

Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. (mu) — 0,1 от силы тяжести, (а = 0). Определите силу тяги.

Решение

Начертим схему:

Сила тяги векторы уклон

 

(mtimes g;+;N;+;F_{тр;}+;F_т;=;mtimes a)

Сделаем проекции на координатные оси:

(OX: -;mg;times;sinalpha;-;F_{тр;}+;F_т;=;0)

(OY: N;-;mg;times;cosalpha;=;0 => N;=;mg;times;cosalpha;)

(F_{тр};=;mu N;=;mu mg;times;cosalpha)

Подставим значение (F_{тр}) в уравнение (OX) и определим (F_т):

(-mg;times;sinalpha;-;mu)

(mg;times;cosalpha;+;F_т;=;0)

(=> F;=;mg;left(sinalpha;+;mu;times;cosalpharight))

Найдем синус и косинус (alpha), подставим их в общую формулу:

(sinalpha;=;frac hl;=;frac1{25})

(cosalpha;=;frac{sqrt{l^{2;}-;h^2}}l;)

(F;=;frac{4;times;10^{3;};times;9,8;timesleft(1;+;0,1;sqrt{l^{2;}-;h^2}right)}{25};=;5,5;times;10^3;Н;=;5,5;кН)

Как найти силу натяжения нити

Часто в задачах по механике приходится иметь дело с блоками и грузами, подвешенных на нитях. Груз натягивает нить, под его действием на нить действует сила натяжения. Точно такая же по модулю, но противоположная по направлению сила действует со стороны нити на груз согласно третьему закону Ньютона.

Как найти силу натяжения нити

Вам понадобится

  • машина Атвуда, грузики

Инструкция

Для начала нужно рассмотреть простейший случай, когда груз, подвешенный на нити покоится. На груз в вертикальном направлении вниз действует сила тяжести Fтяж = mg, где m — масса груза, а g — ускорение свободного падения (на Земле ~9,8 м/(с^2). Так как груз неподвижен, а кроме силы тяжести и силы натяжения нити другие силы на него не действуют, то согласно второму закону Ньютона T = Fтяж = mg, где T — сила натяжения нити. Если груз при этом движется равномерно, то есть без ускорения, то T также равно mg согласно первому закону Ньютона.

Пусть теперь груз с массой m движется вниз с ускорением a. Тогда по второму закону Ньютона Fтяж-T = mg-T = ma. Таким образом, T = mg-a.

Эти два простейших случая, приведенных выше, и нужно использовать в более сложных задах для определения силы натяжения нити.

В задачах по механике обычно делается важное допущение, что нить нерастяжима и невесома. Это означает, что массой нити можно пренебречь, а сила натяжения нити одинакова по всей длине.

Простейший случай такой задачи — анализ движения грузов на машине Атвуда. Эта машина представляет из себя закрепленный блок, через который перекинута нить, к которой подвешены два груза массами m1 и m2. Если массы грузов различны, то система приходит в поступательное движение.

Уравнения для левого и правого тел на машине Атвуда будут записываться в виде: -m1*a1 = -m1*g+T1 и m2*a2 = -m2*g+T2. Учитывая свойства нити, T1 = T2. Выразив силу натяжения нити T из двух уравнений, вы получите: T = (2*m1*m2*g)/(m1+m2).

Источники:

  • натяжение нити

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как найти уравнение высоты тетраэдра
  • Как найти опрос в телеграмме
  • Как найти вес зная толщину
  • Кадастровый номер в дду как найти
  • Как найти предельные издержки формула в экономике