Информатика как найти наибольший общий делитель

Алгоритм Евклида — нахождение наибольшего общего делителя

Алгоритм Евклида – это алгоритм нахождения наибольшего общего делителя (НОД) пары целых чисел.

Наибольший общий делитель (НОД) – это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.

Решение задачи на языке программирования Python

Алгоритм нахождения НОД делением

  1. Большее число делим на меньшее.
  2. Если делится без остатка, то меньшее число и есть НОД (следует выйти из цикла).
  3. Если есть остаток, то большее число заменяем на остаток от деления.
  4. Переходим к пункту 1.

Пример:
Найти НОД для 30 и 18.
30 / 18 = 1 (остаток 12)
18 / 12 = 1 (остаток 6)
12 / 6 = 2 (остаток 0)
Конец: НОД – это делитель 6.
НОД (30, 18) = 6

a = int(input())
b = int(input())
 
while a != 0 and b != 0:
    if a > b:
        a = a % b
    else:
        b = b % a
 
print(a + b)

В цикле в переменную a или b записывается остаток от деления. Цикл завершается, когда хотя бы одна из переменных равна нулю. Это значит, что другая содержит НОД. Однако какая именно, мы не знаем. Поэтому для определения НОД находим сумму этих переменных. Поскольку в одной из переменных ноль, он не оказывает влияние на результат.

Если условием завершения цикла является равенство хотя бы одной из переменных нулю (a == 0 or b == 0), то условием продолжения его работы является обратное этому условие — обе переменные должны иметь отличные от нуля значения (a != 0 and b != 0).

Блок-схема алгоритма Евклида

Для того, чтобы вышеприведенная программа могла обрабатывать отрицательные числа, в логическом выражении при if должны сравниваться модули значений переменных: if abs(a) > abs(b):. Иначе большим числом может оказаться меньшее по модулю. В этом случае интерпретатор Питона в качестве остатка от деления выдает вещественное число. В результате это приводит к зацикливанию, так как низвести переменные до нуля становится как минимум маловероятным.

Алгоритм нахождения НОД вычитанием

  1. Из большего числа вычитаем меньшее.
  2. Если получается 0, значит, числа равны друг другу и являются НОД (следует выйти из цикла).
  3. Если результат вычитания не равен 0, то большее число заменяем на результат вычитания.
  4. Переходим к пункту 1.

Пример:
Найти НОД для 30 и 18.
30 — 18 = 12
18 — 12 = 6
12 — 6 = 6
6 — 6 = 0
Конец: НОД – это уменьшаемое или вычитаемое.
НОД (30, 18) = 6

a = int(input())
b = int(input())
 
while a != b:
    if a > b:
        a = a - b
    else:
        b = b - a
 
print(a)

Функция, вычисляющая НОД

def gcd(m, n):
    while m != n:
        if m > n:
            m = m - n
        else:
            n = n - m
    return n
 
 
a = int(input())
b = int(input())
 
print(gcd(a, b))

Функция gcd модуля math

В модуле math языка программирования Python есть функция gcd, вычисляющая наибольший общий делитель двух чисел.

>>> import math
>>> math.gcd(30, 18)
6

Больше задач в PDF

Время на прочтение
8 мин

Количество просмотров 19K

Алгоритмы – одна из центральных тем в программировании, они повсюду (особенно на собеседованиях, ха-ха).

image
(Разве можно обойтись в таком посте без «баяна»?)

Одним из самых известных является так называемый алгоритм Евклида – пожалуй, самый распространенный способ нахождения наибольшего общего делителя (НОД) двух целых неотрицательных чисел. С него также зачастую любят начинать изучение (и обучение) соответствующих разделов математики и информатики.

А Дональд Кнут, небезызвестный автор трактата “Искусство программирования” (и не только), и вовсе считает алгоритм первым в истории (по крайней мере, относительно современных определений). Потому что, не смотря на то, что алгоритм был придуман и использовался еще до, собственно, Евклида, который жил в IV-III вв. до нашей эры (он упоминается уже у Аристотеля, жившего веком ранее), Евклид описывает процесс итеративно, что согласуется с современным значением слова.

Само слово “алгоритм” восходит к имени персидского математика Аль-Хорезми, жившего примерно в VIII-IX вв. уже нашей эры. А началом его использования в смысле, близком современному, считается уже лишь XX век, точнее – его первые десятилетия, восход информационных технологий.

Алгоритм Евклида

Любопытства ради предлагаю ознакомиться с евклидовским описанием алгоритма в редактуре Кнута. Оно довольно длинное, поэтому спрятано под катом:

Описание алгоритма Евклида, близкое к исходному

Предложение. Для данных двух положительных целых чисел найти их наибольший общий делитель.

Пусть A и C – два заданных положительных целых числа; требуется найти их НОД. Если число A делится на C, то число C есть общий делитель чисел C и A, поскольку оно делит самое себя. И очевидно, что оно будет и наибольшим делителем, поскольку нет числа большего, чем число C, которое бы делило C.

Но если C не делит число A, то будем непрерывно вычитать меньшее из чисел A и C из большего до тех пор, пока не получим число, которое нацело делит предыдущее вычитаемое. Это должно рано или поздно произойти, потому что, если разность будет равна единице, то единица будет делить предыдущее вычитаемое.

Теперь положим, что E – положительный остаток от деления числа A на C; пусть F – положительный остаток от деления числа C на число E и пусть F делит E. Так как F делит E, а E делит C — F, F также делит C — F. Но оно делит и самое себя, поэтому F делит C, а C делит A — E; поэтому F делит также A — E, но оно делит и E; поэтому F делит A. Следовательно F является общим делителем чисел A и C.

Теперь я утверждаю, что оно является и НОД. Действительно, если F – не наибольший общий делитель чисел A и C, то найдется большее число, которое будет делить оба этих числа. Пусть таким числом будет G.

Так как число G делит число C, а число C – делит A — E, то G также делит число A — E. Число G делит также все число A, поэтому оно делит и остаток E. Но E делит C — F, поэтому G также делит C — F. А число G также делит все число C, так как оно делит и остаток F; таким образом, большее число делит меньшее, а это невозможно.

Таким образом, нет такого числа, большего, чем F, которое бы делило A и C; значит, число F является НОД.

Следствие. Это рассуждение делает очевидным предположение, что всякое число, делящее два числа, делит и их НОД. Ч.т.д.

Описание приводит два способа нахождения НОД – вычитанием и делением. Собственно, и в наши дни широко известны эти два способа реализации алгоритма.

Вот пример функции, написанной на «Swift», реализации первого способа:

func subtractionGCD(_ firstNumber: Int, _ secondNumber: Int) -> Int {
    if let simpleGCD = simpleCasesGCD(firstNumber, secondNumber) {
        return simpleGCD
    }

    var firstNumber = firstNumber
    var secondNumber = secondNumber
    while firstNumber != 0, secondNumber != 0 {
        if firstNumber > secondNumber {
            firstNumber = firstNumber - secondNumber
        } else {
            secondNumber = secondNumber - firstNumber
        }
    }

    return firstNumber + secondNumber // One of them is 0.
}

Здесь, переиспользования ради, я вынес в отдельную функцию случаи поиска НОД, когда он известен сразу, без необходимости следования какому-либо алгоритму:

func simpleCasesGCD(_ firstNumber: Int, _ secondNumber: Int) -> Int? {
    if firstNumber == secondNumber {
        return firstNumber // Any.
    }

    if firstNumber == 0 {
        return secondNumber
    }
    if secondNumber == 0 {
        return firstNumber
    }

    return nil
}

(Если два числа равны, то, естественно, их НОД также равен им. Если какое-то из чисел равно нулю, то НОД будет равняться второму числу, т.к. ноль делится любым числом (с результатом, понятное дело, тоже ноль).)

В качестве входных данных могут использоваться только неотрицательные значения. Соответственно, для отрицательных можно использовать те же методы, но взяв числа по модулю. (Да, общий делитель может быть и отрицательным, но мы ищем именно НОД, а положительные числа, очевидно, всегда больше отрицательных.)

А вот так может выглядеть реализация версии алгоритма делением:

func divisionGCD(_ firstNumber: Int, _ secondNumber: Int) -> Int {
    if let simpleGCD = simpleCasesGCD(firstNumber, secondNumber) {
        return simpleGCD
    }

    var firstNumber = firstNumber
    var secondNumber = secondNumber
    while firstNumber != 0, secondNumber != 0 {
        if firstNumber > secondNumber {
            firstNumber = firstNumber % secondNumber
        } else {
            secondNumber = secondNumber % firstNumber
        }
    }

    return firstNumber + secondNumber // One of them is 0.
}

Вторая версия в наши дни считается предпочтительней, так как содержит в себе, в среднем, ощутимо меньшее количество шагов. Тем не менее, во времена, когда компьютеры были большие и медленные, операция деления могла быть сама по себе сложной процедурой. И тогда первая версия алгоритма могла оказаться эффективней.

Чтобы немного их сравнить, я произвел несколько замеров с использованием любимого мной метода measure(_:) класса XCTestCase «нативного» фреймворка для тестирования кода в Xcode-проектах XCTest.

В качестве входных данных я использовал массив пар случайных чисел. Замеры производились, естественно, с использованием одного и того же массива для каждого способа. Разброс чисел для пар я взял от нуля до 9999. Замеры производились на количестве вычислений (пар чисел): одно, десять, 100, 1000, 10000, 100000, 1000000 и 10000000. Последнее заставляло ожидать результата уже несколько минут, поэтому на нем я решил остановиться.

Вот простой код генерации входных данных:

let pairs = (0..<100).map { _ in (Int.random(in: 0..<10000), Int.random(in: 0..<10000)) } // Generates 100 pairs.

Сам замер выглядит, например, так:

func testSubstractionGCDPerformance() {
    measure() {
        _ = pairs.map { substractionGCD($0, $1) }
    }
}

А вот так выглядят результаты запуска на моем компьютере:

image
(Subtraction – вычитание, division – деление.)

В общем, очень хорошо видно, как сильно на современных компьютерах проигрывает метод вычитания.

«Улучшенная» версия алгоритма Евклида

В литературе можно встретить версию алгоритма, в которой одно из чисел на каждом шаге вместо остатка от деления на второе заменяется на разность между этим отстатком и вторым числом, но только в случае, если остаток от деления больше половины второго числа. Реализация этой версии может выглядеть так:

func improvedDivisionGCD(_ firstNumber: Int, _ secondNumber: Int) -> Int {
    if let simpleGCD = simpleCasesGCD(firstNumber, secondNumber) {
        return simpleGCD
    }

    var firstNumber = firstNumber
    var secondNumber = secondNumber
    while firstNumber != 0, secondNumber != 0 {
        if firstNumber > secondNumber {
            let firstNumberClaim = firstNumber % secondNumber
            if firstNumberClaim > secondNumber / 2 {
                firstNumber = abs(firstNumberClaim - secondNumber)
            } else {
                firstNumber = firstNumberClaim
            }
        } else {
            let secondNumberClaim = secondNumber % firstNumber
            if secondNumberClaim > firstNumber / 2 {
                secondNumber = abs(secondNumberClaim - firstNumber)
            } else {
                secondNumber = secondNumberClaim
            }
        }
    }

    return firstNumber + secondNumber // One of them is 0.
}

Такая модификация сокращает количество шагов алгоритма, но, судя по результатам замеров на моем компьютере, дополнительные вычисления и проверки на каждом шаге, нейтрализуют это преимущество и даже более:

image
(Improved – «улучшенная» версия.)

Еще немного о значимости алгоритма Евклида

Алгоритм имеет также геометрическую версию (для нахождения наибольшей меры двух отрезков).

Алгоритм был, конечно, обощен и для нахождения НОД любого количества чисел, не только двух. В двух словах идея такова: если обозначить функцию поиска НОД двух чисел как gcd(a, b), то, скажем, НОД трех чисел gcd(a, b, c) равен gcd(gcd(a, b), c). И так далее, для любого количества чисел НОД находится последовательным вычислением НОД НОД-а предыдущей пары чисел и следующего числа. Хотя, конечно, это касается поиска НОД вообще, а не только алгоритма Евклида.

Существует также обощение алгоритма для нахождения НОД полиномов. Но это уже выходит за рамки этого несложного поста, а в некоторой степени, и моих познаний в математике.

Сложность алгоритма Евклида

Временная сложность алгоритма исследовалась давно, не быстро и гораздо более учеными мужами, чем ваш покорный слуга. Тем не менее, вопрос давно закрыт и ответ получен. Собственно, еще в середине позапрошлого века. Габриэлем Ламе.

Если коротко, то ответ формулируется, собственно, теоремой Ламе, связанной с этим алгоритмом. Количество шагов алгоритма будет равно порядковому номеру ближайшего большего числа Фибоначчи наименьшему из двух чисел входных параметров минус 2. Оперируя чуть более традиционно-математическими обозначениями, то если u > v (и v > 1), то число проходов алгоритма будет равняться n — 2 при v < Fn (Fn – это некое ближайшее v число Фибоначчи, а n – это его порядковый номер).

Числа Фибоначчи растут экспоненциально, соответственно, имеем логарифмическую функцию времени выполнения алгоритма (от меньшего из двух входных чисел).

Те же самые выкладки показывают, что наихужшие для алгоритма входные данные – это два последовательных числа Фибоначчи.

Бинарный метод поиска НОД

Говоря о поиске НОД, стоит быть упомянутым алгоритм, предложенный уже в 60-е годы прошлого столетия неким Джозефом Стейном, о котором я не нашел в Сети вообще никакой информации. Он (алгоритм) ориентирован на двоичную арифметику и не содержит операций деления. Алгоритм оперирует только проверками четности и делением пополам, что осуществимо возможностями одной лишь бинарной арифметики.

Алгоритм основывается на четырех фактах:

  1. Если u и v оба четны, то gcd(u, v) = 2 * gcd(u / 2, v / 2);
  2. Если u четно, а v – нет, gcd(u, v) = gcd(u / 2, v);
  3. gcd(u, v) = gcd(u — v, v) (это следует из алгоритма Евклида);
  4. Если u и v оба нечетны, то u — v – четно и |u — v| < max(u, v)

На «Wikipedia» можно посмотреть рекурсивную версию алгоритма (на современных языках программирования записывается в несколько строк), я не стал ее переписывать на «Swift». А здесь я приведу вариант итеративной реализации:

func binaryGCD(_ firstNumber: Int, _ secondNumber: Int) -> Int {
    if let simpleGCD = simpleCasesGCD(firstNumber, secondNumber) {
        return simpleGCD
    }

    var firstNumber = firstNumber
    var secondNumber = secondNumber

    var shift = 0
    while (firstNumber | secondNumber) & 1 == 0 {
        shift += 1
        firstNumber >>= 1
        secondNumber >>= 1
    }
    while firstNumber & 1 == 0 {
        firstNumber >>= 1
    }
    repeat {
        while secondNumber & 1 == 0 {
            secondNumber >>= 1
        }
        if firstNumber > secondNumber {
            swap(&firstNumber, &secondNumber)
        }
        secondNumber -= firstNumber
    } while secondNumber != 0

    return firstNumber << shift
}

Сделав замеры на тех же данных, к сожалению, этот мудреный алгоритм на моем компьютере не оправдал возложенных на него надежд. Конечно, он все еще работает в два раза быстрее евклидова алогоритма вычитанием, но заметно уступает классической его версии с делением. Полная таблица сводных данных:

image
(Binary – бинарный алгоритм.)

(Не исключаю, что алгоритм можно записать более эффективно, чем это сделал я, и это повлияет на результат, но на что же нам тогда нужны компиляторы?!)

Кстати, этот алгоритм, безусловно, получивший свои 15 минут славы уже в век информационных технологий (в более раннюю его часть, чем текущая), был известен еще в Древнем Китае. Его описание обнаружено в трудах, датируемых I в. н.э. Конечно, в терминах вроде «половинного деления» и вычитания. А также в контексте сокращения дробей.

Заключение

Честно говоря, этим простеньким «исследованием» я не собирался ничего доказывать и не хотел делать какие-то революционные умозаключения (и ведь не сделал же!). Я всего лишь хотел удовлетворить свое любопытство, посмотреть на работу разных подходов для решения классической задачи и слегка размять пальцы. Тем не менее, я надеюсь, наблюдать результаты было любопытно и вам!

Материалы этой главы ещё в разработке.

Подпишитесь на обновления, и мы сообщим, когда они будут доступны, — или расскажем о других новостях.

Курс по Python: https://stepik.org/course/100707

На этом занятии я
хочу показать вам пример использования функций для решения одной частной задачи
– нахождения наибольшего общего делителя (НОД) для двух натуральных чисел a и b. Причем, мы не
просто напишем алгоритм, а еще выполним его тестирование с применением
тестирующей функции. То есть, это будет полноценный пример, показывающий
принцип разработки программ с использованием функций и тестов.

Но, вначале пару
слов о самом алгоритме Евклида, о принципе его работы. Сначала рассмотрим его
медленный, но простой вариант.

Например, пусть
даны два натуральных числа: a = 18 и b = 24. Чтобы
определить для них НОД, будем действовать, следующим образом. Из большего
значения вычтем меньшее и результат сохраним в переменной с большим значением,
то есть, в b. Фактически,
это означает, что мы выполняем операцию: b = b — a. Теперь у нас
два значения a = 18, b = 6. Для них
повторяем тот же самый процесс. Здесь большее уже переменная a, поэтому,
корректируем ее значение, вычитая меньшее. Получаем новую пару a = 12, b = 6. Опять
повторяем этот процесс и видим, что a = 6, b = 6 –
переменные равны. В этом случае останавливаем алгоритм и получаем, что НОД(18,
24) = 6, что, в общем то, верно.

Весь этот
алгоритм можно представить следующим псевдокодом:

пока
a != b

        
находим большее среди a и b

        
уменьшаем большее на величину меньшего

выводим
полученное значение величины a (или b)

Давайте его
опишем с помощью, следующей функции:

def get_nod(a, b):
    """Вычисляется НОД для натуральных чисел a и b
        по алгоритму Евклида.
        Возвращает вычисленный НОД.
    """
    while a != b:
        if a > b:
            a -= b
        else:
            b -= a
 
    return a

Смотрите, здесь
вначале идет многострочная строка с описанием работы функции. Так рекомендуется
делать для ключевых функций программы, чтобы другие программисты могли быстро
понимать, как их применять на практике. А, далее, после описания следует сам
алгоритм Евклида.

Выполним эту
функцию со значениями аргументов 18 и 24:

res = get_nod(18, 24)
print(res)

Видим в консоли верное
значение 6. Вот пример правильного оформления ключевых функций программы. Мало
того, встроенная функция:

позволяет
выводить описание указанных функций. И мы видим в консоли наше сформированное сообщение.
Это очень удобно, особенно при групповой работе над проектом.

После того, как
функция определена, ее следует протестировать и убедиться в корректности
возвращаемых результатов. Для этого тестировщик создает свою вспомогательную
функцию. Используя наши текущие знания, мы ее опишем, следующим образом:

def test_nod(func):
    # -- тест №1 -------------------------------
    a = 28
    b = 35
    res = func(a, b)
    if res == 7:
        print("#test1 - ok")
    else:
        print("#test1 - fail")
 
    # -- тест №2 -------------------------------
    a = 100
    b = 1
    res = func(a, b)
    if res == 1:
        print("#test2 - ok")
    else:
        print("#test2 - fail")
 
    # -- тест №3 -------------------------------
    a = 2
    b = 10000000
 
    st = time.time()
    res = func(a, b)
    et = time.time()
    dt = et - st
    if res == 2 and dt < 1:
        print("#test3 - ok")
    else:
        print("#test3 - fail")

В первых двух
тестах мы проверяем корректность вычислений, а в третьем – еще и скорость
работы. Конечно, это довольно примитивное тестирование, показывающее лишь
принцип разработки программы, но для учебных целей вполне достаточно.

Далее, выполним
импорт нужного нам модуля time для вызова
функции time():

и в конце вызовем
тестирующую функцию для тестирования get_nod:

Смотрите, у нас
первые два теста прошли, а третий – не прошел, так как функция слишком долго
вычисляла результат.

Давайте поправим
ее и ускорим алгоритм Евклида. Как это можно сделать? Смотрите, если взять два
числа a = 2 и b = 100, то по
изначальному алгоритму мы будем делать многочисленные вычитания из b a, пока значения
не сравняются. То есть, мы здесь, фактически, вычисляем остаток от вхождения
двойки в сотню, а это есть не что иное, как операция:

b = b % a = 0

И никаких
циклических вычитаний! Это, очевидно, будет работать много быстрее. При этом,
как только получаем остаток равный нулю, то НОД – это значение меньшей
переменной, то есть, в нашем примере – a = 2.

То же самое для
предыдущих значений a = 18, b = 24. Получаем серию таких
вычислений:

b = 24 % 18 = 6

a = 18 % 6 = 0

Значит, НОД(18,
24) = 6. Видите, как это быстро и просто! На уровне псевдокода быстрый алгоритм
Евклида можно описать так:

пока
меньшее число больше 0

        
большему числу присваиваем остаток от деления на меньшее число

выводим большее
число

Реализуем его в
виде функции:

def get_fast_nod(a, b):
    """Вычисляется НОД для натуральных чисел a и b
        по быстрому алгоритму Евклида.
        Возвращает вычисленный НОД.
    """
    if a < b:
        a, b = b, a
 
    while b != 0:
        a, b = b, a % b
 
    return a

Предлагаю, в
качестве самостоятельного задания, вам самим в деталях разобраться, как она
работает. А мы ее сразу протестируем:

Как видите, она
проходит все три наших теста.

Надеюсь, из
этого занятия мне удалось донести до вас общий принцип разработки и
тестирования ключевых программных функций. А также объяснить работу алгоритма
Евклида. Если все это понятно, то смело переходите к следующему уроку.

Курс по Python: https://stepik.org/course/100707

Видео по теме

НОД – это математический термин, обозначающий наибольший общий делитель, который может идеально разделить два числа. НОД также известен как наибольший общий фактор(HCF).

Например, HCF / GCD двух чисел 54 и 24 равен 6. Поскольку 6 – это наибольший общий делитель, который полностью делит 54 и 24.

Разберемся как найти НОД двух чисел в Python. НОД двух чисел в Python

НОД с использованием функции gcd()

gcd() в python – это встроенная функция, предлагаемая математическим модулем для поиска наибольшего общего делителя двух чисел.

Синтаксис:

 
gcd(a, b) 

Где a и b – два целых числа, которые передаются в качестве аргумента функции gcd().

Давайте создадим программу для печати НОД двух чисел, используя встроенную функцию math.gcd() в python.

math_fun.py

 
# create a program to print the gcd of two number in python using the math.gcd() function. 
import math 
print(" GCD of two number 0 and 0 is ", math.gcd(0, 0)) #math.gcd(a, b), a and b are the two integer number 
print(" GCD of two number 0 and 48 is ", math.gcd(0, 48)) 
a = 60 # assign the number to variable a 
b = 48 # assign the number to variable b 
print(" GCD of two number 60 and 48 is ", math.gcd(a, b)) # pass the variable a and b to math.gcd() function. 
print(" GCD of two number 48 and -12 is ", math.gcd(48, -12)) # pass the integer number 
print(" GCD of two number -24 and -18 is ", math.gcd(-24, -18)) 
print(" GCD of two number -60 and 48 is ", math.gcd(-60, 48)) 

Выход:

Выход

В приведенном выше примере функция math.gcd() генерирует НОД двух заданных чисел. В функции gcd() a и b передаются в качестве аргумента, который возвращает наибольший общий делитель двух целых чисел, полностью разделяя числа.

НОД с использованием рекурсии

Рекурсия – это функция, потребляющая память, определенная в Python, которая вызывает себя через самореферентное выражение. Это означает, что функция будет постоянно вызывать и повторять себя до тех пор, пока не будет выполнено определенное условие для возврата наибольшего общего делителя числа.

Псевдокод алгоритма

Шаг 1: Возьмите два входа, x и y, от пользователя.

Шаг 2: Передайте входной номер в качестве аргумента рекурсивной функции.

Шаг 3: Если второе число равно нулю(0), возвращается первое число.

Шаг 4: В противном случае он рекурсивно вызывает функцию со вторым числом в качестве аргумента, пока не получит остаток, который делит второе число на первое число.

Шаг 5: Вызовите или назначьте gcd_fun() переменной.

Шаг 6: Отобразите НОД двух чисел.

Шаг 7: Выйдите из программы.

Разберемся с программой для нахождения НОД двух чисел с помощью рекурсии.

gcdRecur.py

 
# write a program to understand the GCD of two number in python using the recursion. 
def gcd_fun(x, y): 
    if(y == 0): # it divide every number 
        return x  # return x 
    else: 
        return gcd_fun(y, x % y) 
x =int(input("Enter the first number: ")) # take first no.  
y =int(input("Enter the second number: ")) # take second no.  
num = gcd_fun(x, y) # call the gcd_fun() to find the result 
print("GCD of two number is: ") 
print(num) # call num 

Выход:

Нахождение НОД двух чисел с помощью рекурсии

Нахождение НОД с помощью цикла

Давайте создадим программу для нахождения НОД двух чисел в Python с помощью циклов.

gcdFile.py

 
def GCD_Loop( a, b): 
    if a > b:  # define the if condition 
        temp = b 
    else: 
        temp = a 
    for i in range(1, temp + 1): 
        if(( a % i == 0) and(b % i == 0 )): 
            gcd = i 
    return gcd 
x = int(input(" Enter the first number: ") ) # take first no.  
y =int(input(" Enter the second number: ")) # take second no.  
num = GCD_Loop(x, y) # call the gcd_fun() to find the result 
print("GCD of two number is: ") 
print(num) # call num 

Выход:

Нахождение НОД с помощью цикла

Как мы видим в приведенной выше программе, мы берем два значения в качестве входных и передаем эти числа в функцию GCD_Loop(), чтобы вернуть GCD.

Алгоритм Евклида

Алгоритм Евклида – эффективный метод нахождения наибольшего общего делителя двух чисел. Это самый старый алгоритм, который делит большее число на меньшее и берет остаток. Опять же, он делит меньшее число от остатка, и этот алгоритм непрерывно делит число, пока остаток не станет 0.

Например, предположим, что мы хотим вычислить HCF двух чисел, 60 и 48. Затем мы делим 60 на 48; он возвращает остаток 12. Теперь мы снова делим число 24 на 12, а затем он возвращает остаток 0. Таким образом, мы получаем HCF равным 12.

Псевдокод алгоритма Евклида

Шаг 1: Есть два целых числа, например a и b.

Шаг 2: Если a = 0, то НОД(a, b) равен b.

Шаг 3: Если b = 0, НОД(a, b) равен a.

Шаг 4: Найти mod b.

Шаг 5: Предположим, что a = b и b = R.

Шаг 6: Повторяйте шаги 4 и 3, пока mod b не станет равным или большим 0.

Шаг 7: GCD = b и затем распечатайте результат.

Шаг 8: Остановите программу.

Найдем HCF или GCD двух чисел, используя алгоритм Евклида в python.

Euclid.py

 
# Create a program to find the GCD of two number in python using the Euclid's Algorithm. 
def find_hcf(a,b): 
    while(b): 
        a, a = b, a % b 
        return a 
a = int(input(" Enter the first number: ") ) # take first no.  
b = int(input(" Enter the second number: ")) # take second no.  
num = find_hcf(a, b) # call the find_hcf() to get the result 
print("  The HCF of two number a and b is ") 
print(num) # call num 

Выход:

Алгоритм Евклида для НОД

Изучаю Python вместе с вами, читаю, собираю и записываю информацию опытных программистов.

Понравилась статья? Поделить с друзьями:
  • Как найти поставщиков продуктов для своего магазина
  • Как найти площадь круга по математике
  • Как составить сопроводительное письмо для приема на работу
  • Как составить план проведения бесед
  • Как найти раков зимой