Ином как найти формула

Что такое номинальное напряжение и как его найти

Содержание

  • 1 О терминологии
  • 2 Как определяется НП
  • 3 Примеры расчётов
    • 3.1 Пример 1
    • 3.2 Пример 2
    • 3.3 Пример 3
  • 4 Видео по теме

Непосредственное применение закона Ома для вычисления напряжения U возможно только для простой электрической сети (преимущественно постоянного тока). В большинстве прочих ситуаций перед расчётом необходимо уточнить, о каком именно U пойдёт речь, каков тип потребителя и в какой сети он функционирует. Особенно много путаницы возникает с терминами «среднее номинальное напряжение» и «номинальное допускаемое напряжение».

Схема типовой электросети переменного тока

О терминологии

Базу энергетической системы составляют трехфазные сети, в которых используются 2 типа напряжений:

  • Линейное, присутствующее между двумя жилами электрического кабеля.
  • Фазное напряжение проявляется в ходе измерений потенциала между нулевым проводом и находящимся под током.

Если подключение к электросети происходит по схеме «треугольник», то линейные и фазные напряжения имеют одинаковые значения. Если же подсоединение производится с помощью «звезды», количественные показатели линейного напряжения становятся выше фазного в 1.733. Значение напряжения, присутствующего в трехфазной сети, записывают в виде дроби, например, 220/380. Числитель обозначает фазную, а знаменатель линейную величину.

Соединения в трехфазных сетях

В электротехнике часто приходится иметь дело со следующими тремя обозначениями, связанными с электрооборудованием и системой питания:

  • Номинальное (линейное) напряжение сети или системы электрического питания.
  • Номинальное напряжение отдельной единицы оборудования.
  • Рабочее или допустимое напряжение.

Первое для сети переменного тока определяется как предельное значение данного параметра, присвоенное электрической цепи или системе для обозначения её класса. Такую характеристику часто обозначают как системное напряжение Uc.  Например, для России действует следующий ряд Uc, соответствующий нормам ГОСТ Р 57382–2017:                                      110→330→500→750 кВ. При этом минимальное значение Uc не может быть меньше 6 кВ (ГОСТ 721–77).

Принятое в конкретном регионе значение номинального напряжения системы определяется пиковой потребляемой мощностью и протяжённостью линий электропередачи. При проектировании любого электрооборудования разработчик в первую очередь учитывает условия той системы, в которой будет работать это оборудование.

Производители электрооборудования в обязательном порядке указывают на своих устройствах главные характеристики: силу тока в А, мощность в Вт, а также номинальное фазное напряжение, являющееся базисным в стандартизованном ряду потенциалов. Для зон безопасности обычно принимается допуск ± 10 % или выше.

Информация, указываемая на шильдике электрооборудования

Однако номинальное напряжение не является точным рабочим показателем для работающего оборудования. Оно представляет собой значение параметра, по которому электрическое устройство названо или упоминается. Таким образом, фактическое напряжение, при котором работает устройство, может отличаться от номинального в пределах диапазона, обеспечивающего удовлетворительную работу оборудования.

Поэтому на практике рассматриваемый параметр чаще используется в качестве эталона для описания фактических возможностей электрических устройств и систем. Он характеризует возможности той сети, к которой может быть подключено устройство с сохранением условий для его безопасной и надёжной работы. Следовательно, допустимо рассматривать данный показатель лишь как приблизительную оценку уровня работы конкретной электрической системы. Предельные значения выбираются таким образом, чтобы они находились в границах диапазона номинального напряжения.

Шкала номинальных напряжений

Следует отметить, что реальная разница между входным и номинальным Uc всегда присутствует, но она не должна превышать допуск безопасности. С другой стороны, расхождение между этими параметрами должно быть достаточно большим, чтобы можно было легко подкорректировать изменение номинального напряжения в линии электропередачи.

Рабочее напряжение — это фактическое значение характеристик питания, которое подаётся на клеммы оборудования. Параметр измеряется при помощи таких приборов как вольтметры, мультиметры. Если разница показателей, измеренных в ходе тестирования, выходит за пределы заявленного диапазона, то работоспособность этой единицы оборудования не будет обеспечена.

Измерение с помощью мультиметра

Как определяется НП

Проще всего дело обстоит с выяснением данного номинала применительно к электрооборудованию. Например, для однофазного асинхронного двигателя на паспортной табличке указано, что значение данного показателя составляет 240 В ± 10 %. Это означает, что двигатель может безопасно работать в диапазоне от 216 В до 264 В. Учитывается, что паспортная мощность двигателя и прочие проектные характеристики соответствуют нормам стандарта.

Чтобы рассчитать номинальные напряжения сложных или составных электрических сетей, поступают иначе. Например, если нужно выяснить указанный параметр для региональной сети электропотребления, каждая из составляющих которой рассчитана на собственные, различающиеся от ветви к ветви параметры, используют следующую последовательность действий:

  1. Пользуясь законом Ома для составной цепи, определяем значение номинального напряжения на выходе.Определение номинального напряжения
  1. Если мощность потребителей неизвестна, но зато есть фактическое значение Uф, то искомый параметр для каждого i-того потребителя определяется по формуле:Определение мощности
  1. Полученные значения Рi складываются.Схема распределительной электросети с пятью потребителями с разными показателями номинального напряжения

При проведении таких расчётов необходимо различать номинал на каждом i-том элементе. Первый из параметров является предельным значением, которое может непрерывно подаваться к потребителю. Он применяется только к тем характеристикам сопротивления, которые лежат в области выше допустимой.

При вычислении номинального напряжения с помощью формулы Ома следует принимать во внимание то, что конечный результат может оказаться слишком высоким. Это может привести к выходу из строя элемента при длительном воздействии на него повышенной разности потенциалов. Поэтому итог расчётов сравнивается с максимальным (критическим) значением сопротивления, которое разрешено для данного элемента. Меньшее значение и будет действительным, указываемым отдельно для каждой серии и типоразмера изделия.

Примеры расчётов

Рассмотрим несколько примеров расчета номинального напряжения

Пример 1

Для номинальной мощности энергопотребителя в 1 Вт и его сопротивлении 100 кОм нужно определить номинал Uном, приняв, что верхняя граница параметра (Umax) равна 200 В.

Воспользовавшись формулой закона Ома для участка цепи, получим:

Значение номинального напряжения

Однако максимально допустимое Umax на элементе только 200 В, поэтому подавать на элемент 316 В нельзя. Отсюда следует, что Uном = 200 В.

Пример 2

В стабильном режиме эксплуатации энергосистема выдаёт 11 кВ с допустимым колебанием ± 10 %. Какими будут наибольшие колебания, при которых такая система ещё сохранит свою работоспособность?

С учётом ранее указанного допуска безопасности 11 кВ ± 10 % данные значения будут составлять от 9.9 кВ до 12.1 кВ.

Пример 3

Автоматический выключатель, установленный для обслуживания энергосистемы 132 кВ, должен сохранять свою работоспособность в диапазоне Uном ±10 %. Следовательно, потенциал, подаваемый на автоматический выключатель,  может находиться в пределах, не превышающих 118.8 … 145.2 кВ.

Образец более сложного расчёта

Определить номинальный ток генератора мощностью 48000 Вт при напряжении 110 В, учитывая, что Uном = 220 В, угол сдвига между фазами cosφ = 0.85. Обмотки трёхфазной схемы генератора соединены звездой. Расстояние между смежными пазами в статоре соответствует паспортной мощности двигателя.

Сначала находим фазное напряжение при соединении в звезду:

Значение UФ при соединении в звезду

Определяем значение полной номинальной мощности генератора:

Определение мощности генератора

Искомое значение номинального тока генератора:

Номинальный ток генератора

Поскольку расчётное фазное напряжение больше фактического, то длительная работоспособность генератора полностью обеспечится. Все прочие параметры системы следует рассчитывать с учетом тока Iн не менее 150 А.

Трёхфазный генератор тепловой электростанции

Описанная методика действий с определёнными эксплуатационными факторами электрооборудования и энергосистем позволяет уточнять условия надёжной работы устройств, не допускать перегрузки их отдельных элементов, осуществлять более точный подбор типоразмеров трансформаторов, генераторов, электродвигателей и прочего электрооборудования.

Видео по теме

Учебник «Онлайн Электрик» > Содержание Расчет | Пример |
Источники | Теория

Выбор номинального напряжения линии электропередачи по эмпирическим формулам


     При
проектировании развития электрической сети одновременно с разработкой вопроса о
конфигурации электрической сети решается вопрос о выборе ее номинального
значения. Выбор напряжения осуществляется из шкалы номинальных значений, установленных
[32], [33].
     
Номинальное напряжение
UНОМ зависит от многих факторов, поэтому
задача его выбора не может иметь однозначного решения. При проектировании
электрических сетей используется несколько подходов. Одним из таких подходов
является выбор
UНОМ по эмпирическим формулам:
     а)
Формула Стилла
     

UНОМ ≈ 4,34,

(1)


     где
L – длина линии,
км; Р – активная мощность, кВт;
     Область
применения формулы (1) определяется условиями
L ≤ 250 км, Р ≤ 60 МВт.
     б)
Формула Залесского А.М.
     

UНОМ = ,

(2)


     Область
применения формулы (2) определяется условиями
L ≤ 1000 км, Р > 60 МВт.
     в)
Формула Илларионова
     

UНОМ =.

(3)

     Формула (3) используется для
напряжения 35¸1150 кВ и принципиально правильно
отражает необходимость все более высоких номинальных напряжений с увеличением
протяженности линии, особенно при
P>1000 МВт.
     г)
Эмпирическая формула зависимости напряжения от передаваемой мощности и
протяженности линии:
     

UНОМ =.

(4)


     С
учетом условий использования формул (1)-(4) из ряда стандартных напряжений [32], [33]
выбирается ближайшее сечение. Результат расчета напряжения по эмпирическим
формулам является ориентировочным. В общем случае выбор номинального напряжения
сети является задачей технико-экономического сравнения различных вариантов.

[Пример]

Описание:
В разделе сайта представлены эмпирические формулы для выбора номинального напряжения линии электропередачи.

Ключевые слова:

Выбор номинального напряжения линии электропередачи по эмпирическим формулам, формула Стиля, Формула Залесского А.М., Формула Илларионова, эмпирическая формаула зависимости напряжения от передаваемой мощности и протяженности линии

Библиографическая ссылка на ресурс «Онлайн Электрик»:

Алюнов, А.Н. Онлайн Электрик : Интерактивные расчеты систем электроснабжения / А. Н. Алюнов. – Москва : Всероссийский научно-технический информационный центр, 2010. – EDN XXFLYN.

Часть 5. Трансформаторы

Расчет трансформатора

Номинальные значения

Каждый трансформатор рассчитывается на номинальный режим работы, который соответствует нагрузке в 100%. Величины, относящиеся к этому режиму, называются номинальнымии указываются в листе на специальной табличке на корпусе трансформатора. К таким величинам относятся:

SH0M — номинальная мощность — это полная мощность, которую трансформатор, установленный на открытом воздухе, может непрерывно отдавать в течение всего срока службы (20-25 лет) при номинальном напряжении и при максимальной и среднегодовой температуре окружающего воздуха, равных соответственно 40 и 5°С.

U1H0M — номинальное напряжение, на которое рассчитана пер­вичная обмотка трансформатора.

U2 ном — номинальное напряжение на вторичной обмотке транс­форматора, это напряжение на выводах вторичной об­мотки при холостом ходе и номинальном первичном напряжении.

(у трехфазных трансформаторов U1H0M и U2H0M линейные напряжения).

I1ном и I2ном — номинальные первичный и вторичный токи; это токи, полученные по номинальной мощности и номинальным напряжениям (у трехфазных трансформаторов I1ном и I2ном — линейные токи). Определение номинальных токов для однофазного трансформатора

I1ном = и I2ном = .

Для трехфазного трансформатора I1ном = и I2ном =

Трансформатора обычно работают с нагрузкой меньше номинальной, определяемой коэффициентом нагрузки КНГ, равной КНГ = S2 / SНОМ

Если трансформатор с SНОМ =400 кВА отдает мощность S2 =320 кВА, то КНГ = S2 / SНОМ =320 / 400=0,8

Значения отдаваемых трансформатором активной и реактивной мощнос­ти зависят от коэффициента мощности потребителя cos φ2. Например, при SНОМ = 400 кВА, КНГ = 0,8 и

cos φ2 =0,85 отдаваемая активная и реактивная мощности составятР2 = S2 · cos φ2,

Отсюда: Р2 = КНГ ·SH0M · cos φ2= 0,8 · 400 · 0,85 = 272 кВт,

Q2 = КНГ ·SH0M · sin φ2 = 0,8 · 400 · 0,53 = 169 квар.

В трехфазных трансформаторах отношение линейных напряжений называют линейным коэффициентом трансформации, который равен отно­шению чисел витков обмоток, если они имеют одинаковые схемы соеди­нения (Y /Y и ∆ / ∆).При других схемах коэффициент трансфор­мации находят по формулам (здесь отношения первичных напряжений к вторичным!):

К = = при ∆ / Y

К = = при Y / ∆

При соединении нагрузки звездой: UЛ = UФ , IЛ = IФ

При соединении нагшрузки треугольником: U Л = U Ф и IЛ = IФ

Для трехфазных трансформаторов, обозначив коэффициент трансформации линейных напряжений буквой с, (здесь отношения вторичных напряжений к первичным!)имеем:

При соединении обмоток по схеме звезда — звезда c = U2Л / U1Л = U2Ф /( U1Ф) = 1 / k

При соединении обмоток по схеме звезда — тре­угольник c=U2Л / U1Л = U2Ф /( U1Ф) = k /

При соединении обмоток по схеме треугольник — звезда с = U2Л / U1Л = U2Ф /U1Ф = / k

Таким образом, при одном и том же числе витков обмоток трансформатора можно в раза увеличить или уменьшить его коэффициент трансформации, вы­бирая соответствующую схему соединения обмоток.

Источник

Силовой трансформатор: формулы для определения мощности, тока, uk%

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора — указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные — более 5 кВА

Номинальное напряжение обмотки — напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки — ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Напряжение короткого замыкания — дадим два определения.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

Напряжение короткого замыкания uk — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному

Источник — Электрооборудование станций и подстанций

Определились с основными терминами, далее разберем как определить мощность, ток и сопротивление трансформатора на примере:

ТМ-750/10 с номинальными напряжениями 6 кВ и 0,4 кВ. Ток с высокой стороны будет 72,2 А, напряжение короткого замыкания — 5,4%. Определим ток из формулы определения полной мощности:

Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.

Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:

  • x — искомое сопротивление в именованных единицах, Ом
  • xT% — относительное сопротивление, определяемое через uk% (в случае двухобмоточных эти числа равны), отн.ед.
  • Uб — базисное напряжение, относительно которого мы ведем наш расчет (более подробно будет рассмотрено в статье про расчет токов КЗ), кВ
  • Sном — номинальная мощность, МВА

В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.

Формулы для расчета относительных сопротивлений обмоток (xT%)

В двухобмоточном трансформаторе все просто и uk=xt.

Трехобмоточный и автотрансформаторы

В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).

Трехфазный у которого НН расщепленная

Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.

В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.

Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви

Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.

Источник

Методические указания к решениям задачи 5

Перед решением задач этой темы внимательно изучите материал учебника. Для их решения необходимо знать устройство, принцип действия и соотношения между электрическими величинами однофазных и трехфазных трансформаторов и уметь определять по паспортным данным технические характеристики. Основными параметрами трансформаторов являются: 1) номинальная мощность Sном— это полная мощность, которую трансформатор, установленный на открытом воздухе может не­прерывно отдавать в течение всего срока службы (20-25 лет) при номи­нальном напряжении и при максимальной и среднегодовой температурах окружающего воздуха равных соответственно 40 и 5°С; 2) номинальное первичное напряжение Uном1 — это напряжение, на которое рассчитана первичная обмотка; 3) номинальное вторичное напряжение Uном2 — это напряжение на выводах вторичной обмотки при холостом ходе и номинальном первичном напряжении. При нагрузке вторичное напряжение сни­жается из-за потери напряжения в трансформаторе; 4) номинальные пер­вичный и вторичный токи — это токи, вычисленные по номинальной мощности и номинальным напряжениям. Для однофазного трансформатора:

Iном1 = Sном / Uном1; Iном2 = Sном / Uном2 , для трёхфазного трансформатора

Трансформаторы обычно работают с нагрузкой меньше номинальной, определяемой коэффициентом нагрузки kн , Если трансформатор с Sном = 1600 кВ*А отдаёт мощность S2 = 1200 кВ*А, то коэффициент нагрузки kн = 1200/1600 = 0,75. Значения отдаваемых трансформатором активной и реактивной мощностей зависит от коэффициента мощности потребителя cos φ2 . Например, при Sном = 1600 кВ*А, kн = 1,0 и cos φ2 = 0,85 отдаваемая активная и реактивная мощности составят: P2 = Sном* cos φ2 = 1600*0,85 = 1360 кВт; Q2 = Sном *sinφ2 = 1600*0,53 = 848 квар. Если потребитель увеличит cos φ2 до 1,0, то P2 = 1600*1,0 = 1600 кВт;
Q2 = 1600*0 = 0, т.е. вся отдаваемая мощность станет активной.

В табл. 1 приведены технические данные некоторых трансформаторов. В трехфазных трансформаторах отношение линейных напряжений называют линейным коэффициентом трансформации, который равен отношению чисел витков обмоток. Если они имеют одинаковые схемы соединения

Υ/ Υ и Δ/ Δ. При других схемах коэффициент трансформации находят по формулам: К = Uном1/ Uном2 = ω1/√3ω2 при Δ/Y; и К = Uном1/ Uном2 =√3 ω12 при Y/ Δ

Для уменьшения установленной мощности трансформаторов и снижения потерь анергии в них и в линиях компенсируют часть реактивной мощности потребителей установкой на подстанциях конденсаторов. Энергосистема разрешает потребление предприятием определенной реактивной мощности Qэ называемой оптимальной, обеспечивающей наименьшие эксплуатационные расходы в энергосистеме. Если фактическая реактивная мощность предприятия немного отличается от заданной (точно ее выдержать нельзя), то предприятие получает скидку с тарифа на электроэнергию; при значи­тельной разнице между Qэ и Qф предприятие платит надбавку к тарифу.

Тип трансформатора Sном, кВА Напряжение обмоток, кВ Потери мощности, кВт Uк, % I, %
Uном1 Uном2 Рст Р о ном
ТМ -100/6; 10 6; 10 0,23; 0,4 0,33 2,27 6,8 2,6
ТМ -160/6; 10 0,23; 0,4; 0,69 0,51 3,1 4,7 2,4
ТМ -250/6; 10 0,23; 0,4; 0,69 0,74 4,2 4,7 2,3
ТМ -400/6; 10 0,23; 0,4; 0,69 0,95 5,5 4,5 2,1
ТМ -630/6; 10 0,23; 0,4; 0,69 1,31 7,6 5,5 2,0
ТМ -1000/6; 10 0,23; 0,4; 0,69 2,45 12,2 5,5 2,8
ТМ -1600/6; 10 0,23; 0,4; 0,69 3,3 18,0 5,5 2,6
ТМ -2500/6; 10 0,4; 0,69; 10,5 4,3 24,0 5,5 1,0

Примечание. Трансформатор ТМ – 400/10 – с масляным охлаждением, трёхфазный с Sном = 400 кВА; Uном1 =10 кВ и Uном2 = 0,23 или 0,4 или 0,69 кВ; потери в стали Рст = 0,95 кВт; потери в обмотках Ро.ном = 5,5 кВт; напряжение короткого замыкания Uк = 4,5%; ток холостого хода I = 2,1%.

Пример 7. Трёхфазный трансформатор имеет следующие номинальные данные: мощность Sном =160 кВ*А, напряжения обмоток Uном1 =10 кВ, Uном2 = 0,4 кВ. Коэффициент его нагрузки kн = 0,8, коэффициент мощности потребителя cos φ2 =0,95. Сечение магнитопровода Q = 160 см 2 ; амплитуда магнитной индукции Вм = 1,3 Тл. Частота тока в сети ƒ = 50 Гц. Обмотки трансформатора соединены в звезду.

1) Номинальные токи в обмотках и токи при действительной нагрузке;

3) КПД при номинальной и действительной нагрузках.

Решение. 1. Номинальные токи в обмотках:

2. Токи в обмотках при заданном коэффициенте нагрузки:
I1 = kн * Iном1 = 0,8*9,25 = 7,4 А; I2 = kн * Iном2 = 0,8 * 231 = 185 А.

3. Фазные ЭДС в обмотках при соединении обмоток Y/Y:
Еф1 = Uном1/√3 = 10000/1,73 = 5774 В; Еф2 = Uном2/√3 = 400/1,73 = 230 В.

5. КПД при номинальной нагрузке. Предварительно из табл.1 находим потери в стали Рст = 0,51 кВт и потери в обмотках Р0 ном = 3,1 кВт. Тогда КПД
ηном = Sномсоsφ2/( Sномсоsφ2 + Рст + Р0 ном) = 160*0,95/(160*0,95 + 0,51 + 3,1) = 0,977 или 97,7%

КПД при номинальной нагрузке
η = kн Sномсоsφ2/( kн Sномсоsφ2 + Рст + kн 2 Р0 ном) =
0,8*160*0,95/(0,8*160*0,95 + 0,51 +0,8 2 *3,1) = 0,98 или 98%.

Методические указания к решению задачи 6

Задачи этой группы относятся. теме «Электрические машины пере­менного тока». Для их решения необходимо знать устройство и принцип действия асинхронного двигателя с короткозамкнутым и фазным ротором и зависимости между электрическими величинами, характеризующими его работу. Необходимо ознакомиться с рядом возможных синхронных частот вращения магнитного потока при частоте тока 50 Гц; 3000, 1500, 1000, 750, 600 об/мин и т.д. Поэтому при частоте вращения ротора, например, n2 = 980 об/мин поле может иметь только
n1 = 1000 об/мин (бли­жайшая к980 об/мин из ряда синхронных частот вращения) и можно сразу определить скольжение, даже не зная числа пар полюсов:s =( n1 – n2 )/ n1 = (1000 – 980)/1000 =0,02.

В настоящее время промышленность выпускает асинхронные двигате­ли серии4А мощностью от 0,06 до 400 кВт (Табл.2).Обозначение типа двигателя расшифровывается так: А — асинхронный; 4 — номер серим; X — алюминиевая оболочка и чугунные щиты (отсутствие буквы X означа­ем, что корпус полностью выполнен из чугуна); Б двигатель встроен в оборудование; Н исполнение защищенное IP23; для закрытых: двига­телей исполнения IР44 буквы Н нет; Р — двигатель с повышенным пуско­вым моментом; С — сельскохозяйственного назначения; цифра после буквального обозначения показывает высоту оси вращения в мм; буквы S, М, L после цифр дают установочные размеры по длине корпуса ( S — самая. короткая станина; М — промежуточная; L — самая длинная); цифрапо­сле установочного размера — число полюсов; У — климатическое испол­нение (для умеренного климата); последняя цифра показывает категорию размещения (I — для работы на открытом воздухе; 3 — для закрытых неотапливаемых помещений). Б обозначении типов двухскоростных двигате­лей после установленного размера указывают через дробь оба числа по­люсов, например 4А160М8/4У3. Здесь 8 и 4 означают, что обмотки стато­ра могут переключаться так, что в двигателе образуются 8 и 4 полюса.

Пример 8. Трёхфазный асинхронный двигатель с короткозамкнутым ротором типа 4А250S4У3 имеет номинальные данные (Табл.2), мощность Рном = 75 кВт, напряжение Uном = 380 В, частота вращения ротора n2 = 1480 об/мин, КПД ηном = 0,93, коэффициент мощности соsφном = 0,87, кратность пускового тока Iпуск/Iном = 7,5, кратность пускового момента Мпускном =1,2, способность к перегрузкам Мmaxном = 2,2. Частота тока в сети ƒ1 =50 Гц.

Определить: I) потребляемую мощность; 2) номинальный, пусковой и максимальный моменты; 3) номинальный и пусковой токи; 4)номинальное скольжение; 5)суммарные потери в двигателе; 6) частоту тока в роторе.

Решение.I. Мощность, потребляемая из сети:

2.Номинальный момент, развиваемый двигателем:

М = 9,55Рном/n2 = 9,55*75*1000/1480 = 484 Нм

3. Пусковой и максимальный моменты:

Мпуск = 1,2 Мном = 1,2 * 484 = 581 Нм; Мmax = 2,2*484 = 1064 Нм.

4. Номинальный и пусковой токи:

5. Номинальное скольжение:
sном = (n1 – n2)/ n1 = (1500 – 1480)/1500 = 0,013

6. Суммарные потери в двигателе:
∑р = Р1 – Рном = 80,6 – 75 = 5,6 кВт

7. Частота тока в роторе:
ƒ2 = ƒ1*s = 50*0,013 = 0,65 Гц

Источник

Формула напряжения в физике — это представление электрической потенциальной энергии на единицу заряда. Если ток был размещен в определенном месте, напряжение указывает на ее потенциальную энергию в этой точке. Другими словами, это измерение силы, содержащейся в электрическом поле или цепи в данной точке. Он равен работе, которую нужно было бы выполнить за единицу заряда против электрического поля, чтобы переместить его из одной точки в другую.

Напряжение является скалярной величиной, у него нет направления. Закон Ома гласит, что интенсивность равна текущему временному сопротивлению.

Сопротивление

Формула механической мощности — средняя и мгновенная мощность

Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.


Резисторы различных типов

Для переменного тока

Нужно понимать, что закон не применим напрямую к переменным цепям, например, с катушками индуктивности, конденсаторами или линиям передач. Закон может использоваться только для чисто резистивных цепей переменного тока без каких-либо изменений. В цепи RLC противодействие току является импедансом Z, который образует комбинацию двух ортогональных частей сопротивления.

Переменный ток

Im=Vm/Z

В этом случае Vm связано с Im с помощью константы пропорциональности Z (импеданса) и константы пропорциональности R. Для чисто резистивных линий, где (Z = R).

Vm = ImZ и Vm = ImR

Z — это общее сопротивление участка к переменному току, состоящее из реальной части — сопротивления и мнимой — реактивности.

Формула ее определяется теоремой Пифагора, поскольку угол Ф зависит от реактивной составляющей.

Интегральная форма

Взаимосвязь параметров электрической цепи

Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.

К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.

Формула напряжения тока закона Ома выглядит следующим образом:

I=U/R.

Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.

Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:

  • I – сила тока;
  • U – напряжение;
  • R – сопротивление.

Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.

Кроме закона Ома, используется формула расчета мощности:

P=U∙I.

Символом P здесь обозначена мощность тока.

Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.

Закон Ома для неоднородного участка цепи

Физическая величина, равная отношению работы сторонних сил Aст при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой (ЭДС) источника Eэдс:

$ E_{эдс} = {A_{cт}over q} $ (1).

Таким образом, ЭДС равна работе, совершаемой сторонними силами при перемещении единичного положительного заряда. При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа электростатического поля равна нулю, а работа сторонних сил равна сумме всех ЭДС, действующих в этой цепи.

Работа электростатических сил по перемещению единичного заряда равна разности потенциалов $ Δφ = φ_1 – φ_2 $ между начальной и конечной точками 1 и 2 неоднородного участка. Работа сторонних сил равна, по определению, электродвижущей силе Eэдс, действующей на данном участке. Поэтому полная работа равна:

$ U_п = φ_1 – φ_2 + E_{эдc} $ (2).

Величина Uп называется напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

$ U_п = φ_1 – φ_2 $ (3).

Немецкий исследователь Георг Симон Ом в начале XIX века установил, что сила тока I, текущего по однородному проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

$ I = {U over R} $ (4).

Рис. 2. Портрет Георга Ома.

Величина R — это электрическое сопротивление. Уравнение (4) выражает закон Ома для однородного участка цепи. Для участка цепи, содержащего ЭДС, закон Ома записывается в следующем виде:

$ U_п = I * R = φ_1 – φ_2 + E_{эдс} = Δ φ_{12} + E_{эдс}$ (5).

Данное уравнение называется обобщенным законом Ома для неоднородного участка цепи.

Как работает закон в реальной жизни

Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.

Сила тока формула через мощность:

I=P/U;

Сопротивление:

R=U/I.

Такой же результат можно найти из мощности, не прибегая к промежуточным расчетам:

R=U2/P.

Аналогично можно вычислить любую величину, зная только две из них. Для упрощения преобразований имеется мнемоническое отображение формул, позволяющее находить любые величины.

Внимательно посмотрев на формулы, можно заметить, что, если уменьшить напряжение на лампе в два раза, ожидаемая мощность не снизится аналогично в два раза, а в четыре, согласно формуле:

P=U2/R.

Это довольно распространенная ошибка среди далеких от электротехники людей, которые неправильно соотносят мощность и напряжение, а также их действие на остальные параметры.

Кстати. Сила тока, найденная через сопротивление и напряжение, справедлива как для постоянного, так и для переменного тока, если в ней не используются такие элементы, как конденсатор или индуктивность.

Облегчить расчеты можно, используя онлайн калькулятор.

Определение через разложение электрического поля

Используя приведенное выше понятие, потенциал не находится на одном месте, когда магнитные поля меняются со временем. В физике иногда полезно обобщать электрическое значение, рассматривая только консервативную часть поля. Это делается с помощью следующего разложения, используемого в электродинамике.

формула для вычисления напряжения

В показанной выше формуле Е — индуцированный — вращательное электрическое поле, обусловленное изменяющимися во времени магнитными фонами. В этом случае сила между точками всегда определяется однозначно.

Пример с обычной водой

Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.

Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей. Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.

Различные используемые величины

Кроме основных величин: вольт, ампер, ом, ватт, используют кратные, большие или меньшие. Для обозначений применяют соответствующие приставки:

  • Кило – 1000;
  • Мега – 1000000;
  • Гига – 1000000000;
  • Милли – 0.001.

Таким образом, получается:

  • Киловольт (кВ) – тысяча вольт;
  • Мегаватт (Мвт) – миллион ватт;
  • Миллиом (мОм) – одна тысячная Ом;
  • Гигаватт (ГВт) – тысяча мегаватт или миллиард ватт.

Как найти напряжение

Формула нахождения напряжения как разности потенциалов в электрическом поле:

U=ϕA-ϕB, где ϕAи ϕB – потенциалы в точках А и В, соответственно.

Также можно записать напряжение как работу по переносу единицы заряда из точки А в точку В в электрическом поле:

U=A/q, где q – величина заряда.

Работа тем больше, чем выше напряженность электрического поля Е, то есть сила, действующая на неподвижный заряд.

Потенциальную энергию заряда в электростатическом поле называют электростатический потенциал.

Единицы измерения в формуле

Вам будет интересно:Антиклиналь + синклиналь – это складчатые горы

формула напряжения физика

В формуле, определяющей напряжение, значением СИ является вольт. Таким образом, что 1В = 1 джоуль/кулон. Вольт назван в честь итальянского физика Алессандро Вольта, который изобрел химическую батарею.

Это означает, что в формуле напряжения в физике один кулон заряда получит один джоуль потенциальной энергии, когда он будет перемещен между двумя точками, где разность электрических потенциалов составляет один вольт. При напряжении 12, один кулон заряда получит 12 джоулей потенциальной энергии.

Батарея на шесть вольт имеет потенциал для одного кулона заряда, чтобы получить шесть джоулей потенциальной энергии между двумя местоположениями. Батарея на девять вольт имеет потенциал для одного кулона заряда, чтобы получить девять джоулей потенциальной энергии.

Гидравлическая аналогия

Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:

  • Источник питания – насос;
  • Проводники – трубы;
  • Электроток – движение воды.

Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.

Измерительные приборы

Для измерения параметров электрических цепей служат измерительные приборы:

  • Вольтметр;
  • Амперметр;
  • Омметр.

Наиболее часто используется класс комбинированных устройств, в которых переключателем выбирается измеряемая величина – ампервольтомметры или авометры.

как рассчитать величину напряжения зная ток, сопротивление, мощностьКак известно у электрического напряжения должна быть своя мера, которая изначально соответствует той величине, что рассчитана для питания того или иного электротехнического устройства. Превышение или снижение величины этого напряжения питания негативно влияет на электрическую технику, вплоть до полного выхода ее из строя. А что такое напряжение? Это разность электрических потенциалов. То есть, если для простоты понимания его сравнить с водой, то это примерно будет соответствовать давлению. По научному электрическое напряжение — это физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку единичного заряда.

Наиболее распространенной формулой напряжения тока является та, в которой имеются три основные электрические величины, а именно это само напряжение, ток и сопротивление. Ну, а формула эта известна под названием закона Ома (нахождение электрического напряжения, разности потенциалов).

формула электрического напряжения по закону ома

Звучит эта формула следующим образом — электрическое напряжение равно произведению силы тока на сопротивление. Напомню, в электротехнике для различных физических величин существуют свои единицы измерения. Единицей измерения напряжения является «Вольт» (в честь ученого Алессандро Вольта, который открыл это явление). Единица измерения силы тока — «Ампер», и сопротивления — «Ом». В итоге мы имеем — электрическое напряжение в 1 вольт будет равно 1 ампер умноженный на 1 ом.

Помимо этого второй наиболее используемой формулой напряжения тока является та, в которой это самое напряжение можно найти зная электрическую мощность и силу тока.

как вычислить напряжение зная мощность и силу тока формула

Звучит эта формула следующим образом — электрическое напряжение равно отношению мощности к силе тока (чтобы найти напряжение нужно мощность разделить на ток). Сама же мощность находится путем перемножения тока на напряжение. Ну, и чтобы найти силу тока нужно мощность разделить на напряжение. Все предельно просто. Единицей измерения электрической мощности является «Ватт». Следовательно 1 вольт будет равен 1 ватт деленный на 1 ампер.

Ну, а теперь приведу более научную формулу электрического напряжения, которая содержит в себе «работу» и «заряды».

формула напряжения электрического работа и заряд

В этой формуле показывается отношение совершаемой работы по перемещению электрического заряда. На практике же данная формула вам вряд ли понадобится. Наиболее встречаемой будет та, которая содержит в себе ток, сопротивление и мощность (то есть первые две формулы). Но, хочу предупредить, что она будет верна лишь для случая применения активных сопротивлений. То есть, когда расчеты производятся для электрической цепи, у которой имеется сопротивления в виде обычных резисторов, нагревателей (со спиралью нихрома), лампочек накаливания и так далее, то приведенная формула будет работать. В случае использования реактивного сопротивления (наличии в цепи индуктивности или емкости) нужна будет другая формула напряжения тока, которая учитывает также частоту напряжения, индуктивность, емкость.

P.S. Формула закона Ома является фундаментальной, и именно по ней всегда можно найти одну неизвестную величину из двух известных (ток, напряжение, сопротивление). На практике закон ома будет применяться очень часто, так что его просто необходимо знать наизусть каждому электрику и электронику.

Понравилась статья? Поделить с друзьями:
  • Как найти потерю фазы
  • Как найти отрезок непрерывности функции
  • Как составить бизнес план для производства одежды
  • Как составить цветовую гамму стихотворения
  • Как составить деловое письмо на некачественную продукцию