Изобарный процесс как найти массу

Содержание:

Изотермический, изобарный и изохорный процессы:

Свойство газов существенно изменять предоставленный им объём широко используют в тепловых двигателях. Анализируя процессы, происходящие с газом в этих устройствах, важно знать, каким законам подчиняются газы и каковы условия применимости этих законов.

Процессы в газах часто происходят так, что изменяются только два параметра из пяти Изопроцессы в физике - формулы и определение с примерами

Изотермический процесс

Процесс изменения состояния физической системы при постоянной температуре Изопроцессы в физике - формулы и определение с примерами называют изотермическим.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то из уравнения Клапейрона—Менделеева следует:
Изопроцессы в физике - формулы и определение с примерами
 

Давление данной массы газа при постоянных молярной массе и температуре обратно пропорционально его объёму.

Это утверждение называют законом Бойля—Мариотта.

Справедливость закона Бойля—Мариотта можно продемонстрировать экспериментально, используя установку, представленную на рисунке 18 в § 5.

Если медленно изменять объём газа, находящегося в сосуде, то вследствие теплообмена с окружающей средой можно поддерживать температуру газа в сосуде практически постоянной. При этом уменьшение объёма газа при вращении винта 3 повлечёт за собой увеличение его давления и некоторое незначительное увеличение температуры. И наоборот, увеличение объёма приведёт к уменьшению давления и некоторому незначительному уменьшению температуры газа*.

* Незначительное изменение температуры газа принципиально необходимо для теплообмена с термостатом — передача тепла возможна только при разных температурах тел.

График изотермического процесса, совершаемого идеальным газом, в координатах Изопроцессы в физике - формулы и определение с примерами представляет собой гиперболу (рис. 22). В физике такую кривую называют изотермой. Разным значениям температуры газа соответствуют разные изотермы. Согласно соотношениям (6.1) для одинаковых объёмов газов с одинаковыми количествами вещества и разными температурами чем больше давление, тем выше температура (рис. 22).

Изопроцессы в физике - формулы и определение с примерами

Многочисленные опыты показали, что исследованные газы подчиняются закону Бойля —Мариотта тем точнее, чем меньше их плотность. При значительном увеличении давления газа этот закон перестаёт выполняться.

Интересно знать:

Лёгкие расположены в грудной клетке, объём которой при дыхании периодически изменяется благодаря работе межрёберных мышц и диафрагмы. Когда грудная клетка расширяется, давление воздуха в лёгких становится меньше атмосферного, и воздух через воздухоносные пути устремляется в лёгкие — происходит вдох. При выдохе объём грудной клетки уменьшается, что вызывает уменьшение объёма лёгких. Давление воздуха в них становится выше атмосферного, и воздух из лёгких устремляется в окружающую среду.

Изобарный процесс

Процесс изменения состояния газа при постоянном давлении (р = const) называют изобарным.

В 1802 г. французский учёный Жозеф Гей-Люссак (1778-1850) рассмотрел этот процесс для воздуха, водорода, кислорода и азота.

Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, то объём газа, как следует из уравнения Клапейрона—Менделеева:

Изопроцессы в физике - формулы и определение с примерами

Объём данной массы газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре.

Это утверждение называют законом Гей-Люссака.

Справедливость закона Гей-Люссака можно продемонстрировать экспериментально, используя установку, представленную на рисунке 23. Жидкость в сосуде находится в тепловом равновесии с тонкой трубкой, заполненной воздухом, запертым капелькой масла. При увеличении температуры жидкости объём воздуха, находящегося в трубке под капелькой масла, возрастает и капелька движется вверх. При уменьшении температуры объём воздуха уменьшается — и капелька движется вниз.

Изопроцессы в физике - формулы и определение с примерами

Поскольку Изопроцессы в физике - формулы и определение с примерами то в координатах Изопроцессы в физике - формулы и определение с примерами график изобарного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 24). Эту линию называют изобарой.

Изопроцессы в физике - формулы и определение с примерами

Изобара реальных газов не может быть продлена до нулевого значения температуры (на графике пунктирная линия), потому что при низких температурах все газы существенно отличаются от модели «идеальный газ» и при дальнейшем уменьшении температуры превращаются в жидкости.

В одних и тех же координатах Изопроцессы в физике - формулы и определение с примерами можно построить несколько изобар, которые соответствуют разным давлениям данной массы идеального газа при неизменной молярной массе. Анализ соотношений (6.2) позволяет сделать вывод, что большему давлению соответствует меньший наклон изобары к оси температур (см. рис. 24).

Изохорный процесс

Процесс изменения состояния газа при постоянном объёме (V = const) называют изохорным.

Впервые этот процесс рассмотрел в 1787 г. французский учёный Жак Шарль (1746-1823)*.

* Несмотря на то что Шарль не опубликовал результаты своих исследований, история физики отдаёт приоритет открытия ему.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то давление газа, как следует из уравнения Клапейрона—Менделеева:

Изопроцессы в физике - формулы и определение с примерами

Давление данной массы газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре.

Это утверждение называют законом Шарля.

Изопроцессы в физике - формулы и определение с примерами

Справедливость закона Шарля можно продемонстрировать экспериментально, используя установку, представленную на рисунке 25. Колба, наполненная воздухом и соединённая с манометром, находится в тепловом равновесии с жидкостью в сосуде. При увеличении температуры жидкости давление воздуха в колбе возрастает, а при уменьшении температуры — давление воздуха уменьшается.

В координатах Изопроцессы в физике - формулы и определение с примерами график изохорного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 26). Эту линию называют изохорой.

Изопроцессы в физике - формулы и определение с примерами

Как и в случае изобарного процесса, изохора реальных газов не может быть продлена до нулевого значения температуры.

В одних и тех же координатах Изопроцессы в физике - формулы и определение с примерами можно построить несколько изохор, соответствующих разным объёмам данной массы газа при неизменной моляр- О ной массе. Анализ соотношений (6.3) показывает, что большему объёму соответствует меньший наклон изохоры к оси температур (см. рис. 26).

Изопроцессы в физике - формулы и определение с примерами

Пример №1

На рисунке 28 представлен график трёх процессов изменения состояния некоторой массы идеального газа. Как изменялись параметры газа на участках Изопроцессы в физике - формулы и определение с примерамиИзопроцессы в физике - формулы и определение с примерами Изобразите эти процессы в координатах Изопроцессы в физике - формулы и определение с примерами

Изопроцессы в физике - формулы и определение с примерами

Решение. На участке Изопроцессы в физике - формулы и определение с примерами объём газа прямо пропорционален абсолютной температуре, следовательно, процесс перехода газа из состояния 1 в состояние 2 является изобарным. Из графика следует, что в состоянии 2 температура и объём газа больше в 4 раза, чем в состоянии 1. Следовательно, в процессе изобарного расширения некоторой массы газа из состояния 1 в состояние 2 температура и объём газа увеличились. Это можно записать таким образом:

переход  Изопроцессы в физике - формулы и определение с примерами
происходит изобарное нагревание газа.

В процессе перехода газа из состояния 2 в состояние 3 остаётся постоянным объём (процесс изохорный), а температура газа уменьшается в 4 раза. Из соотношения (6.3) следует, что при изохорном охлаждении давление газа уменьшается пропорционально его абсолютной температуре. Поэтому можно записать:
переход Изопроцессы в физике - формулы и определение с примерами
происходит изохорное охлаждение газа.

Процесс перехода газа из состояния 3 в состояние 1 — изотермический. При этом объём газа уменьшается в 4 раза, что влечёт за собой, согласно закону Бойля—Мариотта, увеличение давления газа в 4 раза:

  • переход Изопроцессы в физике - формулы и определение с примерами происходит изотермическое сжатие газа.

Опираясь на сделанные выводы, представим все три процесса в координатах Изопроцессы в физике - формулы и определение с примерами (рис. 29, а, б).
Изопроцессы в физике - формулы и определение с примерами

Пример №2

При изотермическом расширении идеального газа определённой массы его объём увеличился от Изопроцессы в физике - формулы и определение с примерами а давление уменьшилось на Изопроцессы в физике - формулы и определение с примерами Определите первоначальное давление газа.

Изопроцессы в физике - формулы и определение с примерами

Решение. Так как температура и масса газа не изменяются, то его начальное и конечное состояния связаны законом Бойля—Мариотта, т. е. Изопроцессы в физике - формулы и определение с примерами С учётом того, что Изопроцессы в физике - формулы и определение с примерами получим:

Изопроцессы в физике - формулы и определение с примерами

Откуда

Изопроцессы в физике - формулы и определение с примерами

Ответ: Изопроцессы в физике - формулы и определение с примерами

Обобщение и систематизация определений:

Изопроцессы в физике - формулы и определение с примерами

Изопроцессы в физике - формулы и определение с примерами

  • Твердые тела и их свойства в физике
  • Строение и свойства жидкостей в физике
  • Испарение и конденсация в физике
  • Влажность воздуха в физике
  • Уравнение состояния идеального газа
  • Температура в физике
  • Парообразование и конденсация 
  • Тепловое равновесие в физике

Изобарный процесс (также называемый изобарическим процессом) является одним из термодинамических процессов, которые происходят при постоянном показателе давления. Масса газа системы при этом также остается постоянной. Наглядное представление о графике, демонстрирующем изобарный процесс, дает термодинамическая диаграмма в соответствующей системе координат.

Примеры

Наиболее простым примером изобарического процесса можно назвать нагревание некоторого объема воды в открытом сосуде. В качестве еще одного примера можно привести расширение идеального газа в цилиндрическом объеме, где поршень имеет свободный ход. В каждом из этих случаев давление будет постоянным. Оно равно обыкновенному атмосферному давлению, что вполне очевидно.

Обратимость

изобарный процесс

Изобарный процесс можно считать обратимым в том случае, если давление в системе совпадает с внешним давлением и равно во все моменты времени процесса (то есть оно постоянно по своему значению), а температура изменяется очень медленно. Таким образом, термодинамическое равновесие в системе сохраняется в каждый момент времени. Именно совокупность вышеперечисленных факторов дает нам возможность считать изобарный процесс обратимым.

Чтобы осуществить в системе изобарический процесс, теплоту к ней нужно или подводить, или отводить. При этом теплота должна расходоваться на работу расширения идеального газа и на изменение его внутренней энергии. Формулу, демонстрирующую зависимость величин друг от друга при изобарном процессе, называют законом Гей-Люссака. Она показывает, что объем пропорционален температуре. Давайте выведем эту формулу на основании поверхностных знаний.

Вывод закона Гей-Люссака (первичное понимание)

работа газа при изобарном процессе

Человек, хотя бы немного разбирающийся в молекулярной физике, знает, что многие задачи связаны с определенными параметрами. Имя им – давление газа, объем газа и температура газа. В тех или иных случаях в ход идут молекулярная и молярная масса, количество вещества, универсальная газовая постоянная и другие показатели. И здесь есть определенная связь. Давайте поговорим об универсальной газовой постоянной подробнее. На тот случай, если кто-то не знает, каким образом ее получили.

Получение универсальной газовой постоянной

работа при изобарном процессе

Эту константу (постоянное число с определенной размерностью) принято также называть постоянной Менделеева. Она присутствует также в уравнении Менделеева-Клапейрона для идеального газа. Как же получил наш знаменитый физик эту константу?

Как мы знаем, уравнение идеального газа имеет следующую форму: PV/T (что озвучивается так: “произведение давления на объем, деленное на температуру”). По отношению к универсальной газовой постоянной применим так называемый закон Авогадро. Он гласит о том, что если мы возьмем любой газ, то одинаковое его количество молей при одинаковой температуре и одинаковом давлении займет одинаковый объем.

По сути дела, это есть словесная формулировка уравнения состояния идеального газа, которое было записано в виде формулы немного ранее. Если мы возьмем нормальные условия (а это когда температура газа равна 273,15 Кельвинов, давление равно 1 атмосфере, соответственно, 101325 Паскалей, а объем моля газа равен 22,4 литра) и подставим их в уравнение, все перемножим и разделим, то получим, что совокупность подобных действий дает нам численный показатель, равный 8,31. Размерность дается в Джоулях, деленных на произведение моля на Кельвин (Дж/моль*К).

Уравнение Менделеева-Клапейрона

изобарный процесс

Давайте возьмем уравнение состояния идеального газа и перепишем его в новом виде. Изначальное уравнение, напомним, имеет вид PV/T=R. А теперь умножим обе части на температурный показатель. Получим формулу PV(м)=RT. То есть произведение давления на объем равно произведению универсальной газовой постоянной на температуру.

Теперь умножим обе части уравнения на то или иное количество молей. Обозначим их количество буквой, скажем, X. Таким образом, получим следующую формулу: PV(м)X=XRT. Но ведь мы знаем, что произведение V с индексом “м” дает нам в результате просто объем V, а число молей X раскрывается в виде деления частной массы на молярную массу, то есть имеет вид m/M.

Таким образом, конечная формула будет выглядеть следующим образом: PV=MRT/m. Это и есть то самое уравнение Менделеева-Клапейрона, к которому пришли оба физика практически одновременно. Мы можем умножить правую часть уравнения (и в то же время разделить) на число Авогадро. Тогда получим: PV = XN(a)RT/N(a). Но ведь произведение количества молей на число Авогадро, то есть XN(a), дает нам не что иное, как общее число молекул газа, обозначаемое буквой N.

В то же время частное от универсальной газовой постоянной и числа Авогадро – R/N(a) даст постоянную Больцмана (обозначается k). В итоге мы получим еще одну формулу, но уже в несколько другом виде. Вот она: PV=NkT. Можно раскрыть эту формулу и получить следующий результат: NkT/V=P.

Работа газа при изобарном процессе

работа газа при изобарном процессе

Как мы выяснили ранее, изобарным процессом называется термодинамический процесс, при котором давление остается величиной постоянной. А чтобы выяснить, как будет определяться работа при изобарном процессе, нам придется обратиться к первому началу термодинамики. Общая формула выглядит следующим образом: dQ = dU + dA, где dQ — это количество теплоты, dU – изменение внутренней энергии, а dA – работа, совершаемая в ходе выполнения термодинамического процесса.

Теперь рассмотрим конкретно изобарный процесс. Примем во внимание тот фактор, что давление остается постоянным. Теперь попытаемся переписать первое начало термодинамики для изобарного процесса: dQ = dU + pdV. Чтобы получить наглядное представление о процессе и работе, нужно изобразить его в системе координат. Ось абсцисс обозначим p, ось ординат V. Пускай объем будет увеличиваться. В двух отличных друг от друга точках с соответствующим значением p (конечно же, фиксированным) отметим состояния, представляющие собой V1 (первоначальный объем) и V2 (конечный объем). В этом случае график будет представлять собой прямую линию, параллельную оси абсцисс.

Найти работы в таком случае проще простого. Это будет просто площадь фигуры, ограниченная с двух сторон проекциями на ось абсцисс, а с третьей стороны – прямой линией, соединяющей точки, лежащие, соответственно, в начале и конце изобарной прямой. Попробуем вычислить значение работы при помощи интеграла.

Он будет вычисляться следующим образом: A = p (интеграл в пределах от V1 до V2) dV. Раскроем интеграл. Получим, что работа будет равна произведению давления на разность объемов. То есть выглядеть формула будет следующим образом: A = p (V2 – V1). Если мы раскроем некоторые величины, то получим еще одну формулу. Она выглядит так: A = xR (T2 – T2), где x – количество вещества.

Универсальная газовая постоянная и ее смысл

работа при изобарном процессе

Можно сказать, что последнее выражение будет определять физический смысл R – универсальной газовой постоянной. Чтобы было понятнее, давайте обратимся к конкретным числам. Возьмем для проверки один моль какого-либо вещества. В то же время пускай температурная разница будет составлять 1 Кельвин. В этом случае легко заметить, что работа газа будет равна универсальной газовой постоянной (или же наоборот).

Заключение

Этот факт можно подать немного в другом свете, перефразировав формулировку. Например, универсальная газовая постоянная будет численно равна работе, совершаемой при изобарном расширении одним молем идеального газа, если он нагревается на один Кельвин. Вычислить работу при других изопроцессах будет несколько сложнее, но главное — при этом применять логику. Тогда все быстро встанет на свои места, и вывод формулы окажется проще, чем вы думаете.

Печатать книгуПечатать книгу

Сайт: Профильное обучение
Курс: Физика. 10 класс
Книга: § 6. Изотермический, изобарный и изохорный процессы
Напечатано:: Гость
Дата: Суббота, 27 Май 2023, 23:16

Оглавление

  • Изотермический, изобарный и изохорный процессы
  • Изотермический процесс
  • Изобарный процесс
  • Изохорный процесс
  • Примеры решения задач
  • Упражнение 5

Свойство газов существенно изменять предоставленный им объём широко используют в тепловых двигателях. Анализируя процессы, происходящие с газом в этих устройствах, важно знать, каким законам подчиняются газы и каковы условия применимости этих законов.

Процессы в газах часто происходят так, что изменяются только два параметра из пяти (p, V, T, m, M). Если при постоянных массе и молярной массе ещё один из макропараметров (p, V, T), входящих в уравнение состояния идеального газа, не изменяется, то такие процессы называют изопроцессами.

Изотермический процесс. Процесс изменения состояния физической системы при постоянной температуре (T = const) называют изотермическим.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то из уравнения Клапейрона–Менделеева следует:

Давление данной массы газа при постоянных молярной массе и температуре обратно пропорционально его объёму.

Это утверждение называют законом Бойля–Мариотта.

Справедливость закона Бойля–Мариотта можно продемонстрировать экспериментально, используя установку, представленную на рисунке 18 в § 5.

Если медленно изменять объём газа, находящегося в сосуде, то вследствие теплообмена с окружающей средой можно поддерживать температуру газа в сосуде практически постоянной. При этом уменьшение объёма газа при вращении винта 3 повлечёт за собой увеличение его давления и некоторое незначительное увеличение температуры. И наоборот, увеличение объёма приведёт к уменьшению давления и некоторому незначительному уменьшению температуры газа*.

От теории к практике

1. Почему пузырьки воздуха, находящиеся в жидкости, поднимаясь вверх, увеличиваются в объёме?

2. Если, не отрываясь, выпить из пластиковой бутылки газированную воду, то можно обнаружить, что бутылка деформируется. Почему?

Рис.
Рис. 22

График изотермического процесса, совершаемого идеальным газом, в координатах (p, V) представляет собой гиперболу (рис. 22). В физике такую кривую называют изотермой. Разным значениям температуры газа соответствуют разные изотермы. Согласно соотношениям (6.1) для одинаковых объёмов газов с одинаковыми количествами вещества и разными температурами чем больше давление, тем выше температура (рис. 22).

Многочисленные опыты показали, что исследованные газы подчиняются закону Бойля–Мариотта тем точнее, чем меньше их плотность. При значительном увеличении давления газа этот закон перестаёт выполняться.

От теории к практике

Изобразите графики изотермического процесса в координатах (p, T) и (V, T).

Интересно знать

Лёгкие расположены в грудной клетке, объём которой при дыхании периодически изменяется благодаря работе межрёберных мышц и диафрагмы. К огда грудная клетка расширяется, давление воздуха в лёгких становится меньше атмосферного, и воздух через воздухоносные пути устремляется в лёгкие — происходит вдох. При выдохе объём грудной клетки уменьшается, что вызывает уменьшение объёма лёгких. Давление воздуха в них становится выше атмосферного, и воздух из лёгких устремляется в окружающую среду.

* Незначительное изменение температуры газа принципиально необходимо для теплообмена с термостатом — передача тепла возможна только при разных температурах тел. ↑

Изобарный процесс. Процесс изменения состояния газа при постоянном давлении (p = const) называют изобарным.

В 1802 г. французский учёный Жозеф Гей-Люссак (1778–1850) рассмотрел этот процесс для воздуха, водорода, кислорода и азота.

Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, то объём газа, как следует из уравнения Клапейрона–Менделеева:

Объём данной массы газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре.

Это утверждение называют законом Гей-Люссака.

Рис.
Рис. 23

Справедливость закона Гей-Люссака можно продемонстрировать экспериментально, используя установку, представленную на рисунке 23. Жидкость в сосуде находится в тепловом равновесии с тонкой трубкой, заполненной воздухом, запертым капелькой масла. При увеличении температуры жидкости объём воздуха, находящегося в трубке под капелькой масла, возрастает и капелька движется вверх. При уменьшении температуры объём воздуха уменьшается — и капелька движется вниз.

От теории к практике

Можно ли считать расширение газа при медленном нагревании его в цилиндре с подвижным поршнем изобарным процессом?

Рис.
Рис. 24

Поскольку V ~ T, то в координатах (V, T) график изобарного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 24). Эту линию называют изобарой.

Изобара реальных газов не может быть продлена до нулевого значения температуры (на графике пунктирная линия), потому что при низких температурах все газы существенно отличаются от модели «идеальный газ» и при дальнейшем уменьшении температуры превращаются в жидкости.

В одних и тех же координатах (V, T) можно построить несколько изобар, которые соответствуют разным давлениям данной массы идеального газа при неизменной молярной массе. Анализ соотношений (6.2) позволяет сделать вывод, что большему давлению соответствует меньший наклон изобары к оси температур (см. рис. 24).

От теории к практике

Изобразите графики изобарного процесса в координатах (p, V) и (p, T).

Изохорный процесс. Процесс изменения состояния газа при постоянном объёме (V = const) называют изохорным.

Впервые этот процесс рассмотрел в 1787 г. французский учёный Жак Шарль (1746–1823)*.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то давление газа, как следует из уравнения Клапейрона–Менделеева:

Давление данной массы газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре.

Это утверждение называют законом Шарля.

Рис.
Рис. 25

Справедливость закона Шарля можно продемонстрировать экспериментально, используя установку, представленную на рисунке 25. Колба, наполненная воздухом и соединённая с манометром, находится в тепловом равновесии с жидкостью в сосуде. При увеличении температуры жидкости давление воздуха в колбе возрастает, а при уменьшении температуры — давление воздуха уменьшается.

От теории к практике

Идеальный газ определённой массы изохорно охлаждают так, что его температура уменьшается от t1 = 327 °С до t2 = 7 °С. Во сколько раз уменьшается давление газа?

Рис.
Рис. 26

В координатах (p, T) график изохорного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 26). Эту линию называют изохорой.

Как и в случае изобарного процесса, изохора реальных газов не может быть продлена до нулевого значения температуры.

В одних и тех же координатах (p, T) можно построить несколько изохор, соответствующих разным объёмам данной массы газа при неизменной молярной массе. Анализ соотношений (6.3) показывает, что большему объёму соответствует меньший наклон изохоры к оси температур (см. рис. 26).

От теории к практике

Изобразите графики изохорного процесса в координатах (p, V) и (V, T).

img

img

1. Как связаны давление и объём идеального газа при изотермическом процессе?

2. Как связаны объём и абсолютная температура идеального газа при изобарном процессе?

3. Как связаны давление и абсолютная температура идеального газа при изохорном процессе?

4. При выполнении каких условий справедлив каждый из законов изопроцессов в реальном газе?

5. Объём идеального газа определённой массы и неизменного химического состава изобарно увеличили в b = 1,5 раза, а затем давление газа изохорно уменьшили в c = 3 раза.

а) Как изменилась абсолютная температура газа в результате первого процесса?

б) Как изменилась абсолютная температура газа в результате второго процесса?

в) Во сколько раз начальная абсолютная температура газа отличается от его конечной температуры?

Рис.
Рис. 27

6. На рисунке 27 представлен график трёх процессов изменения состояния идеального газа определённой массы и неизменного химического состава.

а) Какому процессу соответствует участок 1 rightwards arrow 2 графика? Во сколько раз увеличилось давление газа в этом процессе?

б) Какому процессу соответствует участок 2 rightwards arrow 3 графика? Во сколько раз увеличились объём и абсолютная температура газа в этом процессе?

в) Какому процессу соответствует участок 3 rightwards arrow 4 графика? Как и во сколько раз изменились объём и давление газа в этом процессе?

г) Во сколько раз следует уменьшить температуру газа, чтобы изохорно перевести газ из состояния 4 в состояние 2?

* Несмотря на то что Шарль не опубликовал результаты своих исследований, история физики отдаёт приоритет открытия ему. ↑

Примеры решения задач

Решение. На участке 1 rightwards arrow 2 объём газа прямо пропорционален абсолютной температуре, следовательно, процесс перехода газа из состояния 1 в состояние 2 является изобарным. Из графика следует, что в состоянии 2 температура и объём газа больше в 4 раза, чем в состоянии 1. Следовательно, в процессе изобарного расширения некоторой массы газа из состояния 1 в состояние 2 температура и объём газа увеличились. Это можно записать таким образом:

переход 1 rightwards arrow 2 colon space p space equals space const, V upwards arrow, T upwards arrow, V subscript 2 space equals space 4 V subscript 1T subscript 2 space equals space 4 T subscript 1 space rightwards double arrow
происходит изобарное нагревание газа.

В процессе перехода газа из состояния 2 в состояние 3 остаётся постоянным объём (процесс изохорный), а температура газа уменьшается в 4 раза. Из соотношения (6.3) следует, что при изохорном охлаждении давление газа уменьшается пропорционально его абсолютной температуре. Поэтому можно записать:

переход 2 rightwards arrow 3 colon space V space equals space const, T downwards arrow, p downwards arrowp subscript 3 space equals space T subscript 3 over T subscript 2 p subscript 2 space equals space 1 fourth p subscript 2 rightwards double arrow
происходит изохорное охлаждение газа.

Процесс перехода газа из состояния 3 в состояние 1 — изотермический. При этом объём газа уменьшается в 4 раза, что влечёт за собой, согласно закону Бойля–Мариотта, увеличение давления газа в 4 раза:

переход 3 rightwards arrow 1 colon space T space equals space const, V downwards arrowp upwards arrow rightwards double arrow
происходит изотермическое сжатие газа.

Опираясь на сделанные выводы, представим все три процесса в координатах (p, V) и (p, T) (рис. 29, а, б).

Рис.

Рис. 29

Пример 2. При изотермическом расширении идеального газа определённой массы его объём увеличился от V1 = 2,0 л до V2 = 5,0 л, а давление уменьшилось на Δp = –15 кПа. Определите первоначальное давление газа.

Дано:
V1 = 2,0 л = 2,0 · 10–3 м3
V2 = 5,0 л = 5,0 · 10–3 м3
Δp = –15 кПа = –1,5 · 104 Па

р1 — ?

Решение: Так как температура и масса газа не изменяются, то его начальное и конечное состояния связаны законом Бойля–Мариотта, т. е. p subscript 1 V subscript 1 space end subscript equals space p subscript 2 V subscript 2. С учётом того, что p subscript 2 space equals space p subscript 1 space end subscript plus space increment p, получим:

p subscript 1 V subscript 1 space equals space left parenthesis p subscript 1 plus increment p right parenthesis V subscript 2.

Откуда       fraction numerator increment p V subscript 2 over denominator V subscript 1 minus V subscript 2 end fraction.

p subscript 1 space equals space fraction numerator negative 1 comma 5 times 10 to the power of 4 space Па times 5 comma 0 times 10 to the power of negative 3 end exponent space straight м cubed over denominator 2 comma 0 times 10 to the power of negative 3 end exponent space straight м cubed minus 5 comma 0 times 10 to the power of negative 3 end exponent space straight м cubed end fraction space equals space 2 comma 5 times 10 to the power of 4 space Па space equals space 25 space кПа.

Ответ: p subscript 1 space equals space 25 space кПа.

Материал повышенного уровня

Пример 3. В двух сосудах вместимостью V1 = 20 л и V2 = 30 л находятся химически не реагирующие идеальные газы, давления которых p1 = 1,0 МПа и p2 = 0,40 МПа соответственно. Определите давление газов в сосудах после того, как их соединили тонкой короткой трубкой. Температура газов до и после соединения сосудов одинаковая.

Дано:
V1 = 20 л = 2,0 · 10-2 м3
V2 = 30 л = 3,0 · 10-2 м3
p1 = 1,0 МПа = 1,0 · 106 Па
p2 = 0,40 МПа = 4,0 · 105 Па
T = const

р — ?

Решение: Давление смеси газов равно сумме парциальных давлений (закон Дальтона): p equals p subscript 1 superscript apostrophe plus p subscript 2 superscript apostrophe. Найдём парциальное давление каждого газа после соединения сосудов. Так как температура и массы газов не изменяются, то начальное и конечное состояния каждого газа связаны законом Бойля–Мариотта, т. е.

p subscript 1 V subscript 1 equals p subscript 1 superscript apostrophe left parenthesis V subscript 1 plus V subscript 2 right parenthesis, p subscript 2 V subscript 2 equals p subscript 2 superscript apostrophe left parenthesis V subscript 1 plus V subscript 2 right parenthesis.

Следовательно, парциальные давления газов после соединения сосудов: p subscript 1 superscript apostrophe equals fraction numerator p subscript 1 V subscript 1 over denominator V subscript 1 plus V subscript 2 end fraction, p subscript 2 superscript apostrophe equals fraction numerator p subscript 2 V subscript 2 over denominator V subscript 1 plus V subscript 2 end fraction. Тогда p equals fraction numerator p subscript 1 V subscript 1 plus p subscript 2 V subscript 2 over denominator V subscript 1 plus V subscript 2 end fraction.

p equals fraction numerator 1 comma 0 times 10 to the power of 6 space Па times 2 comma 0 times 10 to the power of negative 2 end exponent space straight м cubed plus 4 comma 0 times 10 to the power of 5 space Па times 3 comma 0 times 10 to the power of negative 2 end exponent space straight м cubed over denominator 2 comma 0 times 10 to the power of negative 2 end exponent space straight м cubed plus 3 comma 0 times 10 to the power of negative 2 end exponent space straight м cubed end fraction equals 6 comma 4 times 10 to the power of 5 space Па equals 0 comma 64 space МПа.

Ответ: p = 0,64 МПа.

Упражнение 5

1. При изобарном увеличении температуры идеального газа, находящегося в герметично закрытом цилиндре, на ΔT = 60,0 К его объём увеличился в β = 1,21 раза. Определите начальную абсолютную температуру газа.

2. Изобразите графически процесс изобарного охлаждения определённой массы идеального газа в координатах (p, T); (V, T); (V, p).

3. Идеальный газ определённой массы сначала изобарно расширили, а затем изотермически сжали до первоначального объёма. Изобразите графически эти процессы в координатах (V, T); (p, V).

Рис.
Рис. 30

4. На рисунке 30 представлен график изменения состояния определённой массы идеального газа. (Переход 3 rightwards arrow 1 осуществляется при неизменной температуре.) Изобразите графически этот процесс в координатах (T, V) и (p, T).

5. При температуре t1 = –3,0 °С манометр на баллоне со сжатым кислородом показывал давление p1 = 1,8 · 106 Па, а при температуре t2 = 27 °С — давление p2 = 2,0 · 106 Па. Определите, была ли утечка газа из баллона.

Материал повышенного уровня

6. В герметичном сосуде, заполненном воздухом (M equals 0 comma 029 space кг over моль), лежит полый металлический шарик, диаметр которого d = 4,0 см, а масса m = 0,64 г. Определите минимальное значение давления воздуха, накачиваемого в сосуд, при котором бы шарик поднялся вверх, если температура t = 17 °С остаётся постоянной.

7. Идеальный газ, давление которого p1 = 4 · 105 Па, занимал объём V1 = 2 л. Сначала газ изотермически расширили до объёма V2 = 8 л, а затем изохорно нагрели, в результате чего его абсолютная температура увеличилась в α = 3 раза. Определите давление р3 газа в конце процесса, если при переходе из начального состояния в конечное масса газа оставалась неизменной.

Автор статьи

Алексей . Малеев

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Что такое изобарический процесс

Определение

Изобарическим (или изобарным) процессом называется процесс, происходящий в неизменной массе газа при постоянном давлении.

Запишем уравнение для двух состояний идеального газа:

[pV_1=nu RT_1left(1right),]

[pV_2=nu RT_2 left(2right).]

Разделим уравнение (2) на уравнение (1), получим уравнение изобарного процесса:

[frac{V_2}{V_1}=frac{T_2}{T_1} (3)]

или

[frac{V}{T}=const left(4right).]

Уравнение (4) называют законом Гей-Люссака.

Внутренняя энергия и количество теплоты изобарического процесса

Этот процесс происходит с подводом тепла, если объем увеличивается, или его отводом, чтобы уменьшать объем. Запишем первое начало термодинамики, последовательно получим выражения для работы, внутренней энергии и количества теплоты изобарного процесса:

[delta Q=dU+dA=frac{i}{2}nu RdT+pdV, left(5right).]

[triangle Q=intlimits^{T_2}_{T_1}{dU}+intlimits^{V_2}_{V_1}{dA}(6)]

где $delta Q $- элементарное тепло, подводимое к системе, $dU$- изменение внутренней энергии газа в проводимом процессе, $dA$- элементарная работа, которую совершает газ в процессе, i-число степеней свободы молекулы газа, R — универсальная газовая постоянная, d — количество молей газа.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Изменение внутренней энергии газа:

[triangle U=frac{i}{2}nu R{(T}_2-T_1) (7)]

[A=pintlimits^{V_2}_{V_1}{dV}=pleft(V_2-V_1right)(8)]

Уравнение (8) определяет работу для изобарного процесса. Вычтем из (2) уравнение (1), получим еще одно уравнение для работы газа в изобарном процессе:

[p{(V}_2-V_1)=nu R{(T}_2-T_1)to A=nu R{(T}_2-T_1) (9)]

[triangle Q=frac{i}{2}нR{(T}_2-T_1)+nu R{(T}_2-T_1)=c_{mu p}nu triangle T (10),]

где $c_{mu p}$ — молярная теплоёмкость газа при изобарном процессе. Уравнение (10) определяет количество теплоты, сообщаемое газу массы m в изобарном процессе при увеличении температуры на $triangle T.$

Изопроцессы очень часто изображают на термодинамических диаграммах. Так, линия, изображающая на такой диаграмме изобарический процесс, называется изобарой (рис.1).

Изобарический процесс

Рис. 1

Пример 1

Задание: Определите, как соотносятся давления $p_1$ и $p_2$ на диаграмме V(T) рис 1с.

Решение:

Проведем изотерму $T_1$

Изобарический процесс

Рис. 2

В точках А и В температуры одинаковы, следовательно, газ подчиняется закону Бойля — Мариотта:

[p_AV_A=p_BV_B (1.2)]

[V_A > V_Bto p_A Ответ: Давления $p_1 > p_2$.

«Изобарический процесс» 👇

Пример 2

Задание: При неизменном давлении p=3$cdot {10}^5$Па газ расширился от объема $V_1=2л$ до $V_2=4л.$ Найти работу, совершаемую газом.

Решение:

За основу решения задачи примем формулу работы при расширении газа в изобарном процессе:

[A=pintlimits^{V_2}_{V_1}{dV}=pleft(V_2-V_1right)left(2.1right).]

Переведем данные объемы в СИ: $V_1=2л=2{cdot 10}^{-3}м^3$, $V_2=4л=4{•10}^{-3}м^3$

Проведем вычисления:

[A=3cdot {10}^5left(4-2right){•10}^{-3}=600(Дж)]

Ответ: Работа газа в изобарном процессе 600 Дж.

Пример 3

Задание: Сравните работу газа в процессе ABC и работу над газом в процессе CDA рис 3.

Решение:

Изобарический процесс

Рис. 3

За основу решения примем формулу, определяющую работу газа:

[A=intlimits^{V_2}_{V_1}{pdV}(3.1)]

Из геометрического смысла определенного интеграла известно, что работа — есть площадь фигуры, которая ограничена функцией подынтегрального выражения, осью абсцисс, и изохорами в точках $V_1 и V_2$ (оси p(V)). Переведем графики процессов в оси p(V).

Рассмотрим каждый отрезок графиков процессов изображенных на рисунке (3).

АВ: Изохорный процесс (p=const), $Vuparrow left( Объем растетright), Tuparrow $;

ВС: Изохорный процесс (V =const), $Tuparrow $ (из графика), p$uparrow $, из закона для изохорного процесса ($frac{p}{T}=const$);

CD: (p=const), $Vdownarrow , Tdownarrow ;$

DA: (V =const), $Tdownarrow , pdownarrow .$

Изобразим графики процессов в осях p(V) (рис.4):

Изобарический процесс

Рис. 4

Работа газа $A_{ABC}=S_{ABC}$ ($S_{ABC}$ — площадь прямоугольника ABFE) (рис. 3). Работа над газом $A_{CDA}=S_{CDA}$ ($S_{CDA}$)$ -площадь прямоугольника $EFCD.Очевидно, что $A_{CDA}>A_{ABC}.$

Ответ: $A_{CDA}>A_{ABC}.$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Изопроцессы

  • Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы.

  • Изотермический процесс

  • Графики изотермического процесса

  • Изобарный процесс

  • Графики изобарного процесса

  • Изохорный процесс

  • Графики изохорного процесса

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы.

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными. Иными словами, мы считаем, что:

m = const, то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

mu = const, то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация — распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой. Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева — Клапейрона).

Термодинамический процесс (или просто процесс) — это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров — давления, объёма и температуры.

Особый интерес представляют изопроцессы — термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: T = const.
2. Изобарный процесс идёт при постоянном давлении газа: p = const.
3. Изохорный процесс идёт при постоянном объёме газа: V = const.

Изопроцессы описываются очень простыми законами Бойля — Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

к оглавлению ▴

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре T. В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны p_1, V_1, T, а во втором — p_2, V_2, T. Эти значения связаны уравнением Менделеева-Клапейрона:

p_1V_1=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT,

p_2V_2=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT.

Как мы сказали с самого начала,масса m и молярная масса mu предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

p_1V_1=p_2V_2. (1)

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным:

pV = const. (2)

Данное утверждение называется законом Бойля — Мариотта.

Записав закон Бойля — Мариотта в виде

p=frac{displaystyle const}{displaystyle V vphantom{1^a}}, (3)

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму. Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки — давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

к оглавлению ▴

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:

pV-диаграмма: ось абсцисс V, ось ординат p;
VT-диаграмма: ось абсцисс T, ось ординат V;
pT-диаграмма: ось абсцисс T, ось ординат p.

График изотермического процесса называется изотермой.

Изотерма на pV-диаграмме — это график обратно пропорциональной зависимости p=frac{displaystyle const}{displaystyle V vphantom{1^a}}.

Такой график является гиперболой (вспомните алгебру — график функции y=frac{displaystyle k}{displaystyle x vphantom{1^a}}). Изотерма-гипербола изображена на рис. 1.

Рис. 1. Изотерма на pV-диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма на pVдиаграмме.

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2). Первый процесс идёт при температуре T_1, второй — при температуре T_2.

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма V. На первой изотерме ему отвечает давление p_1, на второй — p_2 > p_1. Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, T_2 > T_1.

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси T (рис. 3):

Рис. 3. Изотермы на VT и pT-диаграммах

к оглавлению ▴

Изобарный процесс

Напомним ещё раз, что изобарный процесс — это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня M и поперечное сечение поршня S, то давление газа всё время постоянно и равно

p=p_0 + frac{displaystyle Mg}{displaystyle S vphantom{1^a}},

где p_0 — атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении p. Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны p, V_1, T_1 и p, V_2, T_2.

Выпишем уравнения состояния:

pV_1=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_1,

pV_2=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_2.

Поделив их друг на друга, получим:

frac{displaystyle V_1}{displaystyle V_2 vphantom{1^a}}=frac{displaystyle T_1}{displaystyle T_2 vphantom{1^a}}.

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части — только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

frac{displaystyle V_1}{displaystyle T_1 vphantom{1^a}}=frac{displaystyle V_2}{displaystyle T_2 vphantom{1^a}}. (4)

А отсюда теперь — ввиду произвольности выбора состояний! — получаем закон Гей-Люссака:

frac{displaystyle V}{displaystyle T vphantom{1^a}}=const. (5)

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре:

V=const cdot T. (6)

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

к оглавлению ▴

Графики изобарного процесса

График изобарного процесса называется изобарой. На VT-диаграмме изобара V = const cdot T является прямой линией (рис. 4):

Рис. 4. Изобара на VT-диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать. В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый). Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара на VTдиаграмме.
Чтобы убедиться в этом, рассмотрим две изобары с давлениями p_1 и p_2 (рис. 5):

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры T. Мы видим, что V_2 < V_1. Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля — Мариотта!).

Стало быть, p_2 > p_1.

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси p(рис. 6):

Рис. 6. Изобары на pV и pT-диаграммах

к оглавлению ▴

Изохорный процесс

Изохорный процесс, напомним, — это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом V. Опять-таки рассмотрим два произвольных состояния газа с параметрами p_1, V, T_1 и p_2, V, T_2. Имеем:

p_1V=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_1,

p_2V=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_2.

Делим эти уравнения друг на друга:

frac{displaystyle p_1}{displaystyle p_2 vphantom{1^a}}=frac{displaystyle T_1}{displaystyle T_2 vphantom{1^a}}.

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

frac{displaystyle p_1}{displaystyle T_1 vphantom{1^a}}=frac{displaystyle p_2}{displaystyle T_2 vphantom{1^a}}. (7)

Ввиду произвольности выбора состояний мы приходим к закону Шарля:

frac{displaystyle p}{displaystyle T vphantom{1^a}}=const. (8)

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре:

p=const cdot T. (9)

Увеличение давления газа фиксированного объёма при его нагревании — вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

к оглавлению ▴

Графики изохорного процесса

График изохорного процесса называется изохорой. На pT-диаграмме изохора p = const cdot T является прямой линией (рис. 7):

Рис. 7. Изохора на pT-диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Далее, чем больше объём, тем ниже идёт изохора на pTдиаграмме (рис. 8):

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру T и видим, что p_2 < p_1. Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля — Мариотта). Стало быть, V_2 > V_1.

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси V(рис. 9):

Рис. 9. Изохоры на pV и VT-диаграммах

Законы Бойля — Мариотта, Гей-Люссака и Шарля называются также газовыми законами.

Мы вывели газовые законы из уравнения Менделеева — Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Изопроцессы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти точку пересечения биссектрис четырехугольника
  • Передача жди меня как найти родных
  • Как найти сумму в sql запросе
  • Как найти площадь параллелограмма 1см
  • Как найти существование треугольника