Как быстро найти фазу

Есть несколько способов точно определить, какой из проводов в розетке или разводке фазный.

Для чего нужно знать, где фаза?

Определение фазного проводника необходимо в таких случаях:

  • Монтаж выключателей. Выключатели на свет размыкают исключительно фазу. Если перепутать и посадить на выключатель ноль, тогда патрон всегда будет находиться под напряжением и замена лампочек или ремонт патрона может быть опасной для жизни человека.
  • Монтаж автоматов. Обычно автоматы применяются одноконтактные, и на них заходит только фаза. Ноль же остается неразмыкаемым. Поэтому, чтобы не перепутать и не завести ноль на автомат, необходимо четко определить фазный провод.

Находим фазу индикаторной отверткой

Проще всего отыскать фазный проводник индикаторной отверткой. Она есть практически в каждом доме. А если нет, то ее можно купить за 50 — 100 рублей. Возьмите контрольку от Stanley — она точно и быстро сигнализирует о наличие фазы.

Для определения фазы стоит сделать следующее:

  • Убедиться, что розетка, удлинитель или автомат находятся под напряжением. В нашем случае мы будем проверять удлинитель.
  • В один из контактов вставляем жало отвертки.
  • Сверху пальцем дотрагиваемся до металлической «пятки».
  • Если светодиод внутри горит (может гореть разными цветами), мы попали на фазу, а если нет — на нулевой проводник.

Каждая индикаторная отвертка должна четко реагировать на фазный проводник. Теоретически светодиод должен загореться, даже если в сети будет напряжение в 50 В, но на практике каждая контролька показывает себя по-разному.
Также обратите внимание на то, что существуют индикаторные отвертки на батарейках. В их случае не нужно зажимать контактную пластину пальцем — просто вставляем жало в контакт, и светодиод должен загореться. Контактная пластина здесь нужна лишь для проверки работоспособности самой отвертки, и если нажать на нее пальцем, то светодиод будет светиться всегда.


Находим фазу мультиметром

Если у вас еще нет мультиметра, советуем узнать, как выбрать хороший прибор из этой статьи. Для определения фазного проводника мультиметром важно выполнить следующие действия:

  • Переводим регулятор в режим измерения переменного напряжения (как показано на картинке). Обратите внимание, что измерение может производиться в диапазоне от 1 до 200 В и от 1 до 750 В. Выбираем второй режим, так как в нашей сети 220 В.
  • Один из щупов вставляем в контакт, а второй зажимаем двумя пальцами — на приборе должно отображаться показание напряжения.
  • Если отображается до 10 — 15 В, скорее всего вы попали на нулевой провод. Если же напряжение от 100 до 230 В, это фаза.
  • Также можно не зажимать пальцами щуп, а прикоснуться им к стене рядом с розеткой или к заземленной металлической поверхности. 

Для подобных замеров подойдет даже самый недорогой прибор. Например, DT 830B, которым пользуемся мы сами. Он стоит всего 250 рублей, но точность замеров у него хорошая.

Стоит ли искать фазу лампочкой?

Некоторые электрики предпочитают искать фазу контрольной лампочкой. Для этого они берут обычную лампу накаливания, патрон и два многожильных провода. Провода соединяются с патроном, а лампочка соответственно вкручивается в него. Затем один конец провода прикасается к металлической трубе отопления, а второй вставляется в контакт для поиска фазы. Где лампочка загорелась, там и фаза.

Мы такой способ не рекомендуем, так как он чреват поражением тока – при неосторожном движении можно коснуться оголенного провода. Также были случаи, когда лампа накаливания взрывалась в момент прикосновения к фазе. По этим причинам лучше воздержаться от подобного «народного» метода определения фазы и воспользоваться специализированными приборами.

Читайте также:

  • Электрокамины: есть ли в них смысл и стоит ли покупать?
  • Тепловая пушка: лучший обогреватель для гаража или ремонтного бокса

Общая информация об устройстве домашней электросети

В самой простой электросети есть два понятия: «фаза» и «ноль». «Фаза» – это провод, через который проходит электрический ток. «Нулем» называют проводник, который соединен с контуром земли в трансформаторной, используемый для создания нагрузки от «фазы», которая подключена к противоположному потенциальному концу обмотки. Максимально простое объяснение представлено на картинке.

faza-nol-i-zazemlenie-2.jpg

Существуют ли способы определения «фазы» и «нуля» без приборов?

Представьте себе ситуацию: вы решили подключить дополнительную розетку к домашней электросети, но не знаете, какой провод на выводе нулевой, а какой – фазный. Первое, что приходит на ум – использовать индикаторную отвертку или мультиметр, которые быстро показали бы желанный результат, но ситуация осложнена тем, что под рукой нет ни одного из вышеперечисленных средств. Стремимся обрадовать: можно определить «фазу» и «ноль» без приборов, нужно только знать, куда смотреть и на что обращать внимание.

Определить нужные проводники возможно двумя способами: с помощью маркировки проводника и с помощью подключения сторонней электрики в виде лампочки.

Маркировка проводника – специальное цветовое обозначение, которое позволяет определить, является ли жила нулевой или фазной. Как показывает многолетняя практика, для того, чтобы определить тип проводника, достаточно запомнить, что синий проводник – это всегда «ноль», а желтый с зеленой полосой – это земля (защитный проводник). Оставшаяся жила – это та самая «фаза», которая и нужна вам. Представляем читателю общепринятую таблицу стандартов маркировки проводников, которая поможет определить тип жилы.

kak_najti_fazu-4.jpg

Использование так называемой «контрольки» — еще один излюбленный способ для электриков, который отличается стопроцентной эффективностью, но представляет определенную опасность для здоровья. «Контролька» — это предельно простая конструкция, состоящая из лампочки на 220 В, электрического патрона, двух одножильных проводов длиной по ~50 см и щупов для удобства использования приспособлением.

Возьмите оба провода, подключите к патрону и вкрутите лампочку. Для большего удобства и безопасности пользования приспособлением сделайте щупы любым доступным способом: используйте узкую пластиковую трубку, корпус шариковой ручки, специально предназначенные для этого пластиковые изделия.

После этого прикрепите к щупам любой проводник тока, который залезет в розетку: гвоздь, скрепку, металлический цилиндр маленького радиуса или любой другой предмет, проводящий ток. Обратите внимание: нужно тщательно изолировать площади соприкосновения рук и щупа, чтобы исключить вероятность быть пораженным электрическим током.

Настойчиво рекомендуем использовать защитный кожух для лампочки (специальный или смастерить самостоятельно), потому что лампы накаливания со стеклянным куполом имеют свойство лопаться при небрежном или слишком частом использовании, к тому же в плане транспортировки они не слишком удобны. В прочем, никто не мешает вам использовать новые лампочки, которые «с завода» защищены от внешних воздействий пластиковым кожухом.

Определение «фазы» и «нуля» различными способами

Специально для безопасного определения типов проводников были разработаны особые инструменты, которые помогут быстро и точно узнать все нужное о розетке в считанные секунды.

С использованием индикаторной отвертки

Индикаторная отвертка – самая обыкновенная отвертка, которая позволяет определить «фазу» и «ноль» в розетке путем просовывания жала отвертки в одно из отверстий розетки. Устройство отвертки простое: электрический ток проходит через резистор внутри отвертки и передается на первый контакт неоновой лампочки. Второй контакт находится на конце отвертки, и замыкается путем нажатия электриком на кнопку на конце рукояти. Когда вы касаетесь пальцами контакта, а жалом – напряженного провода, то увидите свечение лампочки (при условии, что в сети есть напряжение). Если его нет, то, соответственно, ничего не произойдет.

Рекомендуемые товары

Ошибка получения цены товара «Плиткорез на подшипниках 900 мм, рельсовая направляющая 87691 Matrix»

Простые индикаторные отвертки не могут похвастаться широким функционалом: они могут только определить «фазу» и «ноль», в то время, как более продвинутые аналоги с встроенным светодиодом и батарейкой могут определить как «ноль» и «фазу», так и проблемы частности обрывы) цепи питания.

Определение «фазы» и «нуля» с помощью мультиметра

Мультиметр – многофункциональный прибор, который очень полезен для профессиональных электриков. На первый взгляд может показаться, что с ним очень просто обращаться, но это не так. Алгоритм действий пользователя такой:

  • Включить мультиметр и подключить щупы в гнезда: черный в слот с надписью «COM», красный – «VΩmA»;
  • повернуть указатель в сектор тестирования напряжения переменного тока (обычно он отмечен рамкой особенного цвета и маркировкой V~;
  • В зависимости от напряжения в розетке поставьте максимальный предел измерения (лучше ставить сразу максимальный);
  • Возьмите щуп красного цвета в левую руку, черного цвета – в правую руку, затем вставьте красный щуп в одно из отверстий розетки, а черный прижмите к любому заземленному предмету: металлический каркас, отопительная батарея, металлическая ручка и т.д;
  • Обратите внимание на происходящее на ЖК-дисплее мультиметра: если красный щуп наткнулся на ««ноль»», то показания не изменятся, или изменятся на очень малое количество вольт. При касании «фазы» показания мультиметра начнут меняться в сторону 220 В.

ВНИМАНИЕ: не советуем прижимать черный щуп к пальцам руки: есть определенная вероятность поражения электрическим током. Если же под рукой нет заземлённых предметов, не остается ничего, кроме как прижать к руке, но делайте это со всеми мерами безопасности. Риск хоть и невелик, но он существует.

Примеры товаров

Если вы ищите хороший набор отверток для работ с электроникой, то мы можем порекомендовать вам набор Matrix 13355. В комплекте 7 отверток: 6 прорезиненных диэлектрических отверток самых распространенных профилей, которыми можно работать с напряжением в сети до 1000 В, и одна индикаторная отвертка, способная выдержать до 250 В.

Кандидатом на лучшее соотношение цены и качества является цифровой мультиметр DT838 PECAHTA. Мультиметр предназначен для измерения напряжения, тока, сопротивления, емкости, проверки диодов, транзисторов и звуковой прозвонки. Оборудован 3,5 разрядным ж/к дисплей (1999 чисел с автоматическим определением полярности и единиц измерения), 20-позиционным переключателем режимов работы и пределов. У мультиметра очень высокая чувствительность – 100 мкВ. Он способен автоматически определять полярности постоянного тока или напряжения. Все пределы защищены от перегрузок при работе. Габариты устройства невелики — 126х70х28 мм, а весит оно всего 137 г.

Заключение

Для определения наличия напряжения в том или ином источнике используются специальные приборы: мультиметр или индикаторная отвертка, но в случае, если при себе нет нужных приборов, электрик может воспользоваться знанием специальных маркировок проводников или смастерить собственную многоразовую «контрольную» лампочку, которая станет надежным и простым показателем присутствия или отсутствия напряжения.

Во время проведения электромонтажных работ, например, при подключении розеток и выключателей, приборов освещения и прочего, требуется определить фазу и ноль. Одним из самых популярных и удобных способов для определения фазы и ноля является использование индикаторной отвертки. И не зря ее называют главным инструментом электрика.

На первый взгляд это обычная отвертка. Однако, это далеко не так.

Итак, как определить фазу и ноль индикаторной отверткой?

  • Перед тем, как начать работу с индикаторной отверткой, нужно отключить автомат, который питает данную линию электропроводки.
  • Зачистите концы необходимых Вам проводов (около 1,5 см изолирующего материала).
  • Разведите провода в разные стороны. Это нужно для того, чтобы не произошло короткое замыкание, когда Вы включите автомат.
  • Включите автомат. Зажмите отвертку между двумя пальцами (средним и большим), не дотрагиваясь до оголенной части жала инструмента. Указательный палец должен находиться на металлическом наконечнике с противоположной стороны отвертки.
  • С помощью плоского конца индикатора проводится определение фазы или ноля. Поочередно подведите отвертку к зачищенным концам проводов.
  • При касании прибором фазы светодиод на индикаторной отвертке загорится.

Принцип работы на примере определения фазы в розетке.

Шаг первый.

Шаг второй.

Сейчас мы рассмотрели принцип работы отвертки с интегрированной лампой. Она  наиболее популярна и доступна каждому, благодаря своей невысокой стоимости.

Также в настоящее время есть более модернизированные модели индикаторной отвертки.

Индикаторная отвертка со встроенной батарейкой.

Это уже улучшенная модель вышеописанной индикаторной отвертки. Она не только может определять фазу и ноль, а еще и найти обрыв в цепи, выявить минус и плюс в машине.

Тестер с ЖК-экраном и электронным блоком.

Такой тестер используется для определения текущего напряжения в диапазоне от 12 В до 220 В. Отметим, что погрешность измерения такого прибора велика, но в ряде случаев приблизительная оценка величины напряжения может быть очень полезна. Некоторые модели также могут помочь найти проводку, скрытую за нетолстым слоем штукатурки.

Как пользоваться мультиметром для определения фазы и ноля?

Мультиметр  –  это комбинированный прибор для электрических измерений, в котором есть достаточно большое количество функций: омметр, амперметр, вольтметр.

Использование мультиметра позволяет не только определять фазу и ноль, но также измерить на участке электрической  цепи ток, напряжение, сопротивление, найти поврежденный участок цепи.

Прибор имеет дисплей, а также переключатель. Вокруг переключателя находятся восемь секторов.

На нем имеются два сектора, значения которых важно знать:

  • ACV – для переменного напряжения.
  • DCV – для постоянного напряжения.

В комплекте с мультиметром Вы обнаружите два измерительных щупа  –  черный и красный.  Черный щуп необходимо подключить в нижнее гнездо с маркировкой «COM», а вот красный, в зависимости от замеров, вставить нужно в среднее или верхнее гнездо.

Самое главное и достаточно важное отличие работы индикаторной отвертки от мультиметра в том, что найти фазу с помощью отвертки легко, а вот уже различить землю или ноль не представляется возможным.

Для начала работы с мультиметром нужно произвести все те же действия, что и с индикаторной отверткой.

  • Отключите напряжение электрической сети. Зачистите концы необходимых Вам проводов. Разведите провода в разные стороны и только тогда включите автомат.
  • На приборе выберите измерительный предел ПЕРЕМЕННОГО напряжения (ACV) выше 220 В. Как правило, это отметка 750 В.
  • Как Вы уже читали выше, на приборе имеется три гнезда. Красный необходимо вставить в гнездо для измерения напряжения. Оно обозначено латинской буквой «V».
  • С помощью красного щупа коснитесь  зачищенных проводов.  Если Вы видите небольшое значение напряжения на экране (до 20 В), значит, Вы нашли фазный провод.

В случае отсутствия показаний на экране при касании щупом можно понять, что это ноль.

Как определить землю с помощью мультиметра?

  • Для этого необходимо зачистить небольшой кусочек площади на батарее или трубе.
  • Черный щуп вставляем в гнездо «СOM», а красный –  в гнездо «V».
  • Устанавливаем прибор в режим «АСV», значение должно быть выставлено на 200В.
  • Одним щупом необходимо дотронуться до зачищенного Вами ранее места, а вторым коснуться проводника.
  • Если на экране появилось значение в диапазоне 150-220 В, значит, это фазный провод.
  • Если же Вы увидели 5-10 В, Вы нашли нулевой провод.
  • А если на экране не появились никакие значения, этот проводник является землей.

Как проверить правильность своих измерений?

Оставьте на каждом из трех проводов цветовую маркировку для Вашего удобства. Отметьте для себя, какой у Вас, каким проводом является.

Прикоснитесь  одновременно двумя щупами к фазному и нулевому проводам. На экране в этот момент должно появиться значение 220 В. А вот фазный провод и земля вместе покажут меньшее показание (от 1 до 10 В).

Пример использования мультиметра для определения фазы в розетке.

Вставляем черный и красный щупы в розетку.

Смотрим на полученное значение на дисплее. Обратите внимание на то, как выставлены значения на нашем мультиметре.

Также стоит помнить важные правила по использованию мультиметра, а именно:

  1. Нельзя пользоваться мультиметром во влажной среде!
  2. Нельзя использовать мультиметр с поврежденными щупами!
  3. Когда Вы проводите замеры, нельзя переставлять уже выставленные на мультиметре значения!

Авторский материал. Копирование полностью или частично разрешено только при наличии активной (кликабельной) ссылки на эту страницу и указании источника: «сайт 220.ru».

Как определить фазу и ноль разными способами

Содержание

  • 1 Определение рабочей фазы и нуля с помощью приборов
    • 1.1 С использованием индикаторной отвертки
    • 1.2 Определение фазы и ноля мультиметром
  • 2 Как определить ноль и фазу без приборов
  • 3 Использование самодельной «контрольки»
  • 4 Видео по теме

В домашнем хозяйстве возникают проблемы при монтаже розеток и выключателей, подключении систем освещения, бытовых электрических приборов и других подобных устройств. Обычно они питаются от однофазных источников, провода которых состоят из двух проводников — фазного и нулевого. В более безопасном варианте к ним добавляется третий провод — земля или заземление.

провод

Большинство бытовой электрической техники нормально функционируют при строго определенном, согласно рабочей схеме, подключении проводников. Основой для успешного решения вопроса будут навыки определения, где фаза, а где ноль. Выполнить эту достаточно несложную работу можно самостоятельно, без привлечения электриков, а значит с экономией на финансовых затратах.

Способы, как найти фазу и ноль, имеют место, как с использованием приборов, так и без них.

Определение рабочей фазы и нуля с помощью приборов

Фазный проводник предназначен для подачи тока потребителю, поэтому на него подается рабочее напряжение ( в бытовой сети 220 В). В отличие от него нулевой проводник выполняет функции замыкания цепи и его потенциал близок к нулю. На этом отличии как раз основан принцип как идентифицировать фазу и ноль с помощью электрических приборов.

С использованием индикаторной отвертки

Основное предназначение индикаторных отверток проверка наличия/отсутствия напряжения. Данная техническая характеристика прибора позволяет определить фазный и нулевой провода питающей сети.

Устройство отвертки обеспечивает удобное и безопасное ее использование. Принципиальная схема представлена на изображении.

Принципиальная схема

Токопроводящий металлический стержень с плоским жалом на конце выполняет функции непосредственно контактирующего элемента с испытуемым проводом. В схеме присутствует ограничивающий величину тока до безопасных значений для человека высокоомный резистор. Он соединяется с индикаторной лампочкой с помощью пружины.

Замыкается цепь из перечисленных элементов на колпачке с контактом. Колпачок располагается на корпусе отвертки изготовленной из прозрачного пластика с возможностью удобного касания рукой человека. Его тело после контакта с колпачком будет выступать в качестве элемента цепи, по нему ток сбрасывается в землю.

Загорание лампочки дает необходимую информацию, как определить фазу и ноль индикаторной отверткой. С касанием токопроводящим стержнем фазного провода лампочка индикатора горит, контакт с нулем оставляет ее потухшей.

определить фазу и ноль индикаторной отверткой

Важно: при выполнении работ с помощью индикаторной отвертки с целью предотвращения получения электрической травмы запрещается касаться руками рабочего токопроводящего стержня.

Определение фазы и ноля мультиметром

В однофазной проводке из трех проводов с помощью индикаторной отвертки можно определить только фазу, ноль и землю отличить с ее помощью невозможно. Мультиметром или как он называется в быту тестером можно решить весь комплекс вопросов как проверить функциональную принадлежность всех трех проводов.

Мультиметры принадлежат к многофункциональным приборам, поэтому для определения принадлежности того или иного провода следует выбрать и установить рабочее состояние в положение «вольтметр». Предел измерения выставить больше 220 В.

  • Первое действие заключается в проверке напряжения на всех трех проводах щупом, который находится в гнезде тестера «V» (обозначение гнезд могут различаться, это самое распространенное). Провод с максимальным значением напряжения будет фазой. мультиметр
  • Далее один из двух щупов соединяем с фазой, а другим касаемся поочередно двух оставшихся проводов.
  • В случае если напряжение на шкале мультиметра будет равно 220 В, то этот провод нулевой. При напряжении на проводе меньшем, чем 220 В, найдем заземляющий.

Как определить ноль и фазу без приборов

Согласно ПУЭ (Правил Устройства Электроустановок) каждому проводу имеющему свое функциональное назначение соответствует своя определенная цветовая маркировка:

  • фазный провод имеет изоляцию черного, белого, коричневого (наиболее часто используемого) цветов и их многочисленных оттенков;
  • нулевой провод имеет изоляцию синего цвета с любыми его оттенками;
  • земля находится в изоляции желто — зеленого цвета в полоску.

Если бы нормативные акты строго соблюдались, то проблем с определением, где фаза, где ноль, а где земля не существовало. Для того чтобы легче было ориентироваться в коммутационных схемах на многих электрических приборах вводятся обозначения фазы, ноля и земли. Все проводники обозначаются в соответствии с государственными стандартами:

  • L — этой латинской буквой обозначается фаза;
  • N — по этому знаку находят нулевой провод;
  • PE — этим сочетанием букв всегда обозначалась земля.

обозначения фазы, ноля и земли

Однако визуальный метод имеет долю субъективизма, не всегда можно точно определить правильно цвет изоляции проводника. Кроме этого не все электрики придерживаются нормативных документов при проведении электромонтажных работ. В зданиях старой постройки, говорить о каких — либо стандартах цветовой маркировки проводки вообще не приходится.

Поэтому такой метод найти фазу и ноль без приборов существует с большой степенью условности, 100 % гарантии он не имеет. Однако он является единственным реальным способом среди других, типа применения сырой картошки, как определить фазу и ноль без приборов. Для получения достоверного результата лучше воспользоваться данными о соответствии проводов фазе, нулю или заземлению проверенных с помощью индикаторной отвертки или мультиметра.

Использование самодельной «контрольки»

Бывают случаи, когда необходимо срочно подключить электрическое устройство, а в домашнем хозяйстве отсутствуют необходимые приборы для определения фазы и нуля. Часто это происходит на даче вдали от благ цивилизации. Однако найти там электрическую лампочку, патрон от нее и кусок электрического провода не представляет больших проблем.

Изготовить самостоятельно контрольную лампочку не представляет труда. Достаточно подключить два провода к патрону и закрутить в него электрическую лампочку. Для удобства эксплуатации концы проводов оборудовать щупами (если такие удалось найти).

контролька

Принцип идентификации проводов «контролькой» не отличается от того как определить индикаторной отверткой фазу и ноль. Для определения фазы следует один из контактов «контрольки» подключить к любому из проверяемых проводов, а второй контакт соединить с заземлением. Если лампа будет светиться, то узнаете о принадлежности его к фазе.

Главный недостаток использования самодельной «контрольки» в отсутствии безопасности проведения работ. Существует реальная возможность получения удара электрическим током.

Видео по теме



Необходимость разобраться, где расположен фазный провод, а где — нулевой может возникнуть у любого хозяина дома или квартиры. Это бывает нужно при проведении простейших электромонтажных работ, например, установке выключателей и розеток, замене светильников. Бывает это важно при проведении диагностики неисправностей домашней электросети, выполнении профилактических или ремонтных мероприятий. Да и некоторые приборы, например, терморегуляторы, при подключении к сети питания требуют четкого соблюдения расположения проводов «L» и «N» в клеммной колодке. В противном случае ничто не гарантирует ни их долговечность, ни корректность в работе.

Как определить фазу и ноль без приборов

Как определить фазу и ноль без приборов

Значит, необходимо научиться самостоятельно определять фазный и нулевой провод. Дело это не столь сложное – существуют проверенные методики с использованием простых и недорогих устройств. Но вот некоторые пользователи, непонятно по каким причинам, задают в поисковиках вопрос: как определить фазу и ноль без приборов? Ну что ж, давайте обсудим эту проблему.

Несколько слов об устройстве домашней электросети

В подавляющем большинстве случаев в квартирах практикуется прокладка однофазной сети питания 220 В/50 Гц. К многоэтажному дому подводится трехфазная мощная линия, но затем в распределительных щитах осуществляется коммутация на потребителей (квартиру) по одной фазе и нулевому проводу. Распределение стараются выполнить максимально равномерно, чтобы нагрузка на каждую из фаз была примерно одинаковой, без сильных перекосов.

Мнение эксперта:

Афанасьев Е.В.

Главный редактор проекта Stroyday.ru.

Инженер.

Задать вопрос эксперту

В домах современной постройки практикуется прокладка и контура защитного заземления – современная мощная бытовая техника в своем большинстве требует такого подключения для обеспечения безопасности эксплуатации. Таким образом, к розеткам или, например, ко многим осветительным приборам подходят три провода – фаза L (от английского Lead), ноль N (Null) и защитное заземление PE (Protective Earth).

В зданиях старой постройки заземляющего защитного контура зачастую нет. Значит, внутренняя проводка ограничивается только двумя проводами – нулем и фазой. Проще, но уровень безопасности эксплуатации электрических приборов — не на высоте. Поэтому при проведении капитальных ремонтов жилищного фонда нередко включаются и мероприятия по усовершенствованию внутренних электросетей – добавляется контур РЕ.

Современная однофазная домашняя электропроводка в идеале должны быть организована с тремя проводами – фазой, рабочим нулем и защитным заземлением

Современная однофазная домашняя электропроводка в идеале должны быть организована с тремя проводами – фазой, рабочим нулем и защитным заземлением

В частных домах может практиковаться ввод и трехфазной линии. И даже некоторые точки потребления нередко организуются с подачей трехфазного напряжения 380 вольт. Например, это может быть отопительный котел или мощное технологическое станочное оборудование в домашней мастерской. Но внутренняя «бытовая» сеть все равно делается однофазной – просто три фазы равномерно распределяются по разным линиям, чтобы не допускать перекоса. И в любой обычной розетке мы все равно увидим те же три провода – фазу, ноль и заземление.

Про заземление, кстати, говорится в данном случае однозначно. И это по той причине, что хозяин частного дома ничем не связан и просто обязан его организовать, если такого контура не было, скажем, при приобретении ранее построенного зданий.

Заземление в частном доме – как можно сделать самостоятельно?

Иметь в своих жилых владениях контур защитного заземления – это значит существенно повысить уровень безопасности эксплуатации электроприборов. А по большому счету – и вообще степень безопасности проживания в доме для всей семьи. Если его еще нет, то, не откладывая надолго, необходимо организовывать заземление в доме своими руками. В помощь – статья нашего портала, к которой ведет рекомендованная ссылка.

Существуют ли в принципе способы определения фазы и нуля без приборов?

Прежде всего, давайте сразу «возьмем быка за рога» и ответим на это важный вопрос.

Такой способ представлен в единственном числе, да и то в определённой степени может считаться условным. Речь идет о цветовой маркировке проводов проложенных силовых кабелей и проводов.

Действительно, существует международный стандарт IEC 60446-2004 г. Его должны придерживаться и производители кабельной продукции, и специалисты, осуществляющие электротехнический монтаж проводки.

Раз речь идет об однофазной сети, то здесь вообще все должно быть просто. Изоляция проводника рабочего нуля должна быть синей или голубой. Защитное заземление чаще всего отличается зелено-желтой полосатой расцветкой. И изоляция фазного провода – каким-либо другим цветом, например, коричневым, как показано на иллюстрации.

Провода в домашней электросети, выполненной по всем правилам, легко различить по цветовой маркировке их изоляции

Провода в домашней электросети, выполненной по всем правилам, легко различить по цветовой маркировке их изоляции

Следует правильно понимать, что коричневый цвет для фазы – это вовсе не догма. Очень часто встречаются и иные расцветки – в широком диапазоне от белой до черной. Но в любом случае – она будет отличаться и от нулевого провода, и от защитного заземления.

Все указанные на иллюстрации расцветки фазных проводов также в полной мере соответствуют действующему стандарту

Все указанные на иллюстрации расцветки фазных проводов также в полной мере соответствуют действующему стандарту

Мнение эксперта:

Афанасьев Е.В.

Главный редактор проекта Stroyday.ru.

Инженер.

Задать вопрос эксперту

Казалось бы – все очень просто и наглядно. Не ошибешься. Так почему же этот единственный способ распознания проводов без приборов все же считается условным?

Все дело лишь в том, что такой цветовой «распиновки» придерживаются, увы, далеко не везде и не всегда. Про дома старой постройки – и говорить не приходится. Там преимущественно проводка выполнена проводами в совершенно одинаковой белой изоляции, понятно, ничего никому не говорящей.

Да и в том случае, когда проложены кабели с проводами в изоляции разной расцветки, нужно быть совершенно уверенным, что проводящие электромонтажные работы специалисты строго следовали правилам. Нередко вызываемые «мастера», приглашенные со стороны, в этих вопросах проявляют вольности. Значит, уверенным можно быть, если работа контролировалась, выполнялась действительно профессиональным электриком с безупречной репутацией. Или если в ходе эксплуатации у хозяев уже была возможность убедиться, что «цветовая схема» соблюдена. Ну и, наконец, если всю прокладку проводки хозяин жилья проводил самостоятельно, строго руководствуясь рекомендуемым стандартом.

Кроме того, бывает, что для проводки используется кабель, расцветка изоляции проводников которого весьма далека от стандартного «набора» — синий, зелено-желтый и фазный какого-либо другого оттенка. Если нет схемы с описанием, то цвет проводов ничего определенного при таком раскладе не скажет.

О чем может сказать такая цветовая маркировка проводов, если к ней не приложена «легенда»? Да практически ни о чем…

О чем может сказать такая цветовая маркировка проводов, если к ней не приложена «легенда»? Да практически ни о чем…

Значит, придётся искать фазу и ноль другими способами, с использованием приборов.

Если читатель ждет сейчас разъяснений про другие способы определения нуля и фазы, с помощью каких-то «экзотических» приспособлений вроде сырой картошки, то совершенно напрасно. Автор статьи и сам никогда такими методами не баловался, и другим никогда и ни при каких обстоятельствах не станет рекомендовать.

Не будем даже касаться достоверности подобных проверок. Главное не в этом. Такие «опыты» — чрезвычайно опасны. Особенно для неопытного в электрическом хозяйстве человека. (А опытный, поверьте, всегда лучше воспользуется действительно достоверной и безопасной методикой). Кроме того, на грех такие манипуляции могут увидеть малолетние дети. Не тревожно ли будет потом, зная о присущем малышне стремлении во многом подражать родителям?

Да и, по большому счету, вряд ли получится представить себе ситуацию, в которой обстоятельства настолько припекли, что приходится прибегать к таким «языческим» методикам? Сложно сходить в ближайший магазин и приобрести за 30÷35 рублей простейшую индикаторную отвертку и забыть о проблеме? Если вечер, то нет никакой возможности потерпеть до утра с проведением диагностики? Да, в конце концов, нельзя попросить индикатор у соседа на несколько минут?

Простейшую, но вполне оправдывающую свое предназначение индикаторную отвёртку типа FIT 56514 вполне можно приобрести за 32 рубля. И никогда не вспоминать после этого про какие-то «народные методы».

Простейшую, но вполне оправдывающую свое предназначение индикаторную отвёртку типа FIT 56514 вполне можно приобрести за 32 рубля. И никогда не вспоминать после этого про какие-то «народные методы».

Кстати, картошка – это еще что… Находятся «специалисты», которые на полном серьезе рекомендует проверять наличие фазы легким касанием пальца к проводнику. Мол, если в сухом помещении, да в обуви на диэлектрической подошве – то ничего страшного не случится. Таких «советчиков» хочется спросить – а уверены ли они, что все те, кто внял их рекомендациям, живы и здоровы? Что не случилось «чрезвычайщины», когда человек, пробующий фазу «на ощупь», случайно коснулся телом заземленного предмета или другого оголённого проводника?

Чтобы понять степень опасности таких «проверок», рекомендуем ознакомиться с информацией о том, какие угрозы представляет жизни и здоровью этот «безобидный» электрический ток в сети 220 вольт. Возможно, после этого многие вопросы снимутся сами по себе.

«Бытовое» переменное напряжение 220 вольт может представлять смертельную опасность!

Жизнь современного человека невозможно представить без электричества. Но оно не всегда выступает только в роли «друга и помощника». При пренебрежении правилами эксплуатации приборов, при халатности, неаккуратности, и тем более – явно наплевательском отношении к соблюдению требований безопасности, оно способно покарать мгновенно и крайне жестоко. Об опасности электрического тока для человеческого организма подробно рассказывает отдельная публикация нашего портала.

И потому – резюмируем. Никаких способов, кроме одного упомянутого, самостоятельно опередить расположение нуля и фазы без приборов – не существует.

А вот теперь давайте пройдемся по возможным методикам такой проверки.

Определение фазы и нуля различными способами

С использованием индикаторной отвертки

Это, пожалуй, самая простая и доступная методика. Как уже говорилось, стоимость простейшего прибора –весьма невысока. А научиться работать с ним – дело нескольких минут.

Итак, как устроена обычная индикаторная отвертка:

Устройство простейшей индикаторной отвертки

Устройство простейшей индикаторной отвертки

Вся «начинка» этого пробника собрана в полом корпусе (поз.1), изготовленного из диэлектрического материала.

Рабочим органом такой отвёртки является металлическое жало (поз.2), чаще всего – плоской формы. Чтобы снизить вероятность случайного контакта с расположенными рядом с тестируемым проводом другими токопроводящими деталями, оголенный конец жала обычно невелик. Жало иди короткое само по себе, иди «одевается» в изоляционную оболочку.

Важно – жало индикаторной отвертки следует рассматривать именно как контактный наконечник при проведении тестирования. Да, при необходимости им можно выполнить и простейшие монтажные операции, например, открутить винт, удерживающий крышку розетки или выключателя. Но регулярно использовать его именно в качестве отвертки – большая ошибка. И долго при такой эксплуатации прибор не проживет 0 он попросту не рассчитан на высокие нагрузки.

Металлический стержень жала, входящий в корпус, становится проводником, обеспечивающим контакт с внутренней схемой индикатора. А сама схема состоит, во-первых, из мощного резистора (поз.4) номиналом не менее 500 кОм. Его задача – снизить показатели силы тока при замыкании цепи до безопасных для человека значений.

Следующий элемент – неоновая лампочка (поз. 5), способная загораться при весьма небольших показателях протекающего через нее тока. Взаимный электрический контакт всех элементов схемы обеспечивает прижимная пружина (поз. 6). А она, в свою очередь, сжимается вкручивающейся в торцевую оконечность корпуса заглушкой (поз.7), которая может быть или полностью металлической, или имеющей металлическую «пятку». То есть эта заглушка при проведении проверок играет роль контактной площадки.

При прикосновении к контактной площадке пальцем пользователь «включается» в цепь. Тело человека, во-первых, само по себе обладает определенной проводимостью, а во-вторых, представляет собой очень большой «конденсатор».

На этом и основан принцип поиска фазы и нуля. Жалом индикаторной отвёртки касаются зачищенного проводника (клеммы розетки или выключателя, другой тонконесущей детали, например, контактного лепестка патрона для лампочки). Затем контактной площадки  пробника касаются пальцем.

Проверка показывает, что индикаторная отвертка коснулась фазы

Проверка показывает, что индикаторная отвертка коснулась фазы

Если жало отвертки коснулось фазы, то при замыкании цепи напряжения достаточно, чтобы вызвать неопасный для человека ток, приводящий к свечению неоновой лампочки.

В то же случае, если проверка пришлась на нулевой контакт, свечения не возникнет. Да, там тоже бывает небольшой потенциал, особенно если в квартире (доме) в это время работают другие электрические приборы. Но ток благодаря резистору будет настолько мал, что свечения индикатора вызвать не должен.

Аналогично и на заземляющем проводнике – там, по сути, вообще не должно быть никакого потенциала.

В том же случае, если, скажем, в розетке два контакта показывают фазу – это повод искать причину такой серьезной неисправности. Но это уже тема для отдельного рассмотрения.

Несколько иначе выполняется проверка с индикаторной отверткой более усовершенствованного типа. Такие пробники позволяют не только определять фазу и ноль, но и проводить прозвонку цепей и ряд других операций.

Внешне такие отвёртки-индикаторы очень схожи с рассмотренными выше простейшими. Разница заключается лишь в том, что вместо неоновой лампочки используется светодиод. А в корпусе размещены элементы питания на 3 вольта, обеспечивающие функционирование схемы.

Небольшое дополнение в схеме расширяет функциональные возможности индикаторных отверток

Небольшое дополнение в схеме расширяет функциональные возможности индикаторных отверток

Если нет уверенности в том, какая конкретно отвертка имеется в распоряжении пользователя, можно провести простейший тест. Просто одновременно касаются рукой и жала, и контактной площадки. Цепь при этом замкнется, и светодиод об этом просигналит своим свечением.

Простой тест, показывающий, какая индикаторная отвертка имеется в распоряжении домашнего мастера. Если индикатор загорелся (верхний фрагмент) – то это отвертка со встроенным питанием и функцией прозвона. Если нет – это обычная.

Простой тест, показывающий, какая индикаторная отвертка имеется в распоряжении домашнего мастера. Если индикатор загорелся (верхний фрагмент) – то это отвертка со встроенным питанием и функцией прозвона. Если нет – это обычная.

Для чего это все говорится? Да просто потому, что алгоритм определения фазы и нуля при пользовании такой отверткой несколько меняется. А конкретно – прикасаться к контактной площадке не требуется. Простое касание фазного проводника вызовет свечение индикатора. На рабочем нуле и на заземлении такого свечения не будет.

В наше время в продаже широко представлены и более дорогие индикаторные отвёртки, с электронной начинкой, световой и звуковой индикацией. А нередко – даже с цифровым жидкокристаллическим дисплеем, показывающим напряжение на тестируемом проводнике. То есть, по сути, отвертка-индикатор становится упрощенным подобием мультиметра.

Электронные индикаторные отвертки: слева — со световой и звуковой индикацией, справа — еще и с цифровым дисплеем

Электронные индикаторные отвертки: слева — со световой и звуковой индикацией, справа — еще и с цифровым дисплеем

Пользоваться такими тоже не особо сложно. Руководствоваться придется прикладываемой к прибору инструкцией – в любом случае прибор должен однозначно указать на наличие напряжения на фазном проводе и отсутствие – на нулевом или заземляющем. Главное – убедиться до начала проверки, что возможности используемого прибора соответствуют напряжению в сети. Это обычно указывается непосредственно на корпусе индикатора.

Еще одним «родственником» индикаторных отверток является бесконтактный пробник напряжения. На его корпусе вообще полностью отсутствуют токопроводящие детали. А рабочая часть представляет собой вытянутый пластиковый «носик», который как раз и подводится к тестируемому проводнику (клемме).

Бесконтактный индикатор напряжения – способен «почувствовать» фазу даже через изоляцию.

Бесконтактный индикатор напряжения – способен «почувствовать» фазу даже через изоляцию.

Удобство такого прибора еще и в том, что вовсе не обязательно проводить зачистку проверяемого провода от изоляции. Прибор реагирует не на контакт, а на создаваемое проводником электромагнитное переменное поле. При определенной его напряжённости срабатывает схема, и прибор сигнализирует о том, что перед нами фазный провод, включением светового и звукового сигнала.

Определение фазы и нуля с помощью мультиметра

Еще одним контрольно-измерительным прибором, которым бы необходимо обзавестись любому мастеровитому хозяину дома, является мультиметр. Стоимость недорогих, но в достаточной степени функциональных моделей – в пределах 300÷500 рублей. И вполне можно один раз сделать такое приобретение – оно обязательно окажется востребованным.

Мультиметр обязательно должен стать одним из элементов инструментального «арсенала» хорошего хозяина дома или квартиры

Мультиметр обязательно должен стать одним из элементов инструментального «арсенала» хорошего хозяина дома или квартиры

Итак, как определить фазу с помощью мультиметра. Здесь могут быть различные варианты.

А. Если проводка включает три провода, то есть фазу, ноль и защитное заземление, но с цветовой маркировкой или нет ясности, или отсутствует уверенность в ее достоверности, то можно применить метод исключения.

Выполняется это следующим образом:

  • Мультиметр готовится к работе. Черный измерительный провод подключается к разъему СОМ, красный – к разъему для замера напряжения.
  • Переключатель режимов работы переводится в сектор, отведенный замерам переменного напряжения (~V или ACV), и стрелкой устанавливается на значение, превышающее напряжение в сети. В разных моделях это может быть, например, 500, 600 или 750 вольт.

Правильное положение измерительных проводов и переключателя режимов работы мультитестера

Правильное положение измерительных проводов и переключателя режимов работы мультитестера
  • Далее, проводятся замеры напряжения между предварительно зачищенными проводниками. Всего комбинаций в данном случае может оказаться три:
  1. Между фазой и нулем напряжение должно быть близким к номиналу в 220 вольт.
  2. Между фазой и заземлением может быть такая же картина. Но, правда, если линия оснащена системой защиты от утечек тока (устройством защитного отключения — УЗО), то защита вполне может при этом сработать. Если УЗО нет, или ток утечки получается совсем незначительный, то напряжение, опять же, в районе номинала.
  3. Между нулем и заземлением напряжения быть не должно.

Вот как раз последний вариант покажет, что провод, не участвующий в этом замере, и является фазным.

Определение фазного проводника из группы трех проводов с помощью мультиметра методом исключения

Определение фазного проводника из группы трех проводов с помощью мультиметра методом исключения

После проверки необходимо выключить напряжение, заизолировать зачищенные концы проводов и произвести маркировку. Например, наклеив полоски белого лейкопластыря и сделав на них соответствующие надписи.

Б. Можно проверить провод (контакт в розетке) и непосредственным примером напряжения на нем. Выполняется это так:

  • Подготовка мультиметра к работе – по той же схеме, что показывалась выше.
  • Далее, проводится контрольный замер напряжения. Здесь преследуются сразу две цели. Во-первых, необходимо убедиться, что обрыва в линии нет, и мы не будем искать фазу и ноль, что говорится, на пустом месте. А во-вторых, тестируется и сам прибор. Если показания корректные, значит – переключение выполнено правильно, и в цепь включён мощный резистор, который обеспечит должный уровень безопасности последующим операциям.
  • Красным измерительным проводом касаются тестируемого проводника. Если это розетка, то в гнездо вставляется щуп, если зачищенный конец проводника – лучше воспользоваться зажимом-«крокодильчиком».
  • Второго щупа касаются пальцем правой руки. И — наблюдают за показаниями на дисплее мультиметра.

— Если контрольный щуп был установлен на ноль, напряжение показываться не будет. Или же его значение будет крайне невелико — измеряемое единицами вольт.

Контрольный измерительный провод мультитестера попал на ноль – напряжения или нет вовсе, или оно крайне незначительно.

Контрольный измерительный провод мультитестера попал на ноль – напряжения или нет вовсе, или оно крайне незначительно.

— В том же случае, когда контрольный провод оказался на фазе, индикатор покажет напряжение в несколько десятков, а то и более вольт. Конкретное значение не столь важно – оно зависит от очень большого количества факторов. Это и установленный предел измерений используемой модели мультитестера, и особенности сопротивления тела конкретного человека, и влажность, и температура воздуха, и обувь, в которую обут мастер и т.п. Главное – напряжение есть, и оно разительно отличается от второго контакта. То есть – фаза отыскана.

А вот такие показания дают ясно понять, что отыскана фаза

А вот такие показания дают ясно понять, что отыскана фаза

Наверное, не все смогут преодолеть психологический рубеж – коснуться рукой щупа, когда мультитестер подключен к розетке. Бояться-то здесь особо нечего – мы предварительно протестировали прибор замером напряжения.  И ток, идущий сейчас через него при замыкании цепи – немногим отличается от того, что проходит через индикаторную отвертку. Но тем не менее – для некоторых такое прикосновение становится прихологически невозможным.

Ничего страшного, можно поступить и несколько иначе. Например, просто коснуться вторым щупом стены – штукатурки или даже обоев. Какая-никакая влажность все же есть, и это позволит замкнуть цепь. Правда, показания на индикаторе будут, скорее всего, значительно меньше. Но и таких будет достаточно, чтобы однозначно разобраться, какой же из контактов является фазным.

Вторым «контактом» может стать просто стена, расположенная около места проведения проверки.

Вторым «контактом» может стать просто стена, расположенная около места проведения проверки.

Ничуть не хуже будет подобная проверка, если в качестве второго контакта будет задействован какой-либо заземленный прибор или предмет, например, радиатор отопления или водопроводная труба. Подойдет и металлический каркас, даже не имеющий заземления. А иногда даже один подключенный к розетке щуп при втором, просто лежащем на полу или на столе, позволяет увидеть разницу. При тестировании фазы тестер может показать единицы или пару десятков вольт. При нулевом проводнике, естественно, будет ноль.

В. С определением фазы, как видите, особых проблем нет. Но как быть в том случае, если проводов три. То есть с фазой определились, и теперь надо выяснить, какой из двух оставшихся является нулем, а какой – защитным заземлением.

А вот это – не столь просто. Есть, конечно, несколько доступных способов. Но ни один из них не может претендовать на «истину в последней инстанции». То есть здесь требуются особые приборы, которые имеются в распоряжении профессионалов электриков.

Но иногда помогают и самостоятельные тестирования.

Про одно из них уже говорилось выше. Когда замеряется напряжение между фазой и нулем, никаких особенностей это вызывать не должно. Но при замере между фазой и землей из-за неизбежной утечки тока возможно срабатывания системы защиты – УЗО.

Даже небольшой ток утечки при измерении напряжения между фазой и защитным заземлением может привести к срабатыванию УЗО

Даже небольшой ток утечки при измерении напряжения между фазой и защитным заземлением может привести к срабатыванию УЗО

Другой способ выявления нуля и защитного заземления – прозвон. То есть можно попытаться, переключив мультиметр на измерение сопротивления в диапазоне, скажем, до 200 Ом и, в обязательном порядке – отключив напряжение на щите, промерить поочередно сопротивление между этими проводниками и гарантированно заземленным объектом. На проводнике РЕ это сопротивление по идее должно быть значительно ниже.

Но, опять же, способ этот не отличается достоверностью, так как соединения практикуются разные, и значения могут получиться примерно одинаковыми, то есть ни о чем не говорящими.

Шина заземления в распределительном щите

Шина заземления в распределительном щите

Еще один вариант – можно отключить шину заземления от подводящего к ней контура. Или же снять с нее предполагаемый провод, подлежащий проверке. Затем – или выполнить прозвон, или провести поочередный промер напряжения между фазой и оставшимися двумя проводниками. Результаты часто позволяют судить о том, где ноль, а где РЕ.

Но, сказать по правде, этот способ не кажется ни действенным, ни безопасным. Опять же, по причине различных нюансов прокладки проводки и коммутации на распределительных щитах, результат может получиться не вполне достоверным.

Узнайте, как пользоваться мегаомметром, а также ознакомьтесь с его назначением и приемами работы с видео прибором, из нашей новой статьи на нашем портале.

Так что если нужна гарантированная ясность, где же ноль и где заземление, а самому выяснить не представляется возможным, лучше обратиться квалифицированному электрику. При всей схожести этих проводников в домашней проводке путать их ни в коем случае нельзя.

*  *  *  *  *  *  *

Итак, были рассмотрены основные доступные способы определения фазы и нуля. Еще раз подчеркнём – если визуальный способ определения (по цветовой маркировке изоляции) не гарантирует достоверности информации, то все остальные должны проводиться исключительно с использованием специальных приборов. Никакие «100% методики» со всяческими картошками, пластиковыми бутылками, банками с водой и иными «игрушками» – совершенно недопустимы!

Кстати, в публикации ничего не говорится и об использовании так называемой «контрольки» — лампочки в патроне с двумя проводниками. Опять же – это потому что такие тестирования напрямую запрещены действующими правилами безопасной эксплуатации электроустановок. Не рискуйте сами и не создавайте потенциальной угрозы своим близким!

В завершение публикации – небольшой видеосюжет, посвященный проблеме поиска фазы и нуля.

Видео: Как можно определить расположение фазы и нуля

Понравилась статья? Поделить с друзьями:
  • Как найти свое место в этом мире
  • Как составить свою игру на компьютере
  • Как найти гистограмму частот по выборке
  • Как найти цель текста
  • Как исправить фон скопированного текста