Как через диагональ найти сторону куба если

как найти ребро куба, если известна диагональ

dnepr1

Светило науки — 9801 ответ — 46531 помощь

Примем ребро куба за а.
Диагональ d основания равна а√2.
Диагональ D куба — это гипотенуза треугольника, где катеты: диагональ  d основания и ребро куба a.
D = 
√(d²+a²) = √(2a²+a²) = √(3a²) = a√3.
Отсюда получаем: а = D/√3.

ramazanovramaz1

Светило науки — 3 ответа — 0 раз оказано помощи

если сторона куба равна х,
диагональ стороны куба равна корень из 2х квадрат.

теперь вычислить диагональ куба — гипотенуза прямоугольного треугольника со сторонами х и уже вычисленной стороной

Диагональ стороны куба является диагональю квадрата, который представляет собой грань куба. Исходя из этого, ребро куба может быть вычислено по формуле отношения диагонали стороны куба к корню из двух.
a=d/√2

Тогда площадь стороны куба, равная квадрату его ребра, будет рассчитываться как квадрат диагонали, деленный на два. Чтобы вычислить площадь боковой и полной поверхности куба, необходимо умножить полученное выражение на 4 или 6 соответственно.
S=a^2=d^2/2
S_(б.п.)=4a^2=(4d^2)/2=2d^2
S_(п.п.)=6a^2=(6d^2)/2=3d^2

Чтобы вычислить объем куба, нужно возвести его ребро в третью – кубическую – степень, для этого все выражение, полученное для ребра куба через диагональ его стороны, возводится в степень.
V=a^3=(d/√2)^3=d^3/(2√2)

Периметр куба равен ребру куба, умноженному на двенадцать. Подставив вместо ребра куба выражение через диагональ и сократив коэффициенты, получим следующую формулу для периметра:
P=12a=12d/√2=6√2 d

Диагональ куба через диагональ его стороны можно найти, используя теорему Пифагора, согласно которой квадрат диагонали куба равен сумме квадратов диагонали стороны и бокового ребра, соединенных в прямоугольный треугольник. (рис.2.1.)
a^2+d^2=D^2
D^2=d^2/2+d^2
D^2=(3d^2)/2
D=√(3/2) d

Чтобы вычислить радиус сферы, вписанной в куб, необходимо разделить на два ребро куба, то есть разделить на два корня из двух диагональ его стороны. Радиус сферы, описанной вокруг куба, в свою очередь равен половине диагонали куба, вместо которой также можно использовать полученное через диагональ стороны выражение. (рис.2.2.,2.3)
r=a/2=d/(2√2)
R=D/2=(√(3/2) d)/2

Длина ребра куба

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Длина ребра куба

Чтобы найти длину ребра куба воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Длина ребра куба через объём

Длина ребра куба через объём
Чему равна длина ребра куба, если:

объём Vкуба =

a =

0

Округление ответа:

Длина ребра куба через диагональ

Длина ребра куба через диагональ
Чему равна длина ребра куба, если:

диагональ d =

a =

0

Округление ответа:

Длина ребра куба через площадь поверхности куба

Длина ребра куба через площадь поверхности куба
Чему равна длина ребра куба, если:

Sпов =

a =

0

Округление ответа:

Теория

Как найти ребро куба зная его объём

Чему равна длина ребра куба a, если объём куба Vкуба:

Формула

a = 3Vкуба

Пример

Для примера, посчитаем чему равна длина ребра куба a, если его объём Vкуба = 8 см³:

a = 38 = 2 см

Как найти ребро куба зная его диагональ

Чему равна длина ребра куба a, если его диагональ d:

Формула

a = d 3

Пример

Для примера, посчитаем чему равна длина ребра куба a, если длина его диагонали d = 9 см:

a = 9 ⁄ 3 ≈ 9/1.732 ≈ 5.196 см

Как найти ребро куба через площадь поверхности

Чему равна длина ребра куба a, если площадь его поверхности Sпов:

Формула

a = Sпов6

Пример

Для примера, посчитаем чему равна длина ребра куба a, если площадь его поверхности Sпов = 150 см²:

a = 150 / 6 = 25 = 5 см

См. также

Викториныч

20 марта, 19:42

Как найти ребро куба, если известна диагональ

  1. Радомира

    20 марта, 20:16


    0

    Если сторона куба равна х,

    диагональ стороны куба равна корень из 2 х квадрат.

    теперь вычислить диагональ куба — гипотенуза прямоугольного треугольника со сторонами х и уже вычисленной стороной

    • Комментировать
    • Жалоба
    • Ссылка
  2. Примем ребро куба за а.

    Диагональ d основания равна а√2.

    Диагональ D куба — это гипотенуза треугольника, где катеты: д иагональ d основания и ребро куба a.

    D = √ (d²+a²) = √ (2a²+a²) = √ (3a²) = a√3.

    Отсюда получаем: а = D / √3.

    • Комментировать
    • Жалоба
    • Ссылка

Найдите правильный ответ на вопрос ✅ «Как найти ребро куба, если известна диагональ …» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Смотреть другие ответы

Новые вопросы по математике

Пусть нам дан куб ABCDA1B1C1D1. Обозначим его сторону через a. По условию задачи, диагональ куба ABCDA1B1C1D1 равна 3 ед.

Требуется вычислить длину а стороны куба.

Диагональ куба

У куба все ребра равны, нижним основанием ABCD и верхним основанием A1B1C1D1 являются квадраты со стороной а, и боковые ребра AA1; BB1; CC1; DD1 также равны а.

Диагональю куба называют отрезок, связывающий вершину нижнего основания с противолежащей вершиной верхнего основания, не принадлежащие одной грани. Иначе говоря, это должны быть такие вершины, чтобы отрезок полностью находился внутри куба.

Соответственно, у куба четыре диагонали:

AC1; BD1; CA1; DB1;

Возьмем любой из прямоугольных треугольников, гипотенузой которого является диагональ куба, а катетами – боковое ребро и диагональ основания, например, треугольник AСC1. В этом треугольнике диагональ куба AC1 является гипотенузой, боковое ребро СC1 и диагональ основания АС – катетами. Все такие треугольники равны друг другу по двум катетам и прямому углу между ними.

Для решения задачи необходимо:

  • вычислить диагональ основания АС;
  • выразить диагонали куб AC1 через сторону куба;
  • приравнять известной по условию задачи величине и найти сторону куба.

Вычисление стороны куба

Из треугольника АВС:

|АС|^2 = |АВ|^2 + |ВС|^2 = а^2 + а^2 = 2 * а^2;

Из треугольника AСC1:

|АС1|^2 = |АС|^2 + |СС1|^2 = 2 * а^2 + а^2 = 3 * а^2;

Далее:

а^2 = |АС1|^2 / 3;

а = |АС1| / √3;

Подставляя исходное значение, получаем:

а = 3 / √3 = √3 (ед);

Ответ: сторона куба равна √3 ед.

Понравилась статья? Поделить с друзьями:
  • Как правильно составить вопрос для получения ответами
  • Как правильно составить реферат образец оформления
  • Как найти шлюху в махачкале
  • Как найти багульник зимой
  • Как найти выход от теоретически возможного химия