Загрузить PDF
Загрузить PDF
Нормальность отображает концентрацию кислоты или щелочи в растворе. Чтобы узнать нормальность раствора, в расчетах можно использовать как молярность, так и эквивалентную массу молекулы. Если вы решили использовать молярность, используйте формулу N = M(n), где M — это молярность, а n — количество молекул водорода или гидроксида. Если же вы решили использовать эквивалентную массу, используйте формулу N = eq ÷ V, где eq — это количество эквивалентов, а V — объем раствора.
-
1
Сложите молярную массу всех компонентов раствора. Найдите элементы химической формулы на периодической таблице, чтобы узнать их атомную массу, которая соответствует молярной. Запишите молярную массу каждого элемента и умножьте ее на количество этих элементов. Сложите молярную массу всех компонентов, чтобы узнать общую молярную массу.[1]
- Например, если необходимо узнать молярную массу серной кислоты (H2SO4), узнайте молярную массу водорода (1 г), серы (3 г) и кислорода (16 г).
- Умножьте массу на количество компонентов в составе. В нашем примере присутствует 2 атома водорода и 4 атома кислорода. Общая молярная масса водорода равна 2 x 1 г = 2 г. Молярная масса кислорода в этом растворе будет равна 4 x 16 г = 64 г.
- Сложите все молярные массы вместе. У вас получится 2 г + 32 г + 64 г = 98 г/моль.
- Если вы уже знаете молярность искомого раствора, перейдите сразу к Шагу 4.
-
2
Разделите фактическую массу раствора на молярную массу. Узнайте фактическую массу раствора. Она будет указана либо на емкости с раствором, либо в самой задаче. После этого разделите массу раствора на общую молярную массу, найденную ранее. Результатом станет количество молей в растворе, после которого должно быть написано «моль».[2]
- Например, если вы пытаетесь узнать нормальность 100 г H2SO4, которую растворили в 12 литрах жидкости, используйте фактическую массу и разделите ее на молярную. В результате у вас выйдет: 100 г ÷ 98 г/моль = 1,02 моль.
- 1 моль равен 6.02 x 1023 атомам или молекулам раствора.
-
3
Разделите результат на объем раствора в литрах, чтобы узнать молярность. Возьмите только что вычисленное количество молей в растворе и разделите его на общий объем измеряемого раствора. В результате вы узнаете молярность (M), с помощью которой можно узнать концентрацию раствора.[3]
- Исходя из нашего примера, получится такая формула: 1.02 моль ÷ 12 л = 0.085 M.
Совет: обязательно переведите объем раствора в литры, если еще этого не сделали. В противном случае вы получите неправильный ответ.
-
4
Умножьте молярность на количество молекул водорода или гидроксида. Взгляните на химическую формулу, чтобы узнать количество атомов водорода (H) в кислоте или молекул гидроксида в (ОН) в основании. Затем умножьте молярность раствора на количество молекул водорода или гидроксида в этом растворе, чтобы узнать нормальную концентрацию, или нормальность. В конце ответа напишите сокращение «N».[4]
- В нашем примере у серной кислоты (H2SO4) 2 атома водорода. Значит формула будет такой: 0,085 M x 2 = 0,17 N.
- В другом примере у гидроксида натрия (NaOH) с молярностью 2 M всего 1 молекула гидроксида. Следовательно, формула будет следующей: 2 M x 1 = 2 N.
Реклама
-
1
Узнайте общую молярную массу раствора. Взгляните на химическую формулу раствора и найдите каждый элемент в периодической таблице. Запишите молярную массу каждого элемента и умножьте ее на количество этих элементов в формуле. Сложите вместе все молярные массы, чтобы узнать общую молярную массу в граммах.[5]
- Например, если вы хотите узнать молярную массу Ca(OH)2,тогда узнайте молярную массу кальция (40 г), кислорода (16 г) и водорода (1 г).
- В формуле 2 атома кислорода и водорода. Общая масса кислорода будет следующей: 2 x 16 г = 32 г. Молярная масса водорода будет равна: 2 x 1 г = 2 г.
- Сложите вместе все молярные массы, чтобы получить 40 г + 32 г + 2 г = 74 г/моль.
-
2
Разделите молярную массу на количество молекул водорода или гидроксида. Узнайте количество атомов водорода (H) в кислоте или молекул гидроксида (ОН) в основании. Разделите только что полученную общую молярную массу на количество атомов или молекул, чтобы узнать вес 1 эквивалента, который будет равен массе 1 моли водорода или гидроксида. В конце ответа напишите сокращение «Г.-э.», означающее массу эквивалента.[6]
- В нашем примере у Ca(OH)2 2 две молекулы водорода, значит, масса эквивалента будет равна 74 г/моль ÷ 2 = 37 Г.-э.
-
3
Разделите фактическую массу раствора на массу эквивалента. После того, как вы узнаете массу эквивалента, разделите ее на массу раствора, которая указана на емкости с раствором или в решаемой задаче. Ответом станет количество эквивалентов в растворе, чтобы вы потом смогли рассчитать нормальность. В конце ответа поставьте сокращение «э.»[7]
- Если в нашем примере 75 г Ca(OH)2, то формула будет такой: 75 г ÷ 37 Г.-э = 2,027 э.
-
4
Разделите число эквивалентов на объем раствора в литрах. Узнайте общий объем раствора и запишите ответ в литрах. Возьмите только что полученное количество эквивалентов и разделите его на объем раствора, чтобы узнать нормальность. В конце ответа поставьте сокращение «N».[8]
- Если в растворе объемом 8 л находится 75 г Ca(OH)2, тогда разделите количество эквивалентов на объем следующим способом: 2,027 э. ÷ 8 л = 0,253 N.
Реклама
Советы
- Нормальная концентрация, или нормальность, обычно используется для измерения кислот и оснований. Если вам нужно определить концентрацию другого раствора, для этого, как правило, измеряют молярность.
Реклама
Что вам понадобится
- Периодическая таблица
- Калькулятор
Об этой статье
Эту страницу просматривали 92 249 раз.
Была ли эта статья полезной?
Отношение количества
или массы вещества, содержащегося в
системе, к объему или массе этой системы
называется концентрацией.
Рассмотрим несколько
способов выражения концентрации.
Процентная
концентрация
(массовая доля растворенного вещества)
(ω) показывает, сколько единиц массы
растворенного вещества содержится в
100 единицах массы раствора. Массовая
доля – безразмерная величина, ее выражают
в долях единицы или процентах:
,
где ω – массовая
доля (%) растворенного вещества; m1
– масса растворенного вещества, г; m
– масса раствора, г.
Масса раствора
равна произведению объема раствора V
(мл) на его плотность r
(г/см3):
,
тогда
.
Молярная
концентрация (молярность)
раствора – показывает, сколько молей
растворенного вещества содержится в
1л раствора.
Молярную концентрацию
(моль на литр) выражают формулой
,
где m1
– масса растворенного вещества, г; М –
молярная масса растворенного вещества,
г/моль; V
– объем раствора, л.
Количество вещества
в молях определяется по формуле:
n
= m1
/М, тогда
Нормальная
концентрация (нормальность раствора)
показывает, сколько грамм-эквивалентов
растворенного вещества содержится в 1
л раствора (моль на литр):
,
где m1
– масса растворенного вещества, г; V
– объем раствора, л.
Э – эквивалентная
масса растворенного вещества (г/моль),
которую рассчитывают по формуле:
Э=(г/моль),
где М – мольная
масса вещества, n
– количество катионов (анионов), В
– валентность. Валентность – это
способность атомов элемента присоединять
определенное число атомов другого
элемента. Эквивалент кислоты можно
определить по формуле: Э = М (кислоты)
/ основность (число атомов водорода).
Например: Э
Н2SO4==49г/моль;
эквивалент основания по формуле: Э = М
(основания) / кислотность (число ОН—
групп), так Э
Fe(OH)3==35,6г/моль;
эквивалент соли по формуле: Э = М(соли)
/ число атомов металла * валентность
металла,
Э Al2(SO4)3==114г/моль.
Моляльность
раствора Сm
показывает
количество растворенного вещества,
находящееся в 1 кг растворителя:
,
где m2
– масса растворителя, кг; n
– количество растворенного вещества,
моль.
Пример
1.
Вычислить молярность и нормальность
40 %-го раствора фосфорной кислоты,
плотность которого 1,25 г/см3.
Объем раствора 1л.
Решение.
Для расчета молярности и нормальности
раствора найдем массу фосфорной кислоты
в 1 л (1000 мл) 40 %-го раствора:
w
= m1
· 100/V
∙ r;
.Молярная
масса Н3РO4
равна 98 г/моль, следовательно,
=
500/98 = 5,1 моль/л.
Молярная
масса эквивалента Н3РO4
равна 98/3 = 32,7 г/моль.
Тогда
СН
= 500/32,7 =
1,53 моль/л.
Пример
2.
Вычислить
массовую долю КОН в 2н. растворе, плотность
которого 1,08 г/см3.
Решение.
Поскольку
нормальность рассчитывается на 1 л
раствора, найдем массу растворенного
вещества в 1 л:
СН=
m1/Э∙V;
ЭKOH
= 56 г/моль;
mКОН=2∙56∙1=112
г.
Теперь
вычислим массовую доли КОН в растворе,
содержащем 112
г
гидроксида калия:
w=
m1∙100/V∙r=112∙100/1000∙1,08=10,4
%.
Пример 3.
На нейтрализацию 50 см3
раствора кислоты израсходовано 25 см3
0,5 н. раствора щелочи. Чему равна молярная
концентрация эквивалентов кислоты?
Решение.
Так как вещества взаимодействуют между
собой в эквивалентных соотношениях, то
растворы равной молярной концентрации
эквивалентов реагируют в равных объемах.
При разных молярных концентрациях
эквивалентов объемы растворов реагирующих
веществ обратно пропорциональны их
нормальностям, т.е.
V1:
V2
= С2
: С1
или V1∙
С1
= V2
∙
С2
50С1
= 25 • 0,5; откуда С1
= 25 • 0,5 / 50 = 0,25н.
Задание:
решить следующие задачи, принимая объем
раствора равным
1 л:
Вариант |
Вещество |
Концентрация |
Плотность |
Вычислить |
121 |
Na2CO3 |
0,30 |
1,030 |
Процентную |
122 |
HNO3 |
9,0 |
1,275 |
Процентную |
123 |
NH4Cl |
10 |
1,028 |
Молярную |
124 |
Al2(SO4)3 |
0,55 |
1,176 |
Процентную |
125 |
HNO3 |
2 |
— |
Нормальную |
126 |
HCl |
15,0 |
1,073 |
Нормальную |
127 |
H2SO4 |
13,0 |
1,680 |
Процентную |
128 |
H3PO4 |
44,0 |
1,285 |
Нормальную |
129 |
HClO4 |
9,0 |
1,150 |
Процентную |
130 |
H2SO4 |
2 |
— |
Нормальную |
131 |
CH3COOH |
34,0 |
1,043 |
Молярную |
132 |
BaCl2 |
2,30 |
1,203 |
Процентную |
133 |
K2CO3 |
4 |
— |
Нормальную |
134 |
CuSO4 |
14,0 |
1,155 |
Нормальную |
135 |
FeCl3 |
1,90 |
— |
Нормальную |
136 |
K2CO3 |
6,0 |
1,567 |
Процентную |
137 |
NaCl |
3 |
— |
Молярную |
138 |
NaCl |
20 |
1,148 |
Молярную |
139 |
HClO4 |
4,0 |
1,230 |
Процентную |
140 |
K2CO3 |
3 |
— |
Нормальную |
Задание: решить
следующие задачи
№ задачи |
|
141 |
На |
142 |
Смешали |
143 |
Определить |
144 |
Смешали |
145 |
Для |
146 |
Смешали |
147 |
На |
148 |
Смешали |
149 |
На |
150 |
Вычислить |
151 |
Определить |
152 |
Вычислить |
153 |
Определить |
154 |
Определить |
155 |
Вычислить |
156 |
Вычислить |
157 |
Определить |
158 |
Смешали |
159 |
Определить |
160 |
Вычислить |
Соседние файлы в папке му по химии
- #
- #
- #
- #
- #
- #
- #
Материалы из методички: Сборник задач по теоретическим основам химии для студентов заочно-дистанционного отделения / Барботина Н.Н., К.К. Власенко, Щербаков В.В. – М.: РХТУ им. Д.И. Менделеева, 2007. -155 с.
Растворы. Способы выражения концентрации растворов
Способы выражения концентрации растворов
Существуют различные способы выражения концентрации растворов.
Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:
ωр.в. = mр.в./mр-ра (0 < ωр.в. < 1) (1)
Массовый процент представляет собой массовую долю, умноженную на 100:
ω(Х) = m(Х)/m · 100% (0% < ω(Х) < 100%) (2)
где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.
Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.
Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная доля растворённого вещества равна:
χ(X) = n(X)/(n(X) + n(H2O)) (3)
Мольный процент представляет мольную долю, умноженную на 100:
χ(X), % = (χ(X)·100)% (4)
Объёмная доля φ компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:
φ(Х) = V(Х)/V (0 < φ(Х) < 1) (5)
Объёмный процент представляет собой объёмную долю, умноженную на 100.
φ(X), % = (φ(X)·100)%
Молярность (молярная концентрация) C или Cм определяется как отношение количества растворённого вещества X, моль к объёму раствора V, л:
Cм(Х) = n(Х)/V (6)
Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.
Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:
Cн(Х) = nэкв.(Х)/V (7)
Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или 0,8н.
Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см3 раствора:
T(Х) = m(Х)/V (8)
где m(X) – масса растворённого вещества X, V – объём раствора в мл.
Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:
μ(Х) = n(Х)/mр-ля (9)
где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.
Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.
Необходимо иметь ввиду, что нормальность Сн всегда больше или равна молярности См. Связь между ними описывается выражением:
См = Сн · f(Х) (10)
Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 1. В этой таблице приведены значения молярности См, которые необходимо пересчитать в нормальность Сн и величины нормальности Сн, которые следует пересчитать в молярность См.
Пересчёт осуществляем по уравнению (10). При этом нормальность раствора находим по уравнению:
Сн = См/f(Х) (11)
Результаты расчётов приведены в табл. 2.
Таблица 1. К определению молярности и нормальности растворов
Тип химического превращения | См | Сн | Сн | См |
Реакции обмена | 0,2 M Na2SO4 | ? | 6 н FeCl3 | ? |
1,5 M Fe2(SO4)3 | ? | 0,1 н Ва(ОН)2 | ? | |
Реакции окисления-восстановления | 0,05 М KMnO4
в кислой среде |
? | 0,03 М KMnO4
в нейтральной среде |
? |
Таблица 2
Значения молярности и нормальности растворов
Тип химического превращения | См | Сн | Сн | См |
Реакции обмена | 0,2M Ma2SO4 | 0,4н | 6н FeCl3 | 2М |
1,5M Fe2(SO4)3 | 9н | 0,1н Ва(ОН)2 | 0,05М | |
Реакции окисления-восстановления | 0,05М KMnO4 в кислой среде | 0,25н | 0,03М KMnO4
в нейтральной среде |
0,01М |
Между объёмами V и нормальностями Сн реагирующих веществ существует соотношение:
V1 Сн,1 =V2 Сн,2 (12)
Примеры решения задач
Задача 1. Рассчитайте молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см3.
Решение.
Масса 1 литра раствора равна М = 1000·1,303 = 1303,0 г.
Масса серной кислоты в этом растворе: m = 1303·0,4 = 521,2 г.
Молярность раствора См = 521,2/98 = 5,32 М.
Нормальность раствора Сн = 5,32/(1/2) = 10,64 н.
Титр раствора Т = 521,2/1000 = 0,5212 г/см3.
Моляльность μ = 5,32/(1,303 – 0,5212) = 6,8 моль/кг воды.
Обратите внимание на то, что в концентрированных растворах моляльность (μ) всегда больше молярности (См). В разбавленных растворах наоборот.
Масса воды в растворе: m = 1303,0 – 521,2 = 781,8 г.
Количество вещества воды: n = 781,8/18 = 43,43 моль.
Мольная доля серной кислоты: χ = 5,32/(5,32+43,43) = 0,109. Мольная доля воды равна 1– 0,109 = 0,891.
Мольное отношение равно 5,32/43,43 = 0,1225.
Задача 2. Определите объём 70 мас.% раствора серной кислоты (r = 1,611 г/см3), который потребуется для приготовления 2 л 0,1 н раствора этой кислоты.
Решение.
2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г.
Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г.
Объём раствора кислоты V = 14/1,611 = 8,69 мл.
Задача 3. В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH3 в полученном растворе, если его плотность равна 0,992 г/см3.
Решение.
Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.
Масса раствора m = 5000 + 75,9 = 5075,9 г.
Массовая доля NH3 равна 75,9/5075,9 = 0,0149 или 1,49 %.
Количество вещества NH3 равно 100/22,4 = 4,46 моль.
Объём раствора V = 5,0759/0,992 = 5,12 л.
Молярность раствора См = 4,46/5,1168 = 0,872 моль/л.
Задача 4. Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария?
Решение.
Переводим молярность в нормальность:
0,1 М Н3РО4 0,3 н; 0,3 М Ва(ОН)2 0,6 н.
Используя выражение (12), получаем: V(H3P04)=10·0,6/0,3 = 20 мл.
Задача 5. Какой объем, мл 2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?
Плотности растворов NaCl:
С, мас.% | 2 | 6 | 7 | 14 |
ρ, г/см3 | 2,012 | 1,041 | 1,049 | 1,101 |
Решение.
Методом интерполяции рассчитываем плотность 6,2 мас.% раствора NaCl:
6,2% =6% + 0,2(7% —6% )/(7 – 6) = 1,0410 + 0,0016 = 1,0426 г/см3.
Определяем массу раствора: m = 150·1,0426 = 156,39 г.
Находим массу NaCl в этом растворе: m = 156,39·0,062 = 9,70 г.
Для расчёта объёмов 2 мас.% раствора (V1) и 14 мас.% раствора (V2) составляем два уравнения с двумя неизвестными (баланс по массе раствора и по массе хлорида натрия):
156,39 = V1 1,012 + V2 1,101 ,
9,70 = V1·1,012·0,02 + V2·1,101·0,14 .
Решение системы этих двух уравнений дает V1 =100,45 мл и V2 = 49,71 мл.
Задачи для самостоятельного решения
3.1. Рассчитайте нормальность 2 М раствора сульфата железа (III), взаимодействующего со щёлочью в водном растворе.
12 н.
3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.
0,1 M.
3.3. Рассчитайте нормальность 0,02 М раствора KMnO4, взаимодействующего с восстановителем в нейтральной среде.
0,06 н.
3.4. Определите молярность 0,1 н раствора KMnO4, взаимодействующего с восстановителем в кислой среде.
0,02 M.
3.5. Рассчитать нормальность 0,2 М раствора K2Cr2O7, взаимодействующего с восстановителем в кислой среде.
1,2 M.
3.6. 15 г CuSO4·5H2O растворили в 200 г 6 мас.% раствора CuSO4. Чему равна массовая доля сульфата меди, а также молярность, моляльность и титр полученного раствора, если его плотность составляет 1,107 г/мл?
0,1; 0,695М; 0,698 моль/кг; 0,111 г/мл.
3.7. При выпаривании 400 мл 12 мас.% раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию и титр.
255 мл; 2 н; 0,203 г/мл.
3.8. В 3 л воды растворили 67,2 л хлороводорода, измеренного при нормальных условиях. Плотность полученного раствора равна 1,016 г/мл. Вычислить массовую, мольную долю растворённого вещества и мольное отношение растворённого вещества и воды в приготовленном растворе.
0,035; 0,0177; 1:55,6.
3.9. Сколько граммов NaCl надо добавить к 250 г 6 мас.% раствору NaCl, чтобы приготовить 500 мл раствора хлорида натрия, содержащего 16 мас.% NaCl? Плотность полученного раствора составляет 1,116 г/мл. Определить молярную концентрацию и титр полученного раствора.
74,28 г; 3,05 М; 0,179 г/мл.
3.10. Определить массу воды, в которой следует растворить 26 г ВaCl2·2H2O для получения 0,55М раствора ВaCl2 (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.
192,4 г; 0,111 г/мл; 0,56 моль/кг.
Объем раствора с учетом нормальности Калькулятор
Search | ||
Дом | Химия ↺ | |
Химия | Концепция родинки и стехиометрия ↺ | |
Концепция родинки и стехиометрия | Количество эквивалентов и нормальность ↺ |
✖Число эквивалентов — это число, которое определяет, сколько электронов или ионов может быть передано в ходе химической реакции.ⓘ Количество эквивалентов [nequiv.] |
+10% -10% |
||
✖Нормальность – это масса растворенного вещества, растворенного в литре раствора.ⓘ Нормальность [N] |
+10% -10% |
✖Объем раствора показывает объем раствора в литрах.ⓘ Объем раствора с учетом нормальности [V] |
⎘ копия |
Объем раствора с учетом нормальности Решение
ШАГ 0: Сводка предварительного расчета
ШАГ 1. Преобразование входов в базовый блок
Количество эквивалентов: 16 —> Конверсия не требуется
Нормальность: 12 Эквиваленты на литр —> 12000 Моль на кубический метр (Проверьте преобразование здесь)
ШАГ 2: Оцените формулу
ШАГ 3: Преобразуйте результат в единицу вывода
0.00133333333333333 Кубический метр —>1.33333333333333 Литр (Проверьте преобразование здесь)
23 Количество эквивалентов и нормальность Калькуляторы
Объем раствора с учетом нормальности формула
Объем раствора = Количество эквивалентов/Нормальность
V = nequiv./N
Какое количество эквивалентов?
Число эквивалентов — это отношение молярной массы соединения к n-фактору реакции. Число эквивалентов — это число, которое определяет, сколько электронов или ионов может быть перенесено в химической реакции.
Что такое нормальность?
Нормальность определяется как количество граммов или мольных эквивалентов растворенного вещества в одном литре раствора. Когда мы говорим эквивалент, это количество молей реактивных единиц в соединении. Нормальность в химии — это одно из выражений, используемых для измерения концентрации раствора. Он обозначается аббревиатурой «N» и иногда обозначается как эквивалентная концентрация раствора. Он в основном используется для измерения количества реакционноспособных частиц в растворе и во время реакций титрования или особенно в ситуациях, связанных с кислотно-щелочной химией.
С растворами разных веществ мы встречаемся каждый день. Но вряд ли каждый из нас представляет, насколько большую роль играют эти системы. Многое в их поведении стало ясно сегодня благодаря детальному изучению в течение тысячелетий. За всё это время были введены многие термины, непонятные простому человеку. Один из них — нормальность раствора. Что это такое? Об этом и пойдёт речь в нашей статье. А начнём мы с погружения в прошлое.
История исследований
Первыми яркими умами, начавшими изучение растворов, были такие известные химики, как Аррениус, Вант-Гофф и Оствальд. Под влиянием их работ последующие поколения химиков стали углубляться в исследование водных и разбавленных растворов. Конечно, они накопили огромный массив знаний, но без внимания остались неводные растворы, которые, кстати, также играют большую роль как в промышленности, так и в других сферах человеческой жизнедеятельности.
В теории неводных растворов было много непонятного. Например, если в водных с увеличением степени диссоциации увеличивалось значение проводимости, то в аналогичных системах, но с другим растворителем вместо воды, было всё наоборот. Маленькие значения электрической проводимости часто соответствуют высоким степеням диссоциации. Аномалии подстегнули учёных к исследованию этой области химии. Был накоплен большой массив данных, обработка которых позволила найти закономерности, дополняющие теорию электролитической диссоциации. Помимо этого, удалось расширить знания об электролизе и о природе комплексных ионов органических и неорганических соединений.
Затем активнее начали проводиться исследования в области концентрированных растворов. Такие системы существенно отличаются по свойствам от разбавленных из-за того, что при повышении концентрации растворённого вещества всё большую роль начинает играть его взаимодействие с растворителем. Подробнее об этом — в следующем разделе.
Теория
На данный момент лучше всех объясняет поведение ионов, молекул и атомов в растворе только теория электролитической диссоциации. С момента своего создания Сванте Аррениусом в XIX веке, она претерпела некоторые изменения. Были открыты некоторые законы (такие, как закон разбавления Оствальда), которые несколько не вписывались в классическую теорию. Но, благодаря последующим работам учёных, в теорию были внесены поправки, и в современном виде она существует до сих пор и с высокой точностью описывает результаты, получаемые опытными путями.
Основная суть электролитической теории диссоциации в том, что вещество при растворении распадается на составляющие её ионы — частицы, имеющие заряд. В зависимости от способности раскладываться (диссоциировать) на части, различают сильные и слабые электролиты. Сильные, как правило, полностью диссоциируют на ионы в растворе, тогда как слабые — в очень малой степени.
Эти частицы, на которые распадается молекула, могут взаимодействовать с растворителем. Это явление назвается сольватацией. Но происходит оно не всегда, поскольку обусловлено наличием заряда на ионе и молекулах растворителя. Например, молекула воды представляет собой диполь, то есть частицу, заряженную с одной стороны положительно, а с другой — отрицательно. А ионы, на которые распадется электролит, тоже имеют заряд. Таким образом, эти частицы притягиваются разноимённо заряженными сторонами. Но происходит это только с полярными растворителями (таковым является и вода). Например, в растворе какого-либо вещества в гексане сольватации происходить не будет.
Для изучения растворов очень часто необходимо знать количество растворённого вещества. В формулы иногда очень неудобно подставлять некоторые величины. Поэтому существует несколько видов концентраций, среди которых — нормальность раствора. Сейчас мы расскажем подробно обо всех способах выражения содержания вещества в растворе и методах его вычисления.
Концентрация раствора
В химии применяется множество формул, и некоторые из них построены так, что удобнее взять величину в том или ином конкретном виде.
Первая, и самая знакомая нам, форма выражения концентрации — массовая доля. Вычисляется она очень просто. Нам всего лишь нужно разделить массу вещества в растворе на его общую массу. Таким образом мы получаем ответ в долях единицы. Умножив полученное число на сто, получим ответ в процентах.
Немного менее известная форма — объёмная доля. Чаще всего её используют для выражения концентрации спирта в алкогольных напитках. Вычисляется она тоже довольно просто: делим объём растворённого вещества на объём всего раствора. Так же как и в предыдущем случае, можно получить ответ в процентах. На этикетках часто обозначают: «40% об.», что означает: 40 объёмных процентов.
В химии часто используют и другие виды концентрации. Но перед тем, как к ним перейти, поговорим о том, что такое моль вещества. Количество вещества может выражаться разными способами: масса, объём. Но ведь молекулы каждого вещества имеют свой вес, и по массе образца невозможно понять, сколько в нём молекул, а это необходимо для понимания количественной составляющей химических превращений. Для этого была введена такая величина, как моль вещества. Фактически один моль — это определённое количество молекул: 6,02*1023. Это называется числом Авогадро. Чаще всего такая единица, как моль вещества, используется для вычисления количества продуктов какой-либо реакции. В связи с этим существует ещё одна форма выражения концентрации — молярность. Это количество вещества в единице объёма. Молярность выражается в моль/л (читается: моль на литр).
Существует очень похожий на предыдущий вид выражения содержания вещества в системе: моляльность. Отличается от молярности она тем, что определяет количество вещества не в единице объёма, а в единице массы. И выражается в молях на килограмм (или другую кратную величину, например на грамм).
Вот мы и подошли к последней форме, которую сейчас обсудим отдельно, так как её описание требует немного теоретической информации.
Нормальность раствора
Что же это такое? И чем отличается от предыдущих величин? Для начала следует понять разность между такими понятиями, как нормальность и молярность растворов. По сути, отличаются они лишь на одну величину — число эквивалентности. Теперь можно даже представить, что такое нормальность раствора. Это всего лишь модифицированная молярность. Число эквивалетности показывает количество частиц, способных провзаимодействовать с одним молем ионов водорода или гидроксид-ионов.
Мы познакомились с тем, что такое нормальность раствора. Но ведь стоит копнуть глубже, и мы увидим, насколько проста эта, на первый взгляд сложная форма описания концентрации. Итак, разберём поподробнее, что такое нормальность раствора.
Формула
Довольно легко представить себе формулу по словесному описанию. Она будет выглядеть так: Сн=z*n/N. Здесь z — фактор эквивалентности, n — количество вещества, V — объём раствора. Первая величина — самая интересная. Как раз она и показывает эквивалент вещества, то есть число реальных или мнимых частиц, способных прореагировать с одной минимальной частицей другого вещества. Этим, собственно, нормальность раствора, формула которой была представлена выше, качественно отличается от молярности.
А теперь перейдём к другой немаловажной части: как определить нормальность раствора. Это, несомненно, важный вопрос, поэтому к его изучению стоит подойти с пониманием каждой величины, указанной в уравнении, представленном выше.
Как найти нормальность раствора?
Формула, которую мы разобрали выше, имеет чисто прикладной характер. Все величины, приведённые в ней, легко вычисляются на практике. На самом деле вычислить нормальность раствора очень легко, зная некоторые величины: массу растворённого вещества, его формулу и объём раствора. Так как нам известна формула молекул вещества, то мы можем найти его молекулярную массу. Отношение массы навески растворённого вещества к его молярной массе будет равно числу моль вещества. А зная объём всего раствора, мы точно можем сказать, какая у нас молярная концентрация.
Следующая операция, которую нам нужно провести для того, чтобы вычислить нормальность раствора — это действие по нахождению фактора эквивалентности. Для этого нам нужно понять, сколько в результате диссоциации образуется частиц, способных присоединить протоны или ионы гидроксила. Например, в серной кислоте фактор эквивалетности равен 2, и, следовательно, нормальность раствора в этом случае вычисляется простым умножением на 2 его молярности.
Применение
В химической аналитике очень часто приходится расчитывать нормальность и молярность растворов. Это очень удобно для вычиления молекулярных формул веществ.
Что ещё почитать?
Чтобы лучше понять, что такое нормальность раствора, лучше всего открыть учебник по общей химии. А если вы уже знаете всю эту информацию, вам стоит обратиться к учебнику по аналитической химии для студентов химических специальностей.
Заключение
Благодаря статье, думаем, вы поняли, что нормальность раствора — это форма выражения концентрации вещества, которой пользуются в основном в химическом анализе. И теперь ни для кого не секрет, как она вычисляется.