Как графически найти корень квадратный

Квадратный корень легко извлекается с помощью калькулятора. Для этого достаточно набрать на нём исходное число и нажать клавишу корня  √ .

Если калькулятора под рукой нет, то квадратный корень извлекают пользуясь алгоритмом извлечения квадратного корня.

Определение действия извлечения корня

Корнем n-й степени из числа а называется число х, n-я степень которого равна а. Например, число 2 есть корень пятой степени из 32, ибо Извлечение квадратного корня Корень второй степени иначе называется квадратным корнем, корень третьей степени — кубическим корнем.

Действие, посредством которого по данному числу а и показателю n находится корень n-й степени из а, называется извлечением корня. Показатель n называется показателем корня. Извлечение корня есть
действие, обратное действию возведения в степень. Корень n-й степени из числа а обозначается следующим образом:

Извлечение квадратного корня

В случае квадратного корня показатель не указывается, так что квадратный корень из числа а обозначается Извлечение квадратного корня

Из определения корня следует, что Извлечение квадратного корня в частности

Извлечение квадратного корня

Арифметическое значение квадратного корня

Допустим, что нам дано положительное число а такое, что для него существует квадратный корень, например а = 4. Мы видим, что не одно, а целых два числа удовлетворяют определению квадратного корня из 4, именно числа 2 и —2. Действительно, Извлечение квадратного корня Таким же образом обстоит дело и для всякого другого положительного числа а: если х удовлетворяет условиюИзвлечение квадратного корня то и число —х удовлетворяет этому условию, именно Извлечение квадратного корня Поэтому каждое из двух противоположных чисел х и —х с одинаковым основанием может быть названо квадратным корнем из числа а. Из этих двух чисел одно положительно, другое отрицательно. Однако положительное значение квадратного корня из положительного числа может существовать только одно.

Действительно, допустим, что

Извлечение квадратного корня

причем х и у оба положительны. Тогда

Извлечение квадратного корня

Разлагая на множители левую часть, мы придем к равенству

Извлечение квадратного корня

Произведение двух чисел х—у и х + у равно нулю. Следовательно, равен нулю один из сомножителей. Однако х + у есть положительное число, как сумма двух положительных чисел.

Следовательно,

Извлечение квадратного корня

Положительное значение квадратного корня из положительного числа называется арифметическим значением квадратного корня.

Условимся знаком Извлечение квадратного корня обозначать именно арифметическое значение квадратного корня. Это условие вносит определенность при пользовании знаком корня. Так, согласно этому условию, Извлечение квадратного корня Извлечение квадратного корня

Однако приняв это условие, о нем необходимо помнить, чтобы не делать ошибок при пользовании знаком квадратного корня.

Так, Извлечение квадратного корня а не —2, что, казалось бы, более естественно. Равенство Извлечение квадратного корня есть верное равенство только при Извлечение квадратного корня

При Извлечение квадратного корня мы должны считать Извлечение квадратного корня В то же время равенство Извлечение квадратного корня будет верно всегда.

Постановка вопроса о приближенном вычислении корня

Извлечение квадратного корня из данного числа выполнимо далеко не всегда, если ограничиться рассмотрением рациональных чисел. Так, извлечение квадратного корня из отрицательного числа есть действие невыполнимое, ибо квадрат любого рационального числа не может быть отрицательным.

Более того, далеко не из каждого рационального положительного числа можно извлечь рациональный квадратный корень. Действительно, рассмотрим таблицу квадратов целых чисел:

Извлечение квадратного корня

Мы видим, что квадраты целых чисел очень быстро возрастают, так что промежутки между квадратами соседних целых чисел тоже довольно быстро растут. Целые числа, находящиеся внутри таких промежутков, не являются квадратами целых чисел. Докажем, что они не являются и квадратами дробных чисел.

Для этого достаточно установить, что квадрат дробного числа не может быть числом целым.

Действительно, каждое дробное число а может быть представлено в виде несократимой дроби Извлечение квадратного корня т. е. в виде частного от деления двух целых чисел р и q, не имеющих общих простых множителей, причем q > 1.

Если Извлечение квадратного корня Очевидно, что Извлечение квадратного корня тоже есть
несократимая дробь, ибо Извлечение квадратного корня содержит только те простые множители, которые входят в Извлечение квадратного корня — только те простые множители, которые входят в q а р и q общих множителей не имеют. Таким образом, Извлечение квадратного корня не может быть целым числом.

Итак, числа 2, 3, 5, 6, 7, 8, 10, 11, 12… не являются ни квадратами целых чисел, ни квадратами чисел дробных. Следовательно, извлечение квадратного корня из этих чисел есть действие невыполнимое, если оставаться в области рациональных чисел.

Рассмотрим теперь более подробную таблицу квадратов, придавая числу а значения через Извлечение квадратного корня Ограничимся при этом рассмотрением промежутка от а = 1 до а = 2:

Извлечение квадратного корня

Промежуток между двумя соседними квадратами в этой таблице в среднем в 10 раз меньше, чем промежуток между соседними квадратами 1 и 4 в предшествующей таблице.

Рассмотрим теперь таблицу квадратов, придавая числу а значения через Извлечение квадратного корня , ограничившись промежутком от а = 1,4 до а =1,5:

Извлечение квадратного корня

По сравнению с предыдущей таблицей, промежутки между соседними квадратами еще уменьшились, в среднем в 10 раз.

Таким образом, если брать значения а все более «густо», т. е. делая промежутки между соседними значениями для а все меньше и меньше, то и промежутки между соседними значениями Извлечение квадратного корня будут становиться все меньше и меньше. Поэтому, если взять промежутки
между соседними значениями для а достаточно малыми, мы можем приблизиться посредством значений Извлечение квадратного корня к любому положительному числу b с любой степенью точности.

Проследим, например, за приближениями к числу 2 посредством квадратов на протяжении составленных таблиц. Из первой таблицы мы находим, что наиболее близкие к числу 2 квадраты имеют числа 1 и 2; Извлечение квадратного корня Во второй таблице числами, дающими наиболее близкие к числу 2 квадраты, являются 1,4 и 1,5, причем Извлечение квадратного корня Извлечение квадратного корня Третья таблица дает еще лучшие приближения:

Извлечение квадратного корня

Если мы пожелаем еще улучшить приближения, мы можем рассмотреть квадраты чисел между 1,41 и 1,42, взяв их через 0,001. Это рассмотрение нам даст

Извлечение квадратного корня

Таким образом, среди рациональных чисел не существует числа, квадрат которого равен 2, но существуют числа, квадраты которых сколь угодно близко подходят к 2.

То же самое можно сказать о любом другом положительном числе, для которого точное извлечение корня в области рациональных чисел невозможно. Поэтому имеет смысл ставить вопрос о приближенном
вычислении
квадратного корня с некоторой наперед заданной точностью. Так, числа 1 и 2 являются приближенными значениями для Извлечение квадратного корня с точностью до 1; числа 1,4 и 1,5 являются приближенными значениями для Извлечение квадратного корня с точностью до 0,1; 1,41 и 1,42 — приближенные значения Извлечение квадратного корня с точностью до 0,01; 1,414 и 1,415 — приближенные значения Извлечение квадратного корня с точностью до 0,001 и т. д.

Дадим теперь строгое определение приближенных значений квадратного корня из данного положительного числа.

Приближенным значением с недостатком для квадратного корня из данного положительного числа bс точностью до а называется такое положительное число а, что Извлечение квадратного корня

В свою очередь, число а + а называется приближенным значением с избытком для Извлечение квадратного корня с точностью до а.

Для практических целей в качестве меры точности а принимаются числа 0,1, 0,01, 0,001 и т. д. В этих случаях за приближенное значение корня принимаются десятичные дроби с соответствующим числом цифр после запятой.

Приближенные значения корня можно находить посредством испытаний, постепенно увеличивая точность до той, которая требуется в задаче. Рассмотрим еще один пример.

Пример:

Вычислить Извлечение квадратного корня с точностью до 0,01.

Решение:

Приближения с точностью до 0,1. мы находим из приведенной выше таблицы. Приближение с недостатком есть 1,7 ибо Извлечение квадратного корня Для вычисления приближения с точностью до 0,01 испытываем Извлечение квадратного корня Извлечение квадратного корня Таким образом, с точностью до 0,01 (с
недостатком)

Извлечение квадратного корня

Способом испытаний мы можем приближенно вычислять корень из любого положительного числа с любой степенью точности. Однако этот способ требует хотя и простых, но утомительных вычислений. В следующих параграфах мы познакомимся с более удобными способами вычисления квадратного корня.

Отметим, что ставить вопрос о приближенном вычислении квадратного корня из отрицательного числа бессмысленно, так как приближаться к данному отрицательному числу посредством квадратов рациональных чисел невозможно.

Извлечение квадратного корня при помощи графика

Выведенные в предшествующих параграфах свойства и особенности действия извлечения квадратного корня становятся особенно наглядными, если перейти от рассмотрения таблицы квадратов к графику зависимости Извлечение квадратного корня Этот график нами уже рассматривался в § 17 гл. II

Приводим снова этот график (рис. 26). Он имеет вид кривой линии, состоящей из двух бесконечных ветвей, симметричных относительно оси ординат. Эти ветви сходятся в начале координат, плавно переходя одна в другую. Как уже было сказано, эта кривая называется параболой.

Извлечение квадратного корня

Задача извлечения
квадратного корня заключается в
определении числа х из зависимости Извлечение квадратного корня
при данном у. Для решения этой задачи при помощи
графика нужно на параболе
найти точки, имеющие данную ординату у, и определить абсциссы этих точек.

Очевидно, что при у < 0 таких точек нет, ибо весь график расположен выше оси абсцисс, касаясь ее лишь в начале координат. При у = 0 такая точка единственна, это начало координат. Абсцисса ее равна тоже нулю. При у > 0 таких точек оказывается две, расположенных симметрично относительно оси ординат. Это соответствует тому, что квадратный корень из положительного числа имеет два значения, имеющие одинаковую абсолютную величину, но отличающиеся знаками. Выбор арифметического значения квадратного корня соответствует тому, что из двух ветвей параболы мы рассматриваем только одну, именно правую ветвь. На этой ветви точка с заданной ординатой оказывается уже единственной. Измерив абсциссу этой точки, мы получим приближенное значение Извлечение квадратного корня с той точностью, которую допускает график.

Таким образом, из графика зависимости Извлечение квадратного корня мы видим, что корень из отрицательного числа не существует и что корень из любого положительного числа существует и имеет два значения.

Увеличивая масштаб, мы можем построить график с любой заданной степенью точности. Следовательно, и само извлечение корня из данного положительного числа можно осуществить с любой точностью.

График зависимости Извлечение квадратного корня может служить для фактического вычисления квадратных корней с небольшой точностью.

С этой целью следует тщательно построить график на
миллиметровой бумаге, приняв за единицу масштаба 10 см и придавая переменной х значения от 0 до 1 через каждые 0,1 (рис. 27). Тогда непосредственно по графику находятся квадратные корни чисел, заключенных между 0 и 1.

Извлечение квадратного корня

При помощи этого графика можно также находить значения корня из любого положительного числа b. Для этого нужно найти какое либо число а, удовлетворяющее условию Извлечение квадратного корня Затем, найдя частное Извлечение квадратного корня , которое будет меньше единицы, извлечь из него корень при помощи графика и умножить этот корень на а. Результат даст Извлечение квадратного корня Действительно,

Извлечение квадратного корня

Следовательно,

Извлечение квадратного корня

Если подобрать а так, Извлечение квадратного корня то точность при применении этого способа достигает 1 — 2% величины искомого корня.

Пусть, например, требуется найтиИзвлечение квадратного корня Возьмем Извлечение квадратного корня Извлечение квадратного корня По графику, Извлечение квадратного корня и следовательно, Извлечение квадратного корня Извлечение квадратного корня Ручаться за точность второго знака после запятой здесь нельзя,
возможна ошибка на 0,02 — 0,03 в ту или другую сторону. В действительности с точностью до 0,001 Извлечение квадратного корня

Извлечение квадратного корня из числа, заключенного между 1 и 100, с точностью до 0,1

Приступим к объяснению одной удобной арифметической схемы для приближенного извлечения квадратного корня с заданной точностью.

Допустим, что нам уже известно, что число 7,236 есть
приближенное значение квадратного корня из числа A= 52,365, взятое с недостатком, с точностью до 0,001. Тогда числа 7; 7,2; 7,23 и 7,236 представляют собой приближенные значения Извлечение квадратного корня с недостатком, и каждое последующее из этих приближений является более точным, чем предыдущее. Мы можем считать, что каждое последующее получается из предыдущего прибавлением некоторой поправки. Именно, 7,2 = 7 + 0,2; 7,23 = 7,2 + 0,03; 7,236 = 7,23 + 0,006.

Мы сможем вычислять квадратные корни с любой степенью точности, если нам удастся указать способ вычисления поправки к уже известному приближению с недостатком так, чтобы после прибавления этой поправки получалось бы снова приближение с недостатком, но значительно более точное.

Для вывода удобного способа вычисления таких поправок рассмотрим задачу в общем виде.

Пусть а есть приближенное значение с недостатком для
квадратного корня из положительного числа A, и пусть b есть поправка, которую нужно добавить к числу а, чтобы получить более точное приближение к корню, тоже с недостатком. Предположим, что эта поправка мала по сравнению с самим числом а.

Примем сначала, что a + b есть точное значение Извлечение квадратного корня . Тогда имеет место равенство Извлечение квадратного корня Раскрывая скобки, получим

Извлечение квадратного корня

откуда

Извлечение квадратного корня

Вспомним теперь, что поправку b мы ищем только приближенно. Ввиду сделанного предположения, что искомая поправка мала по сравнению с числом а мы можем отбросить в знаменателе слагаемое b, и тогда получим для b приближенное равенство

Извлечение квадратного корня

В знаменателе мы отбросили положительное слагаемое, тем самым мы уменьшили знаменатель, а всю дробь увеличили. Следовательно, число Извлечение квадратного корня больше истинной поправки. Поэтому если мы хотим получить значение корня снова с недостатком, то мы должны взять в качестве поправки число, несколько меньшее, чем Извлечение квадратного корня , например округлить это частное, приняв во внимание только первую значащую цифру.

Для того чтобы проверить, что вычисленная таким способом поправка дает после прибавления к а снова приближение с недостатком, надо проверить, что разность Извлечение квадратного корня положительна. Эту разность удобно представить в виде Извлечение квадратного корня

Действительно, число Извлечение квадратного корня уже вычислялось при вычислении поправки, а вычисление произведения Извлечение квадратного корня выполняется без труда. Если исследуемая разность все же окажется отрицательной, то это обозначает, что вычисленная поправка велика и ее следует еще уменьшить.

Рассмотрим пример на применение этих соображений. Пример. Вычислить Извлечение квадратного корня с точностью до 0,1.

Решение. В качестве первого приближения возьмем а = 9. В качестве поправки следует взять число, немного меньшее, чем

Извлечение квадратного корня

Берем поправку b = 0,6. Эта поправка дает значение с недостатком, ибо

Извлечение квадратного корня

Таким образом, число a + b = 9,6 есть приближение к Извлечение квадратного корня с недостатком. Число 9,7 является приближением с избытком, ибо поправка Извлечение квадратного корня , в силу сказанного выше, уже больше
истинной, а поправка 0,7 и подавно. Итак, с точностью до Извлечение квадратного корня Извлечение квадратного корня (с недостатком).

Все вычисления очень удобно производить по следующей схеме:

Извлечение квадратного корня

Порядок действий следующий:

1) пишем данное число под знаком корня;
2) определяем целую часть корня 9, возводим ее в квадрат и вычитаем из подкоренного выражения;
3) слева от полученной разности проводим вертикальную черту и слева от нее запишемИзвлечение квадратного корня 4) приближенно делим разность 11,43 на 18 с точностью до 0,1 с недостатком. Получаем 0,6;
5) к числу 18 добавляем 0,6 и сумму умножаем на 0,6. Произведение записываем под ранее вычисленной разностью 11,43 и вычитаем из нее. Так как последняя разность 0,27 оказалась положительной, то вычисление заканчивается. Число 0,6 присоединяется к числу 9 в качестве поправки. Напоминаем, что последняя разность 0,27 есть разность чисел 92,43 и Извлечение квадратного корня

Пример:

Вычислить Извлечение квадратного корня с точностью до 0,1.

Решение:

Решаем этот пример, пользуясь той же схемой:

Извлечение квадратного корня

При делении числа 15 на 6 мы получим, после округления, 0,8. Однако такая поправка слишком велика, так как 6,8 • 0,8 = 5,44 > 5. Примем в качестве поправки 0,7.

Извлечение квадратного корня

Поправка 0,7 оказалась подходящей.

Последняя разность 0,31 есть Извлечение квадратного корня К числу 5 мы приписали нули после запятой, чтобы было удобнее производить вычитание.

Пример:

Вычислить Извлечение квадратного корня с точностью до 0,l. Решение.

Извлечение квадратного корня

При делении числа 2,41 на 2 получается с точностью до 0,1 число 1,2, которое явно велико в качестве поправки. Такой плохой результат получается потому, что здесь поправка совсем немала по сравнению с первым приближением, и поэтому приближенное равенство
Извлечение квадратного корня оказывается очень грубым.

Даже 0,9 велико в качестве поправки, ибо 2,9 • 0,9 = 2,61 >2,41. Берем 0,8.

Извлечение квадратного корня

Извлечение квадратного корня из числа, заключенного между 1 и 100, с точностью до 0,01

Пример:

Извлечь квадратный корень из числа 92,4317 с
точностью до 0,01.

Решение:

Сначала извлекаем корень с точностью до 0,1,
пользуясь уже рассмотренным способом:

Извлечение квадратного корня

Легко сообразить, что следует делать дальше. Примем а = 9,6 за исходное приближение и ищем для него поправку по прежнему правилу. Вычислять снова разность Извлечение квадратного корня нам не нужно, ибо эта разность уже вычислена, ©на равна последней разности 0,2717. Мы должны поделить эту разность на 2-9,6 = 19,2 с точностью до 0,01. Получившуюся поправку b = 0,01 добавить к 2а =19,2, полученное число 2а -}-&= 19,21 умножить на 6 = 0,01 и сравнить с разностью 0,2717. Все эти действия удобно провести по прежней схеме. Полная запись будет выглядеть так:

Извлечение квадратного корня

Последняя разность 0,0796 есть Извлечение квадратного корня

Заметим, что мы могли бы не записывать в третьей строчке две последние цифры, так как их роль сказывается только в пятой строчке. Далее, для упрощения записи можно было бы не писать запятых и
нулей перед значащими цифрами, имея при этом в виду, что тогда при делении Извлечение квадратного корня последнюю цифру делимого нужно отбрасывать, выполняя деление с точностью до целого.

Принимая все это во внимание, запись можно провести так:

Извлечение квадратного корня

Продолжая вычисления, мы можем извлечь корень с точностью до 0,001; 0,0001 и т. д.

Извлечение квадратного корня из любого данного числа с любым заданным числом десятичных знаков

Способ извлечения квадратного корня, изложенный в § 5 и 6, применялся там только к числам, заключенным между 1 и 100, т. е. к числам с однозначной или двузначной целой частью. Однако этот способ легко распространяется на любые положительные числа, целые или заданные десятичной дробью. Это следует из того, что при умножении подкоренного числа на 100 корень увеличивается в 10 раз, а при делении подкоренного числа на 100 корень уменьшается в 10 раз.

Действительно, если Извлечение квадратного корня то Извлечение квадратного корня

так как Извлечение квадратного корня Извлечение квадратного корня а

Извлечение квадратного корня

ибо

Извлечение квадратного корня

Умножение или деление на 100 равносильно перенесению запятой на два разряда вправо или влево. Умножение или деление на 10 равносильно перенесению запятой на один разряд. Повторное умножение или деление на 100 равносильно перенесению запятой на четное число урядов. Очевидно, что за счет такого перенесения запятой в подкоренном числе можно добиться того, чтобы целая часть нового подкоренного числа оказалась однозначным или двузначным числом.

К этому числу можно применить указанный прием для извлечения квадратного корня. Чтобы получить корень из исходного числа, нужно в полученном корне перенести запятую в обратном направлении на вдвое меньшее число разрядов.

Например, чтобы извлечь корень Извлечение квадратного корня мы сначала перенесем запятую на два разряда вправо. Извлечение квадратного корня мы вычислили; он равен 9,61 (с точностью до 0,01). Следовательно, Извлечение квадратного корня (с точностью до 0,001).

Сформулируем теперь общее правило для извлечения корня из данного числа с данным числом десятичных знаков, обобщив в этом правиле все высказанные выше соображения.

Правило. Чтобы извлечь квадратный корень из данного положительного целого или записанного в виде десятичной дроби числа с, данной точностью, нужно:

Целая часть, вычисляемая в п. 5 правила, может оказаться больше 9 только на первом шагу вычислений, т. е. при вычислении второй цифры.

  1. Записать это число под знаком квадратного корня и разбить его цифры на «грани» по две цифры в каждой, начиная от запятой, вправо и влево. Если требуется вычислить корень с точностью до 1, то грани, расположенные направо от запятой, можно отбросить. Если требуется вычислить корень с точностью до 0,1, следует справа от запятой сохранить одну грань, при вычислении с точностью до 0,01 оставить две грани и т. д. Если при этом окажется, что цифр для заполнения нужного числа граней не хватает, приписать надлежащее количество нулей.
  2. Извлечь корень из старшей грани с точностью до 1, с недостатком (или точно, если это возможно). Полученное число принять за первую цифру искомого корня.
  3. Из старшей грани вычесть квадрат первой цифры и к полученной разности приписать вторую грань. Слева от полуденного результата провести вертикальную черту.
  4. Слева от черты записать удвоенную первую цифру.
  5. Найти целую часть частного от деления числа десятков первой разности на число, записанное слева. Если полученное число окажется больше 10, заменить числом 9.
  6. Полученное однозначное число подвергнуть следующему испытанию: приписать его в качестве цифры к числу, записанному слева, получившееся число умножить на испытуемое однозначное число и сравнить произведение с разностью, записанной справа от черты. Если это произведение больше указанной разности, уменьшить испытуемое число на одну единицу и вновь подвергнуть испытанию.
  7. Если после испытания произведение окажется меньше указанной разности, подписать его под ней и вычесть. Испытанное однозначное число принять за вторую цифру корня.
  8. К вновь полученной разности приписать следующую грань и определить третью цифру тем же приемом, каким била определена вторая цифра.
  9. Продолжать аналогичные вычисления до тех пор, пока не будет достигнута требуемая точность.
  10. Запятую в результате нужно поставить после того, как будут исчерпаны грани, предшествующие запятой в подкоренном числе.

Отрицательный результат испытания в п. 6 правила довольно часто имеет место на первом шагу вычислений, когда поправка еще не очень мала, по
сравнению с первым приближением. На дальнейших шагах вычислений отрицательный результат испытания получается крайне редко.

Если подкоренное число имеет 0 целых и вслед затем следует нуль, корень имеет тоже 0 целых и затем столько нулей, сколько граней из нулей следует за запятой в подкоренном числе. Первая значащая цифра корня есть целая часть корня из первой значащей грани подкоренного числа.

Применение графиков для приближенного решения уравнений и систем двух уравнений с двумя неизвестными

Мы уже не раз пользовались графиками для приближенных вычислений. Графический способ решения задач является очень полезным для приложений вследствие большой простоты и наглядности. Конечно, им следует пользоваться только в тех случаях, когда не требуется очень большой точности результата. Достоинством графического
способа является также его большая общность. В частности, с помощью графиков можно решать приближенно даже довольно сложные уравнения и системы уравнений. Не вдаваясь в общую теорию построения графиков и их применений* ограничимся рассмотрением двух примеров.

Пример:

Решить приближенно уравнение

Извлечение квадратного корня

Решение:

Построим сначала график зависимости

Извлечение квадратного корня

а затем найдем на этом графике точки, для которых у = 0. Абсциссы этих точек и дадут решения уравнения. Прежде всего вычислим таблицу значений:

Извлечение квадратного корня

По этой таблице строим график (рис. 28), соединяя точки возможно более плавной линией. Из этого графика мы видим, что интересующих нас точек имеется три. Их абсциссы приближенно равны —1,8; 0,3 и 1,5. Следовательно, уравнение

Извлечение квадратного корня

имеет три решения

Извлечение квадратного корня

Чтобы найти более точные значения для корней уравнения, нужно построить с большей точностью и в большем масштабе участки графика, примыкающие к интересующим нас точкам.

Извлечение квадратного корня

Пример:

Решить приближенно систему уравнений

Извлечение квадратного корня

Для решения задачи строим на одном чертеже графики зависимостей Извлечение квадратного корня и Извлечение квадратного корня Нас интересуют точки, координаты которых связаны обеими зависимостями, т.е. точки, принадлежащие обоим графикам. Такими точками, являются точки пересечения графиков. Вычислим таблицы значений.

Извлечение квадратного корня

При вычислении второй таблицы мы придавали конкретные значения величине у и вычисляли соответствующие значения для х. Здесь это удобно, так как уравнение, определяющее зависимость, решено относительно х.

Графики по этим таблицам изображены на рис. 29. Мы видим, что графики пересекаются в четырех точках. Следовательно, система имеет четыре решения.

Извлечение квадратного корня

Приближенные решения системы даются следующими значениями для х и у:

Извлечение квадратного корня

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Дата публикации: 09 апреля 2017.

График функции квадратного корня

Ребята, с построением графиков функций мы с вами уже встречались, и не раз. Мы строили множества линейных функций и парабол. В общем виде любую функцию удобно записать, как $y=f(x)$. Это уравнение с двумя переменными – для каждого значения x мы получаем y. Выполнив некоторую заданную операцию f, мы отображаем множество всех возможных x на множество y. В качестве функции f мы можем записывать практически любую математическую операцию.

Обычно при построении графиков функций мы пользуемся таблицей, в которой записываем значения х и у. Например, для функции $y=5x^2$ удобно использовать следующую таблицу:
Функция корня квадратного
Отметим полученные точки на декартовой системе координат и аккуратно соединим их гладкой кривой. Наша функция не ограничена. Только этими точками мы можем подставить совершенно любое значение х из заданной области определения, то есть тех х, при которых выражение имеет смысл.

На одном из прошлых уроков мы изучили новую операцию извлечения корня квадратного. Возникает вопрос, а можем ли мы, используя эту операцию, задать какую-нибудь функцию и построить ее график? Воспользуемся общим видом функции $y=f(x)$. y и х оставим на своем месте, а вместо f введем операцию корня квадратного: $y=sqrt{x}$.
Зная математическую операцию, мы смогли задать функцию.

Построение графика функции квадратного корня

Давайте построим график этой функции. Исходя из определения корня квадратного, мы можем вычислять его только из неотрицательных чисел, то есть $x≥0$.
Составим таблицу:
Функция корня квадратного - построение
Отметим наши точки на координатной плоскости.
Функция корня квадратного, отмечаем точки
Нам осталось аккуратно соединить полученные точки.
Функция корня квадратного
Ребята, обратите внимание: если график нашей функции повернуть на бок, то получится левая ветка параболы. На самом деле, если строчки в таблице значений поменять местами (верхнюю строчку с нижней), то у нас получаться значения, как раз для параболы.

Область определения функции $y=sqrt{x}$

Используя график функции, свойства описать довольно таки просто.
1. Область определения: $[0;+∞)$.
2. $у=0$ при $х=0$, $у>0$ при $х>0$.
3. Чем больше х, тем больше у. Значит наша функция возрастает, то есть мы движемся, как будто «в горку». Функция возрастает на всей области определения.
4. Из графика хорошо видно, что наименьшее значение функции равно 0 при $х=0$. Наибольшего значения нет, функция постоянно растет.
5. Непрерывная функция. Мы не видим ни каких точек разрыва, везде проходит сплошная линия.

Принято выделять еще одно свойство.
Выпуклость. Принято считать, что функции выпуклы либо вверх, либо вниз. Посмотрев на наш график, заметно, что функция как бы выпячивается вверх.
6. Выпукла вверх.

Те значения, которые может принимать y называются «множеством значением функции». Их также удобно находить по графику. Смотрим область изменения функции по оси ординат. Как изменяется функция: вверх или вниз?
7. Область значений: $[0;+∞)$.

Примеры решения функции квадратного корня

Пример 1.
Найти наибольшее и наименьшее значение функции корня квадратного на отрезке:
а) $[4;9]$.
б) $[2;11]$.

Решение.
Мы можем решить наш пример двумя способами. В каждой букве опишем разные способы.

а) Вернемся к графику функции, построенному выше, и отметим требуемые точки отрезка. Хорошо видно, что при $х=9$ функция больше всех остальных значений. Значит и наибольшее значение она достигает в этой точке. При $х=4$ значение функции ниже всех остальных точек, а значит, тут и есть наименьшее значение.

$y_{наиб}=sqrt{9}=3$, $y_{наим}=sqrt{4}=2$.

б) Мы знаем, что наша функция возрастающая. Значит, каждому большему значению аргумента соответствует большее значение функции. Наибольшее и наименьшее значение достигаются на концах отрезка:

$y_{наиб}=sqrt{11}$, $y_{наим}=sqrt{2}$.

Пример 2.
Решить уравнение:

$sqrt{x}=12-x$.

Решение.
Проще всего построить два графика функции и найти их точку пересечения.
Функция уравнения корня квадратного
На графике хорошо видна точка пересечения с координатами $(9;3)$. А значит, $х=9$ – решение нашего уравнения.
Ответ: $х=9$.

Ребята, а можем ли мы быть уверены, что больше решений у этого примера нет? Одна из функций возрастает, другая – убывает. В общем случае, они либо не имеют общих точек, либо пересекаются только в одной.

Пример 3.

Построить и прочитать график функции:

$begin {cases} -x, x<0, \ sqrt{x}, 0≤x≤9 \ 12-x, x>9. end {cases}$

Нам нужно построить три частных графика функции, каждый на своем промежутке.
Построить график функции
Опишем свойства нашей функции:
1. Область определения: $(-∞;+∞)$.
2. $y=0$ при $х=0$ и $х=12$; $у>0$ при $хϵ(-∞;12)$; $y<0$ при $хϵ(12;+∞)$.
3. Функция убывает на отрезках $(-∞;0)U(9;+∞)$. Функция возрастает на отрезке $(0;9)$.
4. Функция непрерывна на всей области определения.
5. Наибольшего и наименьшего значения нет.
6. Область значений: $(-∞;+∞)$.

Задачи для самостоятельного решения

1. Найти наибольшее и наименьшее значение функции корня квадратного на отрезке:
а) $[25;64]$;
б) $[3;7]$.
2. Решить уравнение: $sqrt{x}=30-x$.
3. Построить и прочитать график функции: $begin {cases} 2-x, x<1, \ sqrt{x}, 1≤x≤4 \ 10-2x, x>4. end {cases}$
4. Построить и прочитать график функции: $y=sqrt{-x}$.

Квадратный корень – это элементарная функция и частный случай степенной функции при . Арифметический квадратный корень является гладким при , а нуле он непрерывен справа, но не дифференцируется.

Как функция комплексный переменный корень — двузначная функция, у которой листы сходятся в нуле.

х

2. Наносим точки, которые мы получили на координатную плоскость.

3. Соединяем эти точки и получаем график функции квадратного корня:

Преобразования графика функции квадратного корня.

Определим, какие преобразования функции необходимо сделать для того, чтобы построить графики функций. Определим виды преобразований.

Перенос функции по оси OY на 4 ед. вверх.

Перенос функции по оси OX на 1 ед. вправо.

График приближается к оси OY в 3 раза и сжимается по оси .

График отдаляется от оси OX в 2 раза и растягивается по оси OY.

График отдаляется от оси OY в 2 раза и растягивается по оси .

Симметричное отображение графика относительно оси ОX.

Предыдущий график отдаляется от оси OX в 3 раза и растягивается по оси OY.

Симметричное отражение графика относительно оси OY, при этом верхняя часть графика I четверти остаётся без изменений, а находящаяся в II четверти график исчезает, симметрично отображаясь относительно оси OX.

Зачастую преобразования функций оказываются комбинированными.

Например, нужно построить график функции . Это график квадратного корня , который нужно перенести на одну единицу вниз по оси OY и на единицу вправо по оси ОХ и одновременно растянув в 3 раза его по оси OY.

Бывает непосредственно перед построением графика функции, нужны предварительные тождественные преобразования либо упрощения функций.

Функция y = √x. Её свойства и график. Решение задач

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На сегодняшнем уроке мы повторим определение квадратного корня, свойства функции y = √x и ее график, а затем рассмотрим несколько задач, при решении которых будет использоваться построение графика данной функции.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Функции»

Квадратичная (Квадратная) функция и её графики с примерами решения и построения

Квадратичная функция — целая рациональная функция второй степени вида . Уравнение квадратичной функции содержит квадратный трёхчлен. Графиком квадратичной функции является парабола. Многие свойства графика квадратичной функции так или иначе связаны с вершиной параболы, которая во многом определяет положение и внешний вид графика.

Формула корней квадратного уравнения

В первой части курса были выведены следующие формулы для определения корней неполного и полного квадратных уравнений:

1) αx²=0; очевидно, оба корня уравнения равны нулю.
2) αx²+с=0; формула для корней будет:
3) αx² +bx=0; тогда x₁ =0; х₂ =
4) x² + +q=0; формула корней даёт:
или: .
5) Наконец, общая формула для корней полного квадратного уравнения вида αx²+bx+c=0 будет:

Последняя формула является наиболее общей; из неё как частные случаи получаются все остальные. Так, полагая в этой формуле α=l, получаем случай (4) (в этом случае b=p и c=q); полагая с=0, получаем случай (3); при b=0 будем иметь случай (2) и, наконец, первый случай получим, давая в общей формуле значения b=c=0.

Дискриминант

Рассмотрим различные случаи, которые могут встретиться при решении квадратного уравнения в зависимости от числового значения коэффициентов.

1. b² — 4αc>0. В этом случае выражение под корнем положительно. Квадратный корень из него имеет два значения, и, следовательно, уравнение имеет два различных вещественных корня:
и .

2. b² — 4αc=0. В этом случае второй член числителя равен нулю, и уравнение имеет два равных корня:

3. b² — 4αc Свойства корней квадратного уравнения (теорема Виета)

Возьмём формулу корней квадратного уравнения, у которого коэффициент при x² равен единице, т. е. уравнения вида x²+ +q=0:

Если сложим почленно эти равенства, то радикалы взаимно уничтожатся, и мы получим:

Если те же равенства почленно перемножим, то получим (произведение суммы двух чисел на их разность равно разности квадратов этих чисел):

Каково бы ни было подкоренное число, всегда

Следовательно:

Таким образом:
Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение этих корней равно свободному члену.

Теперь возьмём квадратное уравнение общего вида αx²+bx+c=0. Разделив все его члены на а, мы приведём это уравнение к только что рассмотренному виду:

следовательно, для неприведённого полного уравнения мы должны иметь:
и .

Следствия:

1) Пользуясь этими свойствами, мы легко можем составить квадратное уравнение, у которого корнями были бы данные числа.

Пусть, например, надо составить уравнение, у которого корни были бы числа 2 и 3. Тогда из равенства 2+3= — р и 2∙3 = q находим: р = — 5 и q=6; следовательно, уравнение будет: x²-5x+6=0.

Подобно этому найдём,что 3 и -7 будут корни уравнения x²- [3+(- 7)]x+3( -7) = 0, т. е. x²+4x-21=0; числа 3 и 0 будут корни уравнения — 3x=0.

2) При помощи тех же свойств мы можем, не решая квадратного уравнения, определить знаки его корней, если эти корни вещественные. Пусть, например, имеем уравнение +8x+12=0. Так как в этом примере выражение , т. е. 4² -12, есть число положительное, то оба корня вещественные. Обращая внимание на свободный член, видим, что он имеет знак +; значит, произведение корней должно быть положительное число, т. е. оба корня имеют одинаковые знаки. Эти знаки должны быть минусы, так как сумма корней отрицательна (она равна — 8). Уравнение +8x-12=0 имеет корни с разными знаками (потому что их произведение отрицательно), причём отрицательный корень имеет большую абсолютную величину (потому что их сумма отрицательна) и т. п.

Трёхчлен второй степени

Выражение αx²+bx+c, в котором х означает независимое переменное, а α, b и с — какие-нибудь данные, постоянные числа, называется квадратной функцией, или трёхчленом второй степени. Различие между таким трёхчленом и левой частью уравнения αx²+bx+c=0 состоит в том, что в уравнении буква х означает только те числа, которые удовлетворяют уравнению, тогда как в трёхчлене она означает какое угодно число. Значения х, обращающие трёхчлен в нуль, называются его корнями; значит, корни трёхчлена-это корни квадратного уравнения:
αx² +6x+c=0.

В частном случае при α=1 трёхчлен принимает вид: x²+ +q; при b=0 или при с=0 трёхчлен обращается в двучлен αx²+c или αx²+bx.

Разложение трёхчлена второй степени

Сначала возьмём трёхчлен + +q, в котором коэффициент при есть 1. Решив приведённое уравнение + +q=0, мы найдём корни его х₁ и х₂ . Как мы сейчас видели: х₁+х₂ =-p и хх₂ =q.

Таким образом:
Трёхчлен x² +q разлагается на два множителя, из которых первый равен разности между х и одним корнем трёхчлена, а второй равен разности между х и другим корнем трёхчлена.

Примеры:


Теперь возьмём трёхчлен αx²+bx+c, в котором коэффициент при есть какое угодно число. Этот трёхчлен можно представить так:

Выражение, стоящее внутри скобок, есть трёхчлен вида + +q . Его корни х₁ и х₂ будут те же самые, что трёхчлена αx²+bx+c. Найдя их, мы можем, по доказанному, разложить этот трёхчлен так:

Следовательно: αx²+bx+c =α(xх₁) (хх₂).

Таким образом, разложение трёхчлена αx²+bx+c отличается от разложения трёхчлена + +q только дополнительным множителем α.

Примеры:
1) Трёхчлен 2 — 2х -12, корни которого 3 и — 2, можно разложить так: 2(x — 3)(x+2).

2) Трёхчлен 3 + х +1, корни которого следующие:

разлагается так:

3) 6abx² — ( 3b³ +2α³)x+a²b² .
Корни этого трёхчлена следующие:

Поэтому:

4) Сократить дробь:

Разложим числитель и знаменатель на множители и затем, если можно, сократим дробь. Так как корни числителя 3 и —2, а корни знаменателя и — 2, то дробь представится так:

Следствие:

По данным корням можно составить квадратное уравнение. Так, уравнение, имеющее корни З и -2, будет:
(x-3)[x-( — 2)] =0, т. е. (х — 3)(x+2)=0,
что по раскрытии скобок даёт: х — 6 = 0. Конечно, все члены этого уравнения можно умножить на произвольное число, не зависящее от х (например, на 2), отчего корни не изменятся.

Сократить следующие дроби (предварительно разложив числитель и знаменатель каждой дроби на множители):

Разложив на множители следующие трёхчлены, определить, для каких значений х эти трёхчлены будут давать положительные числа и для каких — отрицательные:

График квадратной функции

Графиком квадратичной функции является парабола.

График функции у=

Обратим внимание на следующие особенности функции y=;

а) При всяком значении аргумента х функция определена и получает только одно значение. Например, при x = — 10 значение функции будет (-10)² = 100, при x = 1000 значение функции будет 1000² = 1 000 000 и т. п.

б) Так как (—x)² =x² , то при двух значениях х, отличающихся только знаками, получаются два одинаковых положительных значения у; например, при х = — 2 и при x =+2 значение у будет одно и то же, именно 4. Отрицательных значений для у никогда не получается.

в) Если абсолютная величина х неограниченно увеличивается, то и у неограниченно увеличивается. Так, если для х будем давать ряд неограниченно возрастающих положительных значений: 1, 2, 3, 4,… или ряд неограниченно убывающих отрицательных значений: -1, -2, -3, -4, … ,то для у получим ряд неограниченно возрастающих значений: 1, 4, 9, 16, 25, … .
Заметив эти свойства, составим таблицу значений функции у= x²; например, такую:

x -2 -1,5 -1 -0,5 0 0,5 1 1,5 2
у 4 2,25 1 0,25 0 0,25 1 2,25 4

Изобразим теперь эти значения на чертеже 16 в виде точек, абсциссы которых будут выписанные значения х, а ординаты — соответствующие значения у (на чертеже за единицу длины мы приняли отрезок O1); полученные точки соединим кривой. Кривая эта называется параболой. Рассмотрим некоторые её свойства:

а) Вся кривая расположена по одну сторону от оси х-ов, именно — по ту сторону, по какую лежат положительные значения ординат.

б) Парабола разделяется осью у-ов на две части (ветви). Точка О, в которой эти ветви сходятся, называется вершиной параболы. Эта точка есть единственная общая точка параболы и оси х-ов.

в) Обе ветви бесконечны, так как х и у могут увеличиваться беспредельно. Ветви поднимаются от оси х-ов неограниченно вверх, удаляясь в то же время неограниченно от оси у-ов вправо и влево.

г) Ось у-ов служит для параболы осью симметрии, так что если перегнуть чертёж по этой оси так, чтобы левая половина чертежа упала на правую, то обе ветви совместятся; например, точка с абсциссой — 2 и с ординатой 4 совместится с точкой, имеющей абсциссу +2 и ту же ординату 4.

Черт. 16

График функции у=

Предположим сначала, что а есть число положительное. Возьмём, например, такие две функции:

Составим таблицы значений этих функций, например такие:

x -2 -1 0 1 2
у 6 0 6
x -3 -2 -1 0 1 2
у 3 0

Нанесём все эти значения на чертёж 17 и проведём кривые. Для сравнения мы поместили на том же чертеже (прерывистой линией) ещё график функции: 3) y= .

x -2 -1 0 1 2
y 4 1 0 1 4

Из чертежа видно, что при одной и той же абсциссе ордината первой кривой в раза больше, а ордината второй кривой в 3 раза меньше, чем ордината третьей кривой. Эти кривые имеют общий характер: бесконечные ветви, ось симметрии и пр., только при α>1 ветви кривой более приподняты вверх, а при α Черт. 17.

Замечание:

Если зависимость между двумя переменными величинами у и х выражается равенством y=ax² , где a — какое-нибудь постоянное число, то можно сказать, что величина у пропорциональна квадрату величины х, так как с увеличением или уменьшением х в 2 раза, в 3 раза и т. д. величина у увеличивается или уменьшается в 4 раза, в 9 раз, в 16 раз и т. д.

Например, площадь круга равна πR² , где R есть радиус круга и π — постоянное число; поэтому можно сказать, что площадь круга пропорциональна квадрату его радиуса.

График функции y=ax²+b

Пусть мы имеем следующие три функции:

Очевидно, что при одном и том же значении аргумента х ордината второй функции больше, а ордината третьей функции меньше на 2 единицы, чем соответствующая ордината первой функции. Поэтому вторая и третья функции изобразятся на чертеже той же параболой, что и первая функция, только парабола эта должна быть поднята вверх (для второй функции) и опущена вниз (для третьей функции) на 2 единицы длины.

Вообще график функции y=ax²+b есть та же парабола, которая изображает функцию у=ax², только парабола эта должна быть поднята вверх, если b>0, опущена вниз, если b График трёхчлена второй степени

Сначала мы рассмотрим график такого трёхчлена, который может быть представлен в виде произведения a (x+m)² . Например, возьмём такие две функции:
и

Для сравнения изобразим на том же чертеже ещё параболу:

Предварительно составим таблицу частных значений этих трёх функций; например, такую:

x= -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1 0 1 4 9 16
9 4 1 0 1 4
4 1 0 1 4 9

Нанеся все эти значения на чертёж, получим три графика, изображённые на чертеже 19.

Рассматривая этот чертёж, мы замечаем, что кривая 1 есть та же парабола 3, только перенесённая на 2 единицы влево, а кривая 2 есть та же парабола 3, но перенесённая на 2 единицы вправо.

Обобщая этот вывод, мы можем сказать, что график функции y=a(x+m)² есть парабола, изображающая функцию y=ax² , только парабола эта перенесена влево, если m>0, и в правд, если m 0, как в наших примерах, и вниз, если α Графический способ решения квадратного уравнения

Квадратное уравнение можно графически решить таким способом:

Черт. 20.

построив на миллиметровой бумаге параболу, изображающую трёхчлен, стоящий в левой части уравнения, находим точки пересечения этой параболы с осью х-ов. Абсциссы этих точек и будут корни уравнения, так как при этих абсциссах ординаты, изображающие соответствующие значения трёхчлена, равны нулю.

Примеры:

График левой части этого уравнения изображён кривой 3 (черт. 20). На нём мы видим, что парабола пересекается с осью х-ов в двух точках, абсциссы которых —1 и —5. Это и будут корни уравнения.

Это можно проверить, решив уравнение посредством общей формулы или путём подстановки.


Составив таблицу частных значений трёхчлена

x -2 -1 0 1 2 3 4 5 6
y 8 2 0 2 8

мы построим параболу (черт. 21). Эта парабола не пересекается с осью х-ов, а только её касается в точке с абсциссой 2. Уравнение в этом случае имеет только один корень 2 (точнее, два равных корня).

Черт. 21.

x -3 -2 -1 0 1 2 3 4
y 14 8 4 2 2 4 8 14

Парабола (черт. 22) не пересекается и не касается оси х-ов; уравнение не имеет вещественных корней.

Укажем ещё следующий приём графического решения квадратного уравнения. Пусть требуется решить уравнение:
— 1,5х — 2=0.

Каждая часть этого уравнения, рассматриваемая отдельно, есть некоторая функция от х. Обозначим функцию, выражаемую левой частью уравнения, буквой y₁ , а функцию, выражаемую правой частью уравнения, буквой у₂ . Первая функция на чертеже 23 изобразится параболой, а вторая — прямой. Построив на одном и том же чертеже графики этих двух функций, мы найдём, что прямая и парабола пересекаются в двух точках, абсциссы которых приблизительно выражаются числами 2,35 и — 0,85. Это и будут приближённые значения корней данного уравнения, так как при каждой из этих абсцисс ординаты y₁, у₂ равны между собой, и, следовательно, =l,5x+2.

Если случится, что прямая с параболой не пересекается, то уравнение не имеет вещественных корней; если же прямая коснётся параболы, то уравнение имеет один корень, равный абсциссе точки касания.

Биквадратное уравнение

Уравнение четвёртой степени, например такое:
x⁴ — 13x² + 36=0,
в которое входят только чётные степени неизвестного, называется биквадратным. Оно приводится к квадратному, если заменим х² через у и, следовательно, x⁴ через у² ; тогда уравнение обратится в квадратное:
у² — 13y+36=0.

Решим его:

Но из равенства x²=y видно, что x=± √y. Подставляя сюда на место у найденные числа 9 и 4, получим следующие четыре решения данного уравнения:
x₁ = +√ 9 = 3;
x₂ = -√ 9 = -3;
x₃ = + √4 =2;
x₃ = — √4 = -2.

Составим формулы для решения биквадратного уравнения общего вида:
ax⁴ +bx² + c=0.

Положив x²=y, получим уравнение ay² + by + c=0, из которого находим:

Но так как x=± √y , то для биквадратного уравнения мы получим следующие четыре решения:



Отсюда видно, что если b² — 4ac 0, то могут быть три случая (мы полагаем a > 0):
1) все корни вещественные (как в приведённом выше численном примере), если и
2) все корни мнимые, если оба эти выражения дадут отрицательные числа, и 3) два корня вещественные и два мнимые, если , . Наконец, если b² — 4ac = 0 , то четыре корня попарно равны.

Уравнения, левая часть которых разлагается на множители, а правая есть нуль

Решение таких уравнений сводится к решению уравнений более низких степеней. Так, мы видели, что для решения неполного квадратного уравнения вида ax² + bx=0 достаточно его левую часть разложить на два множителя: x(ax + b) = 0 и затем, приняв во внимание, что произведение равно нулю только тогда, когда какой-нибудь сомножитель равен нулю, свести решение этого уравнения к решению двух уравнений первой степени: x=0 и ax + b=0.

Подобно этому можно решить неполное кубическое уравнение, не содержащее свободного члена; например, такое:
x³ + 3x² — 10x = 0.

Вынеся х за скобки, мы представим уравнение так:
x (x² +3x — 10) = 0,

из которых находим три решения:

Пусть некоторое уравнение приведено к такому виду:
x(x+4)(x²-5x+6)=0.

Тогда оно распадается на три уравнения:
x = 0; x + 4 = 0; x² — 5x + 6 = 0

Двучленное уравнение

Двучленным уравнением называется уравнение вида , или, что то же самое, вида . Обозначив абсолютную величину числа через q, мы можем двучленное уравнение записать или , или . При помощи вспомогательного неизвестного эти уравнения всегда можно упростить так, что свободный член у первого обратится в +1, а у второго в — 1. Действительно, положим, что , где есть арифметический корень m-й степени из q; тогда , и уравнения примут вид:

т.е. откуда
или
т.е. откуда

Итак, решение двучленных уравнений приводится к решению уравнений вида . Решение таких уравнений элементарными способами может быть выполнено только при некоторых частных значениях показателя m. Общий приём, употребляемый при этом, состоит в разложении левой части уравнения на множители, после чего уравнение приводится к виду, рассмотренному нами раньше.

Решение двучленных уравнений третьей степени

Эти уравнения следующие: х³ —1=0 и х³ + l=0.

мы можем предложенные уравнения записать так:
(х -1)(x² + х +1) = 0 и ( х +1 ) ( x² — х +1)=0.

Значит, первое из них имеет своими корнями корни уравнений: x-1=0 и x²+ x +1=0, а второе — корни уравнений: x+1=0 и x²- x +1=0.

Решив их, находим, что уравнение х³ — 1=0 имеет следующие три корня:

из которых один вещественный, а два мнимых; уравнение х³ + 1 = 0 имеет три корня:

из которых также один вещественный и два мнимых.

Различные значения корня

Решение двучленных уравнений имеет тесную связь с нахождением всех значений корня (радикала) из данного числа. В самом деле, найти , очевидно, всё равно, что решить уравнение , , и потому, сколько это уравнение имеет различных решений, столько имеет различных решений.

Основываясь на этом замечании, покажем, например, что корень кубичный из всякого вещественного числа (не равного нулю) имеет три различных значения.

Рассмотрим сначала случай положительного числа А. Пусть требуется найти , т. е., другими словами, требуется решить уравнение х³-А=0. Обозначив арифметическое значение буквой q, положим, что x=qy. Тогда уравнение х³ — А=0 можно представить так: q³y³ — А = 0. Но q³=A, поэтому q³y³ — A=A( y³ — 1), и уравнение примет вид: y³ — 1=0.

Мы видели, что это уравнение имеет три
корня:

Каждое из этих значений, удовлетворяя уравнению y³ = l, представляет собой кубичный корень из 1. Так как x=qy, то

Это и будут три значения ; одно из них вещественное (арифметическое), а два — мнимые. Все они получатся, если арифметическое значение умножим на каждое из трёх значений .

Например, кубичный корень из 8 имеет три следующих значения:

Если A Трёхчленное уравнение

Так называется уравнение вида:

(частный случай такого вида при n=2 есть биквадратное уравнение). Оно приводится к квадратному, если введём вспомогательное неизвестное . Тогда уравнение примет вид:
ay²+by+c=0,
откуда:

Следовательно:

Решив, если возможно, это двучленное уравнение, найдём все значения х.

Пример:

x⁶- 9x³ + 8=0.

y₁=8; y₂=1;
следовательно:
x³=8 и x³=1.

Решив эти двучленные уравнения третьей степени, получим шесть значений для х:

Системы уравнений второй степени

Степень уравнения с несколькими неизвестными: Чтобы определить степень уравнения, в которое входят несколько неизвестных, надо предварительно это уравнение упростить (раскрыть скобки, освободить от радикалов и знаменателей, которые содержат неизвестные, и сделать приведение подобных членов). Тогда степенью уравнения называется сумма показателей при неизвестных в том члене уравнения, в котором эта сумма наибольшая.

Например, три уравнения: x²+2xyx+2=0, 3xy=4, 2x+y² — у=0 будут уравнениями второй степени с двумя неизвестными; уравнение 3x²yy² + x+10 = 0 есть уравнение третьей степени (с двумя неизвестными) и т. п.

Заметим, что сумма показателей при неизвестных в каком-нибудь члене уравнения называется его измерением. Так, члены 2xy, 5x² , Зу² — второго измерения, члены 0,2x²y, 10xy² , xyz — третьего измерения и т. п. Член, не содержащий неизвестных, называется членом нулевого измерения.

Заметим ещё, что уравнение называется однородным, если все его члены — одного и того же измерения. Так, 3x² + xy — 2y²=0 есть однородное уравнение второй степени с двумя неизвестными.

Мы рассмотрим сейчас, как решаются некоторые простейшие системы уравнений второй степени с двумя неизвестными.

Общий вид полного уравнения второй степени с двумя неизвестными есть следующий:
ax² +bxy+cy² +dx+ey+j=0.

В нём первые три члена — второго измерения, следующие два члена — первого и последний (свободный) член — нулевого. Коэффициенты а, b, с, … могут быть числами положительными, отрицательными, а также равными нулю (конечно, три коэффициента а, b и с не предполагаются одновременно равными нулю, так как в противном случае уравнение было бы не второй, а первой степени).

Мы рассмотрим сейчас, как решаются простейшие системы двух уравнений второй степени с двумя неизвестными.

Системы двух уравнений, из которых одно первой степени, а другое—второй

Пусть дана система:

Всего удобнее такую систему решить способом подстановки следующим путём. Из уравнения первой степени определяем одно какое-нибудь неизвестное как функцию от другого неизвестного; например, определяем у как функцию от х:
y=2x — 1.

Тогда уравнение второй степени после подстановки даёт уравнение с одним неизвестным х:
— 4(2x — l)² + x +3(2x — 1) = 1;
— 4(4 — 4x + l)+x+6x— 3=1;
— 16 +16x — 4 + x + 6x — 3 — 1=0;
— 15 — 23x-8=0; 15 — 23x + 8=0;

После этого из уравнения у=2х — 1 находим:

Таким образом, данная система имеет два решения:

Искусственные приёмы:

Указанный приём применим в тех случаях, когда одно уравнение первой степени; в некоторых случаях можно пользоваться искусственными приёмами, для которых нельзя указать общего правила. Приведём примеры.

Пример:

Первый способ. Так как даны сумма и произведение неизвестных, то х и у должны быть корнями квадратного уравнения:
z² — az + b =0.

Следовательно:

Второй способ. Возвысим первое уравнение в квадрат и вычтем из них учетверённое второе:
+ 2xy + =

т.е.
(x-y)² =a²— 4b, откуда

Теперь мы имеем систему:

Складывая и вычитая эти уравнения, получим:

Так как одно из данных уравнений мы возвышали в квадрат, то проверяем подстановкой, нет ли посторонних корней в числе найденных.

Таким образом находим, что данная система имеет два решения:
и

Второе решение отличается от первого только тем, что значение х в первом решении служит значением у во втором решении, и наоборот. Это можно было предвидеть, так как данные уравнения не изменяются от замены х на у, а у на х. Заметим, что такие уравнения называются симметричными.

Пример:

х — y= a, xy=b.
Первый способ. Представив уравнения в виде:
x +( —y)=а, x (-y)=-b,
замечаем, что х и —у это корни квадратного уравнения:
z² -az-b=0,
следовательно:

Второй способ. Возвысив первое уравнение в квадрат и сложив его с учетверённым вторым, получим:
(x + y)² = α² + 4b, откуда

Теперь имеем систему:

Пример:

x+y=cz, x² + y² = 6.
Возвысив первое уравнение в квадрат и вычтя из него второе, получим:
2xy= b, откуда

Теперь вопрос приводится к решению системы:
x + y= a,
которую мы уже рассмотрели в первом примере.

Система двух уравнений, из которых каждое второй степени

Такая система в общем виде не разрешается элементарно, так как она приводится к полному уравнению четвёртой степени.

Рассмотрим некоторые частные виды уравнений, которые можно решить элементарным путём.

Пример:

+ =α, ху=b.
Первый способ (способ подстановки). Из второго уравнения определяем одно неизвестное в зависимости от другого; например, . Подставим это значение в первое уравнение и освободимся от знаменателя; тогда получим биквадратное уравнение:
у⁴ — α + =0.

Решив его, найдём для у четыре значения. Подставив каждое из них в формулу, выведенную ранее для х, найдём четыре соответствующих значения для х.

Второй способ. Сложив первое уравнение с удвоенным вторым, получим:
+y² +2xy=α+2b, т. е. (x + y)² =a + 2b,
откуда:

откуда:

Таким образом, вопрос приводится к решению следующих четырёх систем первой степени:

Каждая из них решается весьма просто посредством алгебраического сложения уравнений.

Третий способ. Возвысив второе уравнение в квадрат, получим следующую систему:
+ =α, x²y² =.

Отсюда видно, что и — корни квадратного уравнения:
+ az+ =0.

Следовательно:

Пример:

= a, xy=b.
Способом подстановки легко приведём эту систему к биквадратному уравнению. Вот ещё искусственный’приём решения этой системы.

Отсюда видно, что и — будут корнями уравнения:
az = 0.

Следовательно:

Замечание:

Во всех случаях, когда приходится возводить уравнения в степень, необходима проверка корней.

Графический способ решения систем уравнений второй степени

Начертив графики каждого из данных уравнений, находим величины координат точек пересечения этих графиков; это и будут корни уравнений.

Пример:

Составим таблицу частных значений х и у для первого уравнения:

x -3 -2 -1 0 1 2 3 4 5
y 20 12 6 2 0 0 2 6 12

и таблицу частных значений х и у для второго уравнения:

x -3 -2 -1 0 1 2 3 4
y 15 5 -1 -3 -1 5 15 29

Черт. 24

По этим значениям построим графики (эти графики будут параболы, черт. 24).

Графики пересекаются в двух точках, координаты которых приблизительно будут: х=0,3; y=1,3 и x=2,8; y=l,6.

Можно найти координаты точек пересечения точнее, если начертим в более крупном масштабе те части графиков, которые лежат около точек пересечения.

Квадратичная функция — основные понятия и определения

Функция — одно из важнейших математических понятий. Напомним, что функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение переменной у.

Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Говорят также, что переменная у является функцией от переменной х. Значения зависимой переменной называют значениями функции.

Если зависимость переменной у от переменной х является функцией, то коротко это записывают так: y = f(x). (Читают: у равно / от х.) Символом / (х) обозначают значение функции, соответствующее значению аргумента, равному х.

Пусть, например, функция задается формулой Тогда можно записать, что Найдем значения функции для значений х, равных, например, 1, 2,5, —3, т. е. найдем /(1), /(2,5), /(-3):

Заметим, что в записи вида y = f(x) вместо f употребляют и другие буквы: , и т. п.

Все значения независимой переменной образуют область onределения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.

Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл. Например, областью определения функции является множество всех чисел; областью определения функции служит множество всех чисел, кроме — 3.

Область определения функции, описывающей реальный процесс, зависит от конкретных условий его протекания. Например, зависимость длины l железного стержня от температуры нагревания t выражается формулой где — начальная длина стержня, а — коэффициент линейного расширения. Указанная формула имеет смысл при любых значениях t. Однако областью определения функции l = f (t) является промежуток в несколько десятков градусов, для которого справедлив закон линейного расширения.

Напомним, что графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.

На рисунке 1 изображен график функции y = f(x), областью определения которой является промежуток [ — 3; 7]. С помощью графика можно найти, например, что f(— 3) = — 2, f(0) = 2,5, f(2) = 4, f(5) = 2. Наименьшее значение функции равно —2, а наибольшее равно 4; при этом любое число от —2 до 4 является значением данной функции. Таким образом, областью значений функции y = f(x) служит промежуток [-2; 4].

Мы изучили некоторые важные виды функций: линейную функцию, т. е. функцию, задаваемую формулой где k и b — некоторые числа; прямую пропорциональность — это частный случай линейной функции, она задается формулой обратную пропорциональность — функцию

Графиком функции служит прямая (рис. 2). Ее областью определения является множество всех чисел. Область значений этой функции при есть множество всех чисел, а при ее область значений состоит из одного числа b.

График функции — называется гиперболой. На рисунке 3 изображен график функции для Область определения этой функции есть множество всех чисел, кроме нуля. Это множество является и областью ее значений.

Функциями такого вида описываются многие реальные процессы и закономерности. Например, прямой пропорциональностью является зависимость массы тела m от его объема V при постоянной плотности зависимость длины окружности С от ее радиуса Обратной пропорциональностью является зависимость силы тока I на участке цепи от сопротивления проводника R при постоянном напряжении зависимость времени t, которое затрачивает равномерно движущееся тело на прохождение заданного пути s, от скорости движения

Мы рассматривали также функции, заданные формулами Их графики изображены на рисунке 4.

Рассмотрим еще одну функцию, а именно функцию, заданную формулой

Так как выражение |х| имеет смысл при любом х, то областью определения этой функции является множество всех чисел. По определению |х| = х, если если x

График рассматриваемой функции в промежутке

совпадает с графиком функции у = х, а в промежутке — с графиком функции у = -х. График функции изображен на рисунке 5. Он состоит из двух лучей, исходящих из начала координат и являющихся биссектрисами I и II координатных углов.

Свойства функции

На рисунке 9 изображен график зависимости температуры воздуха р (в °С) от времени суток t (в часах). Мы видим, что в 2 ч и в 8 ч температура равнялась нулю, от 0 до 2 ч и от 8 до 24 ч она была выше нуля, а от 2 до 8 ч — ниже нуля. Из графика ясно также, что в течение первых пяти часов температура понижалась, затем в промежутке от 5 до 14 ч она повышалась, а потом опять понижалась.

С помощью графика мы выяснили некоторые свойства функции p=f(t), где t — время суток в часах, а р — температура воздуха в градусах Цельсия.

Рассмотрим теперь свойства функции y = f (х), график которой изображен на рисунке 10. Выясним сначала, при каких значениях х функция обращается в нуль, принимает положительные и отрицательные значения.

Найдем абсциссы точек пересечения графика с осью х. Получим х = — 3 и х = 7. Значит, функция принимает значение, равное нулю, при х = — 3 и х = 7. Значения аргумента, при которых функция обращается в нуль, называют нулями функции, т. е. числа -3 и 7 — нули рассматриваемой функции.

Нули функции разбивают ее область определения — промежуток [- 5; 9] на три промежутка: [-5; -3), (-3; 7) и (7; 9]. Для значений х из промежутка (-3; 7) точки графика расположены выше оси х, а для значений х из промежутков [- 5; — 3) и (7; 9] — ниже оси х. Значит, в промежутке ( — 3; 7) функция принимает положительные значения, а в каждом из промежутков [-5; -3) и (7; 9] — отрицательные.

Выясним теперь, как изменяются (увеличиваются или уменьшаются) значения данной функции с изменением х от — 5 до 9.

Из графика видно, что с увеличением х от -5 до 3 значения у увеличиваются, а с увеличением х от 3 до 9 значения у уменьшаются. Говорят, что в промежутке [-5; 3] функция y = f(x) является возрастающей, а в промежутке [3; 9] эта функция является убывающей.

Определение:

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции;

функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Иными словами, функцию y = f (х) называют возрастающей в некотором промежутке, если для любых из этого промежутка, таких, что выполняется неравенство

функцию y = f(x) называют убывающей в некотором промежутке, если для любых из этого промежутка, таких, что выполняется неравенство

Если функция возрастает на всей области определения, то ее называют возрастающей функцией, а если убывает, то убывающей функцией. На рисунке 11 изображены графики возрастающей функции и убывающей функции.

Выясним, какими свойствами обладают некоторые изученные ранее функции.

Пример 1. Рассмотрим свойства функции где (рис. 12).

  1. Решив уравнение найдем, что Значит, у=0, при
  2. Выясним, при каких значениях х функция принимает положительные значения и при каких — отрицательные. Рассмотрим два случая:

Пусть Решив неравенство найдем, что Из неравенства получим, что значит, (см. рис. 12, а).

Пусть Тогда, решив неравенства и найдем, что (см. рис. 12, б).

3. При функция является возрастающей, а при — убывающей.

Докажем это. Пусть — произвольные значения аргумента, причем обозначим через соответствующие им значения функции:

Рассмотрим разность

Множитель положителен, так как Поэтому знак произведения определяется знаком коэффициента k.

Если Значит, при функция является возрастающей.

Если Значит, при функция является убывающей.

Пример:

Рассмотрим свойства функции где (рис. 13).

1.Так как дробь ни при каком значении х в нуль не обращается, то функция нулей не имеет.

2. Если , то дробь положительна при и отрицательна при

Если то дробь положительна при и отрицательна при

3. При функция является убывающей в каждом

из промежутков — возрастающей в каждом из этих промежутков (см. рис. 13, а, б).

Доказательство этого свойства проводится аналогично тому, как это было сделано для линейной функции.

Заметим, что, хотя функция убывает (или возрастает) в каждом из промежутков она не является убывающей (возрастающей) функцией на всей области определения.

Квадратный трехчлен

Квадратный трехчлен и его корни

Выражение является многочленом второй степени с одной переменной. Такие многочлены называют квадратными трехчленами.

Определение:

Квадратным трехчленом называется многочлен вида — переменная, а, b и с — некоторые числа, причем

Значение квадратного трехчлена зависит от значения х. Так, например:

Мы видим, что при х = -1 квадратный трехчлен обращается в нуль. Говорят, что число — 1 является корнем этого трехчлена.

Корнем квадратного трехчлена называется значение переменной, при котором значение этого трехчлена равно нулю.

Для того чтобы найти корни квадратного трехчлена , надо решить квадратное уравнение = 0.

Пример:

Найдем корни квадратного трехчлена ..

Значит, квадратный трехчлен имеет два корня:

Так как квадратный трехчлен имеет те же корни, что и квадратное уравнение = 0, то он может, как и квадратное уравнение, иметь два корня, один корень или не иметь корней. Это зависит от знака дискриминанта квадратного уравнения который называют также дискриминантом квадратного трехчлена. Если D > 0, то квадратный трехчлен имеет два корня; если D = 0, то квадратный трехчлен имеет один корень; если D

Преобразуем выражение в скобках. Для этого представим 12х в виде произведения а затем прибавим и вычтем Получим:

Рассмотрим задачу, при решении которой применяется выделение квадрата двучлена из квадратного трехчлена.

Пример:

Докажем, что из всех прямоугольников с периметром 20 см наибольшую площадь имеет квадрат.

Пусть одна сторона прямоугольника равна х см. Тогда другая сторона равна 10 — х см, а площадь прямоугольника равна

Раскрыв скобки в выражении х (10 — х), получим Выражение представляет собой квадратный трехчлен, в котором а = -1, b = 10, с = 0. Выделим квадрат двучлена:

Так как выражение при любом отрицательно, то сумма принимает наибольшее значение при x = 5. Значит, площадь будет наибольшей, когда одна из сторон прямоугольника равна 5 см. В этом случае вторая сторона также равна 5 см, т. е. прямоугольник является квадратом.

Разложение квадратного трехчлена на множители

Пусть требуется разложить на множители квадратный трехчлен Вынесем сначала за скобки множитель 3. Получим:

Для того чтобы разложить на множители трехчлен представим — 7х в виде суммы одночленов — 2х и — 5х и применим способ группировки:

При х = 2 и х = 5 произведение 3 (х — 2) (х — 5), а следовательно, и трехчлен обращаются в нуль. Значит, числа 2 и 5 являются его корнями.

Мы представили квадратный трехчлен в виде произведения числа 3, т. е. коэффициента при и двух линейных множителей. Первый из них представляет собой разность между переменной х и одним корнем трехчлена, а второй — разность между переменной х и другим корнем.

Такое разложение можно получить для любого квадратного трехчлена, имеющего корни. При этом считают, что если дискриминант квадратного трехчлена равен нулю, то этот трехчлен имеет два равных корня.

Теорема:

Если — корни квадратного трехчлена , то

Вынесем за скобки в многочлене множитель а. Получим:

Так как корни квадратного трехчлена являются также корнями квадратного уравнения = 0, то по теореме Виета

Заметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители, являющиеся многочленами первой степени.

Докажем это. Пусть трехчлен не имеет корней. Предположим, что его можно представить в виде произведения многочленов первой степени:

где — некоторые числа, причем

Произведение (kx+m) ( +q) обращается в нуль при

Следовательно, при этих значениях х обращается в нуль и трехчлен

, т. е. числа являются его корнями. Мы пришли к противоречию, так как по условию этот трехчлен корней не имеет.

Пример:

Разложим на множители квадратный трехчлен

Решив уравнение найдем корни трехчлена:

По теореме о разложении квадратного трехчлена на множители имеем:

Полученный результат можно записать иначе, умножив число 2 на двучлен Получим:

Пример:

Разложим на множители квадратный трехчлен

Решив уравнение найдем корни трехчлена:

Пример:

Сократим дробь

Разложим на множители квадратный трехчлен 10. Его корни равны Поэтому

Квадратичная функция и ее график

Функция ее график и свойства

Одной из важных функций, которую мы будем рассматривать в дальнейшем, является квадратичная функция.

Определение:

Квадратичной функцией называется функция, которую можно задать формулой вида у = , где х — независимая переменная, а, b и с — некоторые числа, причем

Примером квадратичной функции является зависимость пути от времени при равноускоренном движении. Если тело движется с ускорением и к началу отсчета времени t прошло путь имея в этот момент скорость то зависимость пройденного пути s (в метрах) от времени t (в секундах) выражается формулой

Если, например, а = 6, то формула примет вид:

Изучение квадратичной функции мы начнем с частного случая — функции

При а = 1 формула принимает вид С этой функцией мы уже встречались. Ее графиком является парабола.

Построим график функции Составим таблицу значений этой функции:

Построим точки, координаты которых указаны в таблице. Соединив их плавной линией, получим график функции (рис. 20, а).

При любом значение функции больше соответствующего значения функции в 2 раза. Если переместить каждую точку графика функции вверх так, чтобы расстояние от этой точки до оси х увеличилось в 2 раза, то она перейдет в точку графика функции при этом каждая точка этого графика может быть получена из некоторой точки графика функции . Иными словами, график функции можно получить из параболы растяжением от оси х в 2 раза (рис. 20, б).

Построим теперь график функции . Для этого составим таблицу ее значений:

Построив точки, координаты которых указаны в таблице, и соединив их плавной линией, получим график функции (рис. 21, а).

При любом значение функции меньше соответствующего значения функции в 2 раза. Если переместить каждую точку графика функции вниз так, чтобы расстояние от этой точки до оси х уменьшилось в 2 раза, то она

перейдет в точку графика функции причем каждая точка этого графика может быть получена из некоторой точки графика функции (рис. 21,6). Таким образом, график функции можно получить из параболы сжатием к оси х в 2 раза.

Вообще график функции можно получить из параболы растяжением от оси х в а раз, если а > 1, и сжатием к оси х в

Рассмотрим теперь функцию при а

Воспользовавшись этой таблицей, построим график функции (рис. 22, а).

Сравним графики функций (рис. 22, б).

При любом х значения этих функций являются противоположными числами. Значит, соответствующие точки графиков симметричны относительно оси х. Иными словами, график функции

может быть получен из графика функции с помощью симметрии относительно оси х.

Вообще графики функций (при ) симметричны относительно оси х.

График функции , где как и график функции , называют параболой.

Сформулируем свойства функции при а > 0.

1.Если х = 0, то у = 0. График функции проходит через начало координат.

2. Если , то у > 0. График функции расположен в верхней полуплоскости.

3. Противоположным значениям аргумента соответствуют равные значения функции. График функции симметричен относительно оси у.

4. Функция убывает в промежутке и возрастает в промежутке

5. Наименьшее значение, равное нулю, функция принимает при х = 0, наибольшего значения функция не имеет. Областью значений функции является промежуток

Докажем свойство 4. Пусть — два значения аргумента, причем — соответствующие им значения функции. Составим разность и преобразуем ее:

Так как то произведение имеет тот же знак, что и множитель Если числа принадлежат промежутку то этот множитель отрицателен. Если числа принадлежат промежутку то множитель положителен. В первом случае т. е. во втором случае Значит, в промежутке функция убывает, а в промежутке — возрастает.

Теперь сформулируем свойства функции при а 0.

Из перечисленных свойств следует, что при а > 0 ветви параболы направлены вверх, а при а 1, и с помощью сжатия к оси х в раз, если 0

График функции изображен на рисунке 23, а.

Чтобы получить таблицу значений функции для тех же значений аргумента, достаточно к найденным | значениям функции прибавить 3:

Построим точки, координаты которых указаны в таблице (2), и соединим их плавной линией. Получим график функции (рис. 23, б).

Легко понять, что каждой точке графика функции соответствует единственная точка графика функции и наоборот. Значит, если переместить каждую точку графика функции на 3 единицы вверх, то получим соответствующую точку графика функции Иначе говоря, каждую точку второго графика можно получить из некоторой точки первого графика р помощью параллельного переноса на 3 единицы вверх вдоль оси у.

График функции — парабола, полученная в результате сдвига вверх графика функции .

Вообще график функции является параболой, которую можно получить из графика функции с помощью параллельного переноса вдоль оси у на п единиц вверх, если n > 0, или на -n единиц вниз, если

Пример:

Рассмотрим теперь функцию и выясним, что представляет собой ее график.

Для этого в одной системе координат построим графики функций

Для построения графика функции воспользуемся таблицей (1). Составим теперь таблицу значений функции . При этом в качестве значений аргумента выберем те, которые на 5 больше соответствующих значений аргумента в таблице (1). Тогда соответствующие им значения функции будут те же, которые записаны во второй строке таблицы (1):

Построим график функции , отметив точки, координаты которых указаны в таблице (3) (рис. 24). Нетрудно заметить, что каждой точке графика функции

соответствует единственная точка графика функции И наоборот.

Значит, если переместить каждую точку графика функции на 5 единиц вправо, то получим соответствующую точку графика функции . Иначе говоря, каждую точку второго графика можно получить из некоторой точки первого графика с помощью параллельного переноса на 5 единиц вправо вдоль оси х.

График функции — парабола, полученная в результате сдвига вправо графика функции .

Вообще график функции является параболой, которую можно получить из графика функции с помощью параллельного переноса вдоль оси х на m единиц вправо, если m > 0, или на -m единиц влево, если то m

Вообще график функции является параболой, которую можно получить из графика функции с помощью двух параллельных переносов: сдвига вдоль оси х на то единиц вправо, если m > 0, или на -m единиц влево, если m 0, или на -n единиц вниз, если n 0, или на — n единиц вниз, если n 0, или на —m единиц влево, если m Построение графика квадратичной функции

Рассмотрим квадратичную функцию у = . Выделим из трехчлена квадрат двучлена:

Мы получили формулу вида

Значит, график функции есть парабола, которую можно получить из графика функции с помощью двух параллельных переносов — сдвига вдоль оси х и сдвига вдоль оси у. Отсюда следует, что график функции есть парабола, вершиной которой является точка Осью симметрии параболы служит прямая х = m, параллельная оси у. При а > 0 ветви параболы направлены вверх, при а

Приведем примеры построения графиков квадратичных функций.

Пример:

Построим график функции 0,5.

Графиком функции является парабола, ветви которой направлены вверх. Найдем координаты тип , вершины этой параболы:

Значит, вершиной параболы является точка ( — 3; —4). Составим таблицу значений функции:

Построив точки, координаты которых указаны в таблице, и соединив их плавной линией, получим график функции (рис. 27).

При составлении таблицы и построении графика учитывалось, что прямая х = — 3 является осью симметрии параболы. Поэтому мы брали точки с абсциссами — 4 и — 2, — 5 и — 1, — 6 и 0, симметричные относительно прямой х = — 3 (эти точки имеют одинаковые ординаты).

Пример:

Построим график функции 19.

Графиком этой функции является парабола, ветви которой направлены вниз. Найдем координаты ее вершины:

Вычислив координаты еще нескольких точек, получим таблицу:

Соединив плавной линией точки, координаты которых указаны в таблице, получим график функции (рис. 28).

Пример:

Построим график функции

Графиком функции является парабола, ветви которой направлены вверх. Найдем координаты ее вершины:

Вычислив координаты еще нескольких точек, получим таблицу:

График функции изображен на рисунке 29.

Решение неравенств второй степени с одной переменной

Неравенства вида — переменная, a, b и с — некоторые числа, причем называют неравенствами второй степени с одной переменной.

Решение неравенства второй степени с одной переменной можно рассматривать как нахождение промежутков, в которых соответствующая квадратичная функция принимает положительные или отрицательные значения.

Пример:

Решим неравенство

Рассмотрим функцию Графиком этой функции является-парабола, ветви которой направлены вверх.

Выясним, как расположена эта парабола относительно оси х. Для этого решим уравнение

Значит, парабола пересекает ось х в двух точках, абсциссы которых равны

Покажем схематически, как расположена парабола в координатной плоскости (рис. 31). Из рисунка видно, что функция принимает отрицательные значения, когда

Следовательно, множеством решений неравенства 2

Покажем схематически, как расположена парабола в координатной плоскости (рис. 32). Из рисунка видно, что данное неравенство верно, если х принадлежит промежутку или промежутку т. е. множеством решений неравенства

является объединение промежутков

Ответ можно записать так:

Пример:

Решим неравенство

Рассмотрим функцию Ее графиком является парабола, ветви которой направлены вниз.

Выясним, как расположен график относительно оси х. Решим для этого уравнение Получим, что х = 4. Уравнение имеет единственный корень. Значит, парабола касается оси х.

Изобразив схематически параболу (рис. 33), найдем, что функция принимает отрицательные значения при любом х, кроме 4.

Ответ можно записать так: х — любое число, не равное 4.

Пример:

Решим неравенство

График функции — парабола, ветви которой направлены вверх.

Чтобы выяснить, как расположена парабола относительно оси х, решим уравнение Находим, что D = -7

2) если трехчлен имеет корни, то отмечают их на оси х и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при а > 0 или вниз при а 0 или в нижней при а Решение неравенств методом интервалов

Областью определения этой функции является множество всех чисел. Нулями функции служат числа — 2, 3, 5. Они разбивают область определения функции на промежутки

Выражение (х + 2) (х — 3) (х — 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:

Отсюда ясно, что:

Мы видим, что в каждом из промежутков функция сохраняет знак, а при переходе через точки — 2, 3 и 5 ее знак изменяется (рис. 35,6). Вообще, пусть функция задана формулой вида

где х — переменная, а не равные друг другу числа. Числа являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.

Это свойство используется для решения неравенств вида

где не равные друг другу числа.

Пример:

Данное неравенство является неравенством вида (1), так как в левой части записано произведение где Для его решения удобно воспользоваться рассмотренным выше свойством чередования знаков функции.

Отметим на координатной прямой нули функции

Найдем знаки этой функции в каждом из промежутков Для этого достаточно знать, какой знак имеет функция в одном из этих промежутков, и, пользуясь свойством чередования знаков, определить знаки во всех остальных промежутках. При этом удобно начинать с крайнего справа промежутка так как в нем значение функции заведомо положительно. Это объясняется тем, что при значениях х, расположенных правее всех нулей функции, каждый из множителей положителен. Используя свойство чередования знаков, определим, двигаясь по координатной прямой справа налево, знаки данной функции в каждом из остальных промежутков (рис. 36, б).

Из рисунка видно, что множеством решений неравенства является объединение промежутков

Ответ:

Рассмотренный способ решения неравенств называют методом интервалов.

Рассмотрим теперь примеры решения неравенств, которые сводятся к неравенствам вида (1).

Пример:

Решим неравенство

Приведем данное неравенство к виду (1). Для этого в двучлене 0,5 — х вынесем за скобку множитель -1. Получим:

Мы получили неравенство вида (1), равносильное данному.

Отметим на координатной прямой нули функции f (х) = х (х — 0,5)(х + 4) (рис. 37, а). Покажем знаком «плюс», что в крайнем справа промежутке функция принимает положительное значение, а затем, двигаясь справа налево, укажем знак функции в каждом из промежутков (рис. 37, б). Получим, что множеством решений неравенства является объединение промежутков

Ответ:

Пример:

Решим неравенство

Приведем неравенство к виду (1). Для этого в первом двучлене вынесем за скобки множитель 5, а во втором —1, получим:

Разделив обе части неравенства на -5, будем иметь:

Отметим на координатной прямой нули функции f(x) и укажем знаки функции в образовавшихся промежутках (рис. 38). Мы видим, что множество решении неравенства состоит из чисел и чисел, заключенных между ними, т. е. представляет собой промежуток

Ответ:

Заметим, что данное неравенство можно решить иначе, воспользовавшись свойствами графика квадратичной функции.

Пример:

Решим неравенство

Так как знак дроби совпадает со знаком произведения (7—х)(х+2), то данное неравенство равносильно неравенству

Приведя неравенство к виду (1) и используя метод интервалов, найдем, что множеством решений этого неравенства, а значит, и данного неравенства является объединение промежутков

Ответ:

Квадратичная функция и её построение

Парабола

Если х и у рассматривать как координаты точки, то уравнение (1) определит некоторое геометрическое место точек. Исследуем вид этого геометрического места. Заметим, что наше исследование будет неполным, так как останутся вопросы, которые нами пока не будут выяснены. Чем дальше мы будем продвигаться в изучении математики, тем полнее будут проводиться исследования.

1) Так как при любом значении х всегда неотрицательно, то у, определяемое уравнением всегда неотрицательно. Значит, любая точка, принадлежащая изучаемому геометрическому месту, не будет лежать ниже оси Ох (рис. 18).

2) Так как и для —х и для х после возведения в квадрат получается одно и то же число, то точки, принадлежащие геометрическому месту и соответствующие значениям — х и х, имеют одну и ту же ординату и поэтому расположены симметрично относительно оси Оу (рис. 19).

3) Если х положительно, то, чем больше х, тем больше и . Поэтому по мере возрастания абсолютной величины абсциссы величина ординаты тоже возрастает. Следовательно точки геометрического места удаляются от начала координат вправо вверх и влево вверх.

Геометрическое место, определяемое уравнением называется параболой и имеет вид, изображенный на рис. 20. Эту кривую линию называют также графиком функции Точка (0, 0) принадлежит геометрическому месту, поэтому можно сказать, что парабола проходит через начало координат. Эту точку называют вершиной параболы. Часть параболы, расположенная в первой четверти, и часть параболы, расположенная во второй четверти, называются ее ветвями.

Теперь рассмотрим уравнение

Оно определяет геометрическое место точек. Сравнивая уравнения (1) и (2), замечаем, что при одном и том же х значения у отличаются только знаками, именно у, полученный из уравнения (2), всегда неположителен. Поэтому уравнение (2) тоже определяет параболу, вершина которой также находится в точке (0, 0), но ветви этой которой также находится в точке (0, 0), но ветви этой параболы идут от начала координат вниз вправо и вниз влево. График функции (2) изображен на рис. 21

Перейдем к рассмотрению уравнения

Сравним его с уравнением (1),

Если а положительно и больше единицы, то очевидно, что при одном и том же значении х величина у из уравнения (3) будет больше, чем величина у, взятая из уравнения (1). Отсюда можно заключить, что кривая, определяемая уравнением (3), отличается от параболы (1) только тем, что ординаты ее точек растянуты в а раз. Таким образом, кривая, определяемая уравнением (3), является более сжатой, чем парабола . Эту кривую тоже называют параболой.

Если то получим параболу более раскрытую, чем парабола . Для а отрицательного получаем аналогичные выводы, которые ясны из рис. 22.

Теперь покажем, что кривая, определяемая уравнением

является параболой, только ее расположение относительно координатных осей другое, чем в разобранных случаях. Предварительно рассмотрим параллельный перенос осей координат.

Параллельный перенос осей координат

Пусть на плоскости дана система координат хОу (рис. 23). Рассмотрим новую систему координат .Предположим, что новая ось параллельна старой оси Ох и новая ось параллельна старой оси Оу. Начало координат новой системы — точка . Масштаб и направление осей одинаковы в старой и новой системах координат.

Обозначим координаты нового начала относительно старой системы координат через х0 и у0, так что

Возьмем произвольную точку М на плоскости; пусть ее координаты в старой системе будут х и у, а в новой и . Тогда

и (на основании формулы (2) из § 1 гл. I)

Переход от старой системы координат к указанной новой называется параллельным переносом или параллельным сдвигом осей координат. Приходим к выводу:

При параллельном сдвиге осей координат старая координата точки равна новой координате той же точки плюс координата нового начала в старой системе.

Исследование функции

Функция, определенная уравнением

называется квадратичной функцией. Функция рассмотренная выше, является частным случаем квадратичной функции. Поставим перед собой цель—выяснить, как изменится уравнение (1), если перейти к новым координатам. Возьмем новые оси координат так, чтобы они были параллельны старым, т. е. ось будет параллельна оси Ох,

а ось — оси Оу. Масштаб и направление осей такие же, как и у старых. Пусть координаты нового начала в старой системе будут х0 и у0. Подставим в уравнение (5) вместо х и у их выражения через новые координаты: , . Получим

Разрешив это уравнение относительно , будем иметь

Координаты нового начала находятся в нашем распоряжении, поэтому их можно выбрать так, чтобы выполнялись условия

В этих уравнениях два неизвестных: х0 и у0. Найдем их:

Если взять новое начало в точке

то в уравнении (2) скобки

сделаются равными нулю, т. е. уравнение (2) примет вид

Полученное уравнение имеет вид, рассмотренный выше. Таким образом, уравнение относительно новой системы координат определяет ту же параболу, что и уравнение .Приходим к выводу:

Уравнение определяет параболу, вершина которой находится в точке и ветви которой направлены вверх, если а > 0, и вниз, если а 0, и вниз, если а

Переносим начало координат в точку (х0, у0), координаты которой пока неизвестны. Старые координаты я, у выражаются через новые , по формулам

Подставляя эти выражения в уравнение (4), получим:

Выберем координаты нового начала так, чтобы соблюдались равенства

Решая полученную систему уравнений, будем иметь:

Следовательно, перенося начало координат в точку , преобразуем уравнение (4) в новое уравнение, которое имеет вид

Следовательно, уравнение (4) определяет параболу, имеющу вершину в точке ; ветви параболы направлены вверх (рис. 24).

Приведем пример применения квадратичной функции в механике.

Задача:

Найти траекторию тела, брошенного под углом к горизонту. Угол бросания а, скорость бросания. Сопротивлением воздуха пренебрегаем.

Решение:

Выберем оси координат так: ось Оу—вертикальная прямая, проведенная в точке бросания , ось Ох— горизонтальная прямая, начало координат—точка бросания (рис. 25).

Если бы не действовала сила притяжения Земли, то тело, брошенное под углом к горизонту, по инерции двигалось бы по прямой ОМ. За t сек оно прошло бы расстояние и, стало быть, находилось бы в точке М. Но под действием силы притяжения Земли это тело, как свободно падающее, за t сек пройдет вниз путь следовательно, тело фактически будет в точке Р. Вычислим координаты точки Р:

Найдем уравнение, связывающее х с у. Для этого из уравнения (*) найдем t и подставим это выражение в уравнение (**):

Мы получили уравнение траектории тела. Как мы видим, это есть квадратичная функция рассмотренного вида, следовательно, тело, брошенное под углом к горизонту, движется в безвоздушном пространстве по параболе, расположенной вершиной вверх, поскольку коэффициент при отрицателен.

Какова наибольшая высота подъема тела над Землей? Чтобы ответить на этот вопрос, нужно найти вершину параболы. Как было выведено, вершина параболы имеет координаты

этому координаты вершины равны

Найдем теперь дальность полета тела, т. е. абсциссу точки падения. Для этого приравняем в уравнении (***) у нулю, получим уравнение

решая которое найдем два значения

первое из них дает точку бросания, а второе — искомую абсциссу точки падения.

Все эти рассуждения относятся к безвоздушному пространству; в воздухе и высота и дальность будут значительно меньше.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

источники:

http://interneturok.ru/lesson/algebra/8-klass/funktsiya-y-x-svoystva-kvadratnogo-kornya/funktsiya-y-x-eyo-svoystva-i-grafik-reshenie-zadach

http://lfirmal.com/kvadratnaya-funkciya/

Построим график функции

y=x

. При (x < 0) выражение 

x

не имеет смысла, поэтому выберем удобные для вычисления (y) неотрицательные значения (x). Подбираем:

Заполним таблицу:

(x) (0) (1) (4) (9)
(y) (0) (1) (2) (3)

По точкам ((0; 0), (1;1), (4; 2), (9;3)) построим линию.

1.png

Обрати внимание!

График функции

y=x

 касается оси (y) в точке ((0; 0)).

График функции

y=x

 можно строить  с помощью шаблона параболы

y=x2

, так как  он является ветвью этой параболы, направленной вправо.

1. Область определения функции — луч

0;+∞

.

2. (y = 0) при (x = 0); (y >)0 при (x > 0).

3. Функция возрастает на луче

0;+∞

.

4. Функция ограничена снизу, но не ограничена сверху.

5. 

yнаим=0 при x=0;yнаиб не существует

.

6. Функция непрерывна на луче

0;+∞

.

Функция квадратного корня

Функция корня – это функция вида (y = asqrt{text{kx}},) где( a neq 0;x geq 0 при k > 0; x leq 0 при k < 0).

Графиком этой функции является перевернутая ветвь параболы.

В этом виде функции (a = 1, k = 1.)

С изменением коэффициента a меняется внешний вид функции.

ХАРАКТЕРИСТИКИ ФУНКЦИИ КОРНЯ:

В ЗАВИСИМОСТИ ОТ КОЭФФИЦИЕНТА

(mathbf{a}mathbf{ })(при (mathbf{k}mathbf{ }mathbf{> 0}))

1. Область определения: (D(y) in lbrack 0; + infty))
2. Область значения:

При (a > 0 )

(E(y) = lbrack 0; + infty))

При (a < 0)

(E(y) = (–infty; 0rbrack)

3. Ограниченность и непрерывность: Непрерывна

При (a > 0) ограничена снизу и слева

При (a < 0) ограничена сверху и слева

4. Наибольшее и наименьшее значение функции:

( y_{наиб}) :

(Если a > 0, )отсутствует

(Если a < 0, при x = 0)

( y_{наим}:)

(Если a > 0, при x = 0)

(Если a < 0, ) отсутствует

5. Промежутки знакопостоянства:

(y > 0: )При (a > 0)

(y < 0): При (a < 0)

6. Монотонность:

При (a > 0) возрастает

При (a < 0) убывает

7. Экстремумы: нет
8. Четность: Ни четная, ни нечетная
9. Периодичность: не периодичная
10. Пересекает ось Ох В точке ((0;0))
11. Пересекает ось Оу В точке ((0;0))

В ЗАВИСИМОСТИ ОТ КОЭФФИЦИЕНТА

(mathbf{ }mathbf{k}) (при (mathbf{a}mathbf{> 0}))

1. Область определения:

(При k > 0 D(y) in lbrack 0; + infty) )

(При k < 0 D(y) in (–infty;0rbrack)

2. Область значения: (E(y) = lbrack 0; + infty))
3. Ограниченность и непрерывность: Непрерывна

При (k > 0) ограничена снизу и слева

При (k < 0) ограничена снизу и справа

4. Наибольшее и наименьшее значение функции:

(y_{наиб}: )отсутствует

(y_{наим} при: x = 0)

5. Промежутки знакопостоянства: (y > 0) при: (xmathbb{in R})
6. Монотонность:

При (k > 0) возрастает

При (k < 0) убывает

7. Экстремумы: нет
8. Четность: Ни четная, ни нечетная
9. Периодичность: не периодичная
10. Пересекает ось Ох В точке ((0;0))
11. Пересекает ось Оу В точке ((0;0))

ВЛИЯНИЕ КОЭФФИЦИЕНТОВ НА ВИД ФУНКЦИИ КОРНЯ:

Коэффициент a:

– При увеличении коэффициента a по модулю функция приближается к оси Оу.

– При уменьшении коэффициента a по модулю функция приближается к оси Ох.

– При (a > 0) график находится в I четверти

((y geq 0)).

– При (a < 0) график находится в IV четверти

((y leq 0)).

Коэффициент k:

– При (k > 0) график находится в l четверти

((x geq 0)).

– При (k < 0) график находится во ll четверти

((x leq 0)).

Понравилась статья? Поделить с друзьями:
  • Как найти канал волга
  • Как составить исковое заявление в суд на банкротство
  • Как найти ватсап на телефоне через компьютер
  • Как найти силу тяги реактивного двигателя
  • Как найти скрытых друзей в вайбере