Как менделеев составил периодическую систему элементов

У каждой области науки есть свой любимый юбилей. У физиков это «Принципы» Ньютона, книга 1687 года, которая ввела законы движения и гравитации. Биологи празднуют дарвиновское «Происхождение видов» (1859 год) и его день рождения (1809). Астрономы отмечают 1543 год, ведь именно тогда Коперник поместил Солнце в центр Солнечной системы. Что касается химии, ни одна причина для празднования не превзойдет появление периодической таблицы элементов, созданной 150 лет назад в марте русским химиком Дмитрием Ивановичем Менделеевым.

Как создавалась периодическая таблица элементов Менделеева. Дмитрий Иванович Менделеев. Фото.

Дмитрий Иванович Менделеев.

Таблица Менделеева стала такой же привычной для студентов-химиков, как калькуляторы для бухгалтеров. Она содержит всю науку в чуть более сотне квадратов, содержащих символы и цифры. Она перечисляет элементы, которые составляют все земные вещества, сгруппированные таким образом, чтобы можно было выявить закономерности в их свойствах, определить цель химического исследования как в теории, так и на практике.

Периодическая таблица — это, бесспорно, самая важная концепция в химии.

Таблица Менделеева выглядела как специальная таблица, однако сам он хотел, чтобы она отражала глубокую научную истину, которую он открыл: периодический закон. Его закон выявил глубокие семейные отношения между известными химическими элементами – они проявляют подобные свойства через регулярные промежутки (или периоды), если расположить их в порядке атомного веса – и позволил Менделееву предсказать существование элементов, которые еще не были обнаружены.

«До обнародования этого закона химические элементы были просто фрагментарными, случайными фактами в Природе», заявил Менделеев. «Закон периодичности впервые позволил нам увидеть неоткрытые элементы на расстоянии, которое раньше было недоступно для химического зрения».

Как создавалась периодическая таблица элементов Менделеева. Опыт системы элементов Д. Менделеева. Фото.

Опыт системы элементов Д. Менделеева.

Таблица Менделеева не только предсказала существование новых элементов. Она подтвердила тогда еще спорную веру в реальность атомов. Она намекнула на существование субатомной структуры и предвидела математический аппарат, лежащий в основе правил, управляющих материей, которые в конечном счете проявили себя в квантовой теории. Его таблица завершила превращение химической науки из средневекового магического мистицизма алхимии в область современной научной строгости. Периодическая таблица символизирует не столько составляющие вещества, сколько логическую стройность и принципиальную рациональность науки в целом.

Как создавалась периодическая таблица

Легенда гласит, что Менделеев задумал и создал свою таблицу в один день: 17 февраля 1869 года по русскому календарю (для большей части мира это 1 марта). Но это, вероятнее всего, преувеличение. Менделеев думал о группировании элементов годами, и другие химики несколько раз рассматривали понятие связей между элементами в предыдущие десятилетия.

Интересные элементы можно найти и в космосе. Астронафты это доказали.

На самом деле, немецкий физик Иоганн Вольфганг Доберейнер заметил особенности группирования элементов еще в 1817 году. В те дни химики еще не полностью поняли природу атомов, описанную атомной теорией Джона Дальтона в 1808 году. В своей «новой системе химической философии» Дальтон объяснил химические реакции, предполагая, что каждое элементарное вещество состоит из атома определенного типа.

Дальтон предположил, что химические реакции производили новые вещества, когда атомы разъединяются или соединяются. Он полагал, что любой элемент состоит исключительно из одного вида атома, который отличается от других по весу. Атомы кислорода весили в восемь раз больше, чем атомы водорода. Дальтон считал, что атомы углерода в шесть раз тяжелее водорода. Когда элементы объединяются для создания новых веществ, количество реагирующих веществ может быть рассчитано с учетом этих атомных весов.

Дальтон ошибался насчет некоторых масс – кислород в действительности в 16 раз тяжелее водорода, а углерод в 12 раз тяжелее водорода. Но его теория сделала идею об атомах полезной, вдохновив революцию в химии. Точное измерение атомной массы стало основной проблемой химиков на последующие десятилетия.

Размышляя об этих весах, Доберейнер отметил, что определенные наборы из трех элементов (он назвал их триадами) показывают интересную связь. Бром, например, имел атомную массу где-то между массами хлора и йода, и все эти три элемента демонстрировали сходное химическое поведение. Литий, натрий и калий также были триадой.

Другие химики заметили связи между атомными массами и химическими свойствами, но лишь в 1860-х годах атомные массы стали достаточно хорошо поняты и измерены, чтобы выработалось более глубокое понимание. Английский химик Джон Ньюландс заметил, что расположение известных элементов в порядке увеличения атомной массы приводило к повторению химических свойств каждого восьмого элемента. Эту модель он назвал «законом октав» в статье 1865 года. Но модель Ньюландса не очень хорошо держалась после первых двух октав, что заставило критиков предложить ему расставить элементы в алфавитном порядке. И как вскоре понял Менделеев, отношение свойств элементов и атомных масс были чуть более сложными.

Организация химических элементов

Менделеев родился в Тобольске, в Сибири, в 1834 году и был семнадцатым ребенком у своих родителей. Он жил яркой жизнью, преследуя разные интересы и путешествуя по дороге к выдающимся людям. Во время получения высшего образования в педагогическом институте в Санкт-Петербурге он чуть не умер от тяжелой болезни. После окончания он преподавал в средних школах (это нужно было, чтобы получать жалование в институте), попутно изучая математику и естественные науки для получения степени магистра.

Затем он работал преподавателем и лектором (и писал научные работы), пока не получил стипендию для расширенного тура исследований в лучших химических лабораториях Европы.

Вернувшись в Санкт-Петербург, он оказался без работы, поэтому написал превосходное руководство по органической химии в надежде выиграть крупный денежный приз. В 1862 году это принесло ему премию Демидова. Также он работал редактором, переводчиком и консультантом в различных химических сферах. В 1865 году он вернулся к исследованиям, получил доктора наук и стал профессором Петербургского университета.

Вскоре после этого Менделеев начал преподавать неорганическую химию. Готовясь освоить это новое (для него) поле, он остался неудовлетворен доступными учебниками. Поэтому решил написать собственный. Организация текста требовала организации элементов, поэтому вопрос их наилучшего расположения непрестанно был у него на уме.

К началу 1869 года Менделеев добился достаточного прогресса, чтобы понять, что некоторые группы подобных элементов демонстрировали регулярное увеличение атомных масс; другие элементы с примерно одинаковыми атомными массами имели схожие свойства. Оказалось, что упорядочение элементов по их атомному весу было ключом к их классификации.

Организация химических элементов. Периодическая таблица Д. Менелеева. Фото.

Периодическая таблица Д. Менелеева.

По собственным словам Менделеева, он структурировал свое мышление, записав каждый из 63 известных тогда элементов на отдельной карточке. Затем, посредством своего рода игры в химический пасьянс, он нашел закономерность, которую искал. Располагая карточки в вертикальных столбцах с атомными массами от низкой к более высокой, он разместил элементы со схожими свойствами в каждом горизонтальном ряд. Периодическая таблица Менделеева родилась. Он набросал черновую версию 1 марта, отправил ее в печать и включил в свой учебник, который скоро должен был быть опубликован. Также он быстро подготовил работу для представления Российскому химическому обществу.

«Элементы, упорядоченные по размерам их атомных масс, показывают четкие периодические свойства», писал Менделеев в своей работе. «Все сравнения, которые я провел, привели меня к выводу, что размер атомной массы определяет природу элементов».

Тем временем, немецкий химик Лотар Мейер также работал над организацией элементов. Он подготовил таблицу, похожую на менделеевскую, возможно, даже раньше, чем Менделеев. Но Менделеев издал свою первым.

Тем не менее, гораздо более важным, чем победа над Мейером, было то, как Менделеев использовал свою таблицу, чтобы сделать смелые прогнозы о неоткрытых элементах. В подготовке свой таблицы Менделеев заметил, что некоторых карточек недоставало. Он должен был оставить пустые места, чтобы известные элементы могли выровняться правильно. Еще при его жизни три пустых места были заполнены ранее неизвестными элементами: галлий, скандий и германий.

Менделеев не только предсказал существование этих элементов, но также правильно описал их свойства в подробностях. Галлий, например, открытый в 1875 году, имел атомную массу 69,9 и плотность в шесть раз превышающую воды. Менделеев предсказал этот элемент (он назвал его экаалюминий), только по этой плотности и атомной массе 68. Его прогнозы для экакремния близко соответствовали германию (открытому в 1886 году) по атомной массе (72 предсказано, 72,3 фактически) и плотности. Он также верно предсказал плотность германиевых соединений с кислородом и хлором.

Таблица Менделеева стала пророческой. Казалось, что в конце этой игры этот пасьян из элементов раскроет тайны Вселенной. При этом сам Менделеев был мастером в использовании своей же таблицы.

Успешные предсказания Менделеева принесли ему легендарный статус мастера химического волшебства. Но сегодня историки спорят о том, закрепило ли открытие предсказанных элементов принятие его периодического закона. Принятие закона могло быть в большей степени связано с его способностью объяснять установленные химические связи. В любом случае, прогностическая точность Менделеева, безусловно, привлекла внимание к достоинствам его таблицы.

К 1890-м годам химики широко признали его закон как веху в химическом познании. В 1900-м году будущий нобелевский лауреат по химии Уильям Рамсей назвал это «величайшим обобщением, которое когда-либо проводилось в химии». И Менделеев сделал это, сам не понимая как.

Математическая карта

Во многих случаях в истории науки великие предсказания, основанные на новых уравнениях, оказывались верными. Каким-то образом математика раскрывает некоторые природные секреты, прежде чем экспериментаторы их обнаружат. Один из примеров — антиматерия, другой — расширение Вселенной. В случае Менделеева, предсказания новых элементов возникли без какой-либо творческой математики. Но на самом деле Менделеев открыл глубокую математическую карту природы, поскольку его таблица отражала значение квантовой механики, математических правил, управляющих атомной архитектурой.

В своей книге Менделеев отметил, что «внутренние различия материи, которую составляют атомы», могут быть ответственны за периодически повторяющиеся свойства элементов. Но он не придерживался этой линии мышления. По сути, многие годы он размышлял о том, насколько важна атомная теория для его таблицы.

Но другие смогли прочитать внутреннее послание таблицы. В 1888 году немецкий химик Йоханнес Вислицен объявил, что периодичность свойств элементов, упорядоченных по массе, указывает на то, что атомы состоят из регулярных групп более мелких частиц. Таким образом, в некотором смысле таблица Менделеева действительно предвидела (и предоставила доказательства) сложную внутреннюю структуру атомов, в то время как никто не имел ни малейшего представления о том, как на самом деле выглядел атом или имел ли он какую-нибудь внутреннюю структуру вовсе.

К моменту смерти Менделеева в 1907 году ученые знали, что атомы делятся на части: электроны, переносящие отрицательный электрический заряд, плюс некоторый положительно заряженный компонент, делающий атомы электрически нейтральными. Ключом к тому, как эти части выстраиваются, стало открытие 1911 года, когда физик Эрнест Резерфорд, работающий в Манчестерском университете в Англии, обнаружил атомное ядро. Вскоре после этого Генри Мозли, работавший с Резерфордом, продемонстрировал, что количество положительного заряда в ядре (число протонов, которое он содержит, или его «атомное число») определяет правильный порядок элементов в периодической таблице.

Математическая карта. Генри Мозли. Фото.

Генри Мозли.

Атомная масса была тесно связана с атомным числом Мозли — достаточно тесно, чтобы упорядочение элементов по массе только в нескольких местах отличалось от упорядочения по числу. Менделеев настаивал на том, что эти массы были неправильными и нуждались в повторном измерении, и в некоторых случаях оказался прав. Осталось несколько расхождений, но атомное число Мозли прекрасно легло в таблицу.

Примерно в то же время датский физик Нильс Бор понял, что квантовая теория определяет расположение электронов, окружающих ядро, и что самые дальние электроны определяют химические свойства элемента.

Подобные расположения внешних электронов будут периодически повторяться, объясняя закономерности, которые первоначально выявила таблица Менделеева. Бор создал свою собственную версию таблицы в 1922 году, основываясь на экспериментальных измерениях энергий электронов (наряду с некоторыми подсказками из периодического закона).

Таблица Бора добавила элементы, открытые с 1869 года, но это был тот же периодической порядок, открытый Менделеевым. Не имея ни малейшего представления о квантовой теории, Менделеев создал таблицу, отражающую атомную архитектуру, которую диктовала квантовая физика.

Новая таблица Бора не стала ни первым, ни последним вариантом изначального дизайна Менделеева. Сотни версий периодической таблицы с тех пор были разработаны и опубликованы. Современная форма — в горизонтальном дизайне в отличие от первоначальной вертикальной версии Менделеева — стала широко популярной только после Второй мировой войны, во многом благодаря работе американского химика Гленна Сиборга.

Сиборг и его коллеги создали несколько новых элементов синтетически, с атомными числами после урана, последнего природного элемента в таблице. Сиборг увидел, что эти элементы, трансурановые (плюс три элемента, предшествовавшие урану), требовали новой строки в таблице, которую не предвидел Менделеев. Таблица Сиборга добавила строку для тех элементов под аналогичным рядом редкоземельных элементов, которым тоже не было места в таблице.

Вклад Сиборг в химию принес ему честь назвать собственный элемент — сиборгий с номером 106. Это один из нескольких элементов, названных в честь известных ученых. И в этом списке, конечно, есть элемент 101, открытый Сиборгом и его коллегами в 1955 году и названный менделевием — в честь химика, который прежде всех остальных заслужил место в периодической таблице.

Заходите на наш канал с новостями, если хотите больше подобных историй.

как менделеев придумал свою таблицу

Любой, кто ходил в школу, помнит, что одним из обязательных для изучения предметов была химия. Она могла нравиться, а могла и не нравиться – это не важно. И вполне вероятно, что многие знания по этой дисциплине уже забыты и в жизни не применяются. Однако таблицу химических элементов Д. И. Менделеева наверняка помнит каждый. Для многих она так и осталась разноцветной таблицей, где в каждый квадратик вписаны определённые буквы, обозначающие названия химических элементов. Но здесь мы не будем говорить о химии как таковой, и описывать сотни химических реакций и процессов, а расскажем о том, как вообще появилась таблица Менделеева – эта история будет интересна любому творчески мыслящему человеку, да и вообще всем тем, кто охоч до интересной и полезной информации.

Небольшая предыстория

В далёком 1668 году выдающимся ирландским химиком, физиком и богословом Робертом Бойлем была опубликована книга, в которой было развенчано немало мифов об алхимии, и в которой он рассуждал о необходимости поиска неразложимых химических элементов. Учёный также привёл их список, состоящий всего из 15 элементов, но допускал мысль о том, что могут быть ещё элементы. Это стало отправной точкой не только в поиске новых элементов, но и в их систематизации.

Сто лет спустя французским химиком Антуаном Лавуазье был составлен новый перечень, в который входили уже 35 элементов. 23 из них позже были признаны неразложимыми. Но поиск новых элементов продолжался учёными по всему миру. И главную роль в этом процессе сыграл знаменитый русский химик Дмитрий Иванович Менделеев – он впервые выдвинул гипотезу о том, что между атомной массой элементов и их расположением в системе может быть взаимосвязь.

Благодаря кропотливому труду и сопоставлению химических элементов Менделеев смог обнаружить связь между элементами, в которой они могут быть одним целым, а их свойства являются не чем-то само собой разумеющимся, а представляют собой периодически повторяющееся явление. В итоге, в феврале 1869 года Менделеев сформулировал первый периодический закон, а уже в марте его доклад «Соотношение свойств с атомным весом элементов» был представлен на рассмотрение Русского химического общества историком химии Н. А. Меншуткиным. Затем в том же году публикация Менделеева была напечатана в журнале «Zeitschrift fur Chemie» в Германии, а в 1871 году новую обширную публикацию учёного, посвящённую его открытию, опубликовал другой немецкий журнал «Annalen der Chemie».

Создание периодической таблицы

таблица менделеева

Основная идея к 1869 году уже была сформирована Менделеевым, причём за довольно короткое время, но оформить её в какую-либо упорядоченную систему, наглядно отображающую, что к чему, он долго не мог. В одном из разговоров со своим соратником А. А. Иностранцевым он даже сказал, что в голове у него уже всё сложилось, но вот привести всё к таблице он не может. После этого, согласно данным биографов Менделеева, он приступил к кропотливой работе над своей таблицей, которая продолжалась трое суток без перерывов на сон. Перебирались всевозможные способы организации элементов в таблицу, а работа была осложнена ещё и тем, что в тот период наука знала ещё не обо всех химических элементах. Но, несмотря на это, таблица всё же была создана, а элементы систематизированы.

Легенда о сне Менделеева

Многие слышали историю, что Д. И. Менделееву его таблица приснилась. Эта версия активно распространялась вышеупомянутым соратником Менделеева А. А. Иностранцевым в качестве забавной истории, которой он развлекал своих студентов. Он говорил, что Дмитрий Иванович лёг спать и во сне отчётливо увидел свою таблицу, в которой все химические элементы были расставлены в нужном порядке. После этого студенты даже шутили, что таким же способом была открыта 40° водка. Но реальные предпосылки для истории со сном всё же были: как уже упоминалось, Менделеев работал над таблицей без сна и отдыха, и Иностранцев однажды застал его уставшим и вымотанным. Днём Менделеев решил немного передохнуть, а некоторое время спустя, резко проснулся, сразу же взял листок бумаги и изобразил на нём уже готовую таблицу. Но сам учёный опровергал всю эту историю со сном, говоря: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». Так что легенда о сне может быть и очень привлекательна, но создание таблицы стало возможным только благодаря упорному труду.

сон менделеева

Дальнейшая работа

В период с 1869 по 1871 годы Менделеев развивал идеи периодичности, к которым склонялось научное сообщество. И одним из важных этапов данного процесса стало понимание того, что любой элемент в системе должно располагать, исходя из совокупности его свойств в сравнении со свойствами остальных элементов. Основываясь на этом, а также опираясь на результаты исследований в изменении стеклообразующих оксидов, химику удалось внести поправки в значения атомных масс некоторых элементов, среди которых были уран, индий, бериллий и другие.

Пустые клетки, остававшиеся в таблице, Менделеев, конечно же, хотел скорее заполнить, и в 1870 году предсказал, что в скором времени будут открыты неизвестные науке химические элементы, атомные массы и свойства которых он сумел вычислить. Первыми из них стали галлий (открыт в 1875 году), скандий (открыт в 1879 году) и германий (открыт в 1885 году). Затем прогнозы продолжили реализовываться, и были открыты ещё восемь новых элементов, среди которых: полоний (1898 год), рений (1925 год), технеций (1937 год), франций (1939 год) и астат (1942-1943 годы). Кстати, в 1900 году Д. И. Менделеев и шотландский химик Уильям Рамзай пришли к мнению, что в таблицу должны быть включены и элементы нулевой группы – до 1962 года они назывались инертными, а после – благородными газами.

Организация периодической системы

Химические элементы в таблице Д. И. Менделеева расположены по рядам, в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца (калий, натрий, литий и т.д.) отлично реагируют с прочими элементами, а сами реакции носят взрывной характер. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. Все элементы, вплоть до №92 встречаются в природе, а с №93 начинаются искусственные элементы, которые могут быть созданы лишь в лабораторных условиях.

В своём первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему всё должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен.

Уроки творческого процесса

Говоря о том, какие уроки творческого процесса можно извлечь из всей истории создания периодической таблицы Д. И. Менделеева, можно привести в пример идеи английского исследователя в области творческого мышления Грэма Уоллеса и французского учёного Анри Пуанкаре. Приведём их вкратце.

Согласно исследованиям Пуанкаре (1908 год) и Грэма Уоллеса (1926 год), существует четыре основных стадии творческого мышления:

  • Подготовка – этап формулирования основной задачи и первые попытки её решения;
  • Инкубация – этап, во время которого происходит временное отвлечение от процесса, но работа над поиском решения задачи ведётся на подсознательном уровне;
  • Озарение – этап, на котором находится интуитивное решение. Причём, найтись это решение может в абсолютно не имеющей к задаче ситуации;
  • Проверка – этап испытаний и реализации решения, на котором происходит проверка этого решения и его возможное дальнейшее развитие.

Как мы видим, в процессе создания своей таблицы Менделеев интуитивно следовал именно этим четырём этапам. Насколько это эффективно, можно судить по результатам, т.е. по тому, что таблица была создана. А учитывая, что её создание стало огромным шагом вперёд не только для химической науки, но и для всего человечества, приведённые выше четыре этапа могут быть применимы как к реализации небольших проектов, так и к осуществлению глобальных замыслов. Главное помнить, что ни одно открытие, ни одно решение задачи не могут быть найдены сами по себе, как бы ни хотели мы увидеть их во сне и сколько бы ни спали. Чтобы что-то получилось, не важно, создание это таблицы химических элементов или разработка нового маркетинг-плана, нужно обладать определёнными знаниями и навыками, а также умело использовать свои потенциал и упорно работать.

Мы желаем вам успехов в ваших начинаниях и успешной реализации задуманного!

Лель Белопухов
«Квант» №5, 2019

Дмитрий Иванович Менделеев («Квант» №5, 2019)

В сентябре 2017 года Генеральная ассамблея ООН провозгласила «год, начинающийся 1 января 2019 года, Международным годом Периодической таблицы химических элементов в целях повышения осведомленности мировой общественности о фундаментальных науках и расширения образования в области фундаментальных наук». Это было сделано по предложению нескольких международных организаций, в том числе Международного союза теоретической и прикладной химии, Российской академии наук, Объединенного института ядерных исследований, Российского химического общества имени Д. И. Менделеева.

150 лет назад, 17 февраля 1869 года (по принятому тогда в России юлианскому календарю), Дмитрий Иванович Менделеев поставил эту дату и свою подпись под одностраничной рукописью, названной им «Опыт системы элементов, основанной на их атомном весе и химическом сродстве». Отчетливо сознавая значение сделанного им открытия («опыта»), Д. И. Менделеев через несколько дней отправил сделанные переписчиками копии этой рукописи западноевропейским коллегам-химикам. Прежде всего, он послал рукопись немцу Юлиусу Лотару Мейеру (1830–1895), англичанину Джону Ньюлендсу (1837–1898) и итальянцу Станислао Канницаро (1826–1910). Интересно отметить, что эти химики и сам Менделеев были практически ровесниками, сравнительно молодыми учеными. В 1860–66 годах они независимо друг от друга стремились навести порядок в системе химических элементов, которых тогда было известно уже около 60. Большая часть из этого числа была открыта в 40–60-е годы XIX века и для них еще не были надежно определены атомные веса и химические свойства (возможные валентности).

В 1860 году С. Канницаро, расположив элементы в порядке увеличения их атомного веса, подметил некоторые закономерности в похожести химических свойств. Л. Мейер в 1864 году, выбрав 28 элементов, впервые составил некую таблицу из 6 столбцов, соответствующих 6 возможным валентностям. Но в каждой из 5 строк этой таблицы элементы располагались не по возрастанию атомного веса, а довольно хаотично. Причиной этого было неточное знание атомных весов и наличие нескольких возможных валентностей у многих элементов. Периодичность по строкам и столбцам нарушалась. Но сама идея поисков периодичности при расположения элементов по строкам и столбцам была здравой и многообещающей. На родине Мейера, в городке Фарель в Нижней Саксонии, неподалеку от устья Эльбы установлен мемориал с тремя скульптурными портретами — Мейера, Менделеева и Канницаро.

Английский химик Д. Ньюлендс тоже подметил некоторую закономерность в списке элементов. Он назвал эту закономерность «правилом октав». В начале списка Канницаро валентности повторялись через каждые шесть элементов, 2-й, 9-й и 16-й элементы имели валентность 1, а 3-й, 10-й и 16-й элементы имели валентность 2.Это походило на музыкальную октаву, в которой между тонами «до» расположено шесть других основных тонов. Правда, после кальция, занимавшего 17-е место в списке, это правило теряло свою обязательность. Опубликованная в 1865 году работа Ньюлендса не вызвала, однако, интереса у химиков и даже подверглась насмешкам на заседании Лондонского химического общества.

Таким образом, у истоков создания периодической системы стояли четыре человека, однако создателем периодической системы элементов признан российский химик.

Так что же сделал Д. И. Менделеев?

Прежде всего, он руководствовался списком не из 28 элементов (Мейер) и не из 40 элементов (Канницаро), а из 67 элементов, смело оставив в этом списке места для трех, совершенно неизвестных в то время элементов, по его мнению обязанных находиться в определенных местах таблицы согласно их возможной валентности и возможному атомному весу. Это означает, что для самого автора периодичность уже была установленным законом, хотя он и озаглавил свою таблицу «опытом». В этом сказалась методологическая (философская) убежденность Менделеева в существовании цикличности в глобальных законах природы.


«Опыт системы элементов» (1869 г.) («Квант» №5, 2019)

В первом варианте своей таблицы Менделеев, в отличие от Мейера, элементы с одинаковой валентностью располагал не по вертикали (в столбах), а по горизонтали (в строках). Это не меняло сути дела, и уже во втором варианте таблицы в 1870 году он повернул таблицу на 90 градусов, и она приняла более привычный нам вид. Номера столбцов стали соответствовать «главным» валентностям элемента (с первого по седьмой) и называться группами, а строки получили название периодов, в которых содержалось либо 7, либо 17 элементов. Отличие от современных значений — 8 групп (или 18, как принято в наиболее современных вариантах периодической системы) и по 8 или 18 элементов в периоде — обусловлено тем, что в то время еще совершенно не были известны элементы, называемые сегодня благородными (инертными) газами. Только за 4 месяца до открытия Менделеева появились первые сообщения о гипотетическом солнечном газе, а на Земле гелий был открыт лишь через 27 лет после этого. И уже впоследствии состоялось открытие других благородных газов.

Очень важным было то, что менделеевская таблица предсказала существование нескольких неизвестных тогда химических элементов, которые Менделеев назвал эка-алюминием, эка-кремнием и эка-бором. Через 6 лет после работы Менделеева французским химиком Лекоком де Буабодраном был открыт элемент, названный галлием. И хотя интересы Менделеева в это время уже сместились в другие области науки, он продолжал следить за научными публикациями по химии. Прочитав об открытии галлия, он тут же узнал в нем свой предугаданный эка-алюминий.

Сообщение Менделеева об этом в письме французскому химику произвело настоящую сенсацию среди ученых. Тем более, что предсказания Менделеева о плотности и атомном весе этого элемента оказались даже более точными, чем первоначально опубликованные опытные данные. В десятках европейских лабораториях химики стали лихорадочно искать остальные предсказанные Менделеевым элементы и проверять у известных элементов сомнительные атомные веса и химические свойства. И уже через год шведский химик Ларс Нильсон открыл элемент, полностью соответствующий описанному Менделеевым эка-бору. Он назвал его в честь своей родины скандием. При жизни Менделеева был открыт элемент германий (эка-кремний) и началось открытие семейства благородных газов.


Периодическая таблица элементов (1905 г.) («Квант» №5, 2019)

Опубликованная Менделеевым в очередном издании своих «Основ химии» в 1905 году таблица периодической системы уже гораздо больше походила на современную. Окончательно эта таблица получила современный вид после работ по анализу рентгеновских спектров элементов Генри Мозли (1913 г.). Мозли понял, что не только валентность, определяемая числом электронов во внешней электронной оболочке атома, определяет положение элемента в той или иной группе. Большую роль играют и спектры, связанные с электронными переходами во внутренних оболочках (К-, L- и М-электронных оболочках). Гораздо резче, чем в оптических спектрах, в рентгеновских спектрах проявляется номер элемента в периодической системе. Сегодня мы знаем, что это и есть зарядовое число атомного ядра элемента. Это позволило Мозли уточнить расположение в периодической таблице многих редкоземельных элементов и предсказать, в свою очередь, открытие ряда тогда еще неизвестных элементов. И в наше время, когда на мощных ускорителях в нескольких мировых научных центрах (и прежде всего в Объединенном институте ядерных исследований в подмосковной Дубне) открыто уже 26 трансурановых элементов, каждый из них занимает положенную ему «клеточку» в периодической системе согласно атомному весу и строению электронных оболочек, определяемому по рентгеновским спектрам.

Очередным триумфом менделеевской таблицы стало открытие 118-го элемента, который занял место в группе благородных газов. И он получил имя, которое оканчивается не на «-ий», как у всех других трансурановых элементов, а на «-он», как это и положено всем элементам восьмой группы, кроме гелия. Имя это — «оганесон» — дано в 2018 году международным комитетом в честь руководителя работ в Дубне академика РАН Ю. Ц. Оганесяна. Второй раз элементу присвоено имя в честь здравствующего ученого (первым был американский физик Гленн Сиборг, определивший в 1941 году нептуний и плутоний). Среди названий трансурановых элементов 2 астрономических, 9 географических, а 15 названы в честь ученых. Так, 99-й элемент — это эйнштейний, 100-й — фермий, а 101-й элемент заслуженно носит имя «менделевий». Не подлежит сомнению и роль Менделеевской таблицы в открытии элементов радия и полония, за что Мария Склодовская-Кюри в 1911 году получила вторую Нобелевскую премию, на этот раз — по химии.

Но наибольший триумф периодической системы — это ее теоретическое обоснование, сделанное в 1926 году Вольфгангом Паули на основе только что созданного тогда матричного представления квантовой механики. Это обоснование стало одним из первых доказательств справедливости квантовой механики, этого, по мнению многих ученых, величайшего достижения науки в ХХ веке.

Дмитрий Иванович Менделеев родился 27 января (8 февраля) 1834 года в Тобольске в семье директора гимназии и попечителя народных училищ Тобольской губернии Ивана Павловича Менделеева и Марии Дмитриевны Менделеевой, урожденной Корнильевой. В семье было 14 детей, но восемь из них умерли в младенчестве. Дмитрий был младшим сыном, «последышем», как он сам себя называл впоследствии. Иван Павлович вскоре после рождения младшего сына ослеп и, хоть зрение ему частично смогли восстановить московские хирурги, к работе он вернуться не смог и скончался, когда сыну было чуть больше 10 лет. Воспитанием будущего ученого занималась его мать, происходившая из старинного сибирского рода купцов и промышленников. Она самостоятельно прошла полный гимназический курс и сыграла особую роль в жизни семьи, фактически став главным семейным педагогом.

Мария Дмитриевна быстро поняла, что ее младший сын имеет выдающиеся способности, хотя в гимназии он увлекался математикой и физикой, а к гуманитарным предметам не испытывал интереса. Способности мальчика и его трудолюбие позволили ему закончить гимназический курс в 15 лет. Через год Мария Дмитриевна распродала имущество и отправилась с семьей сначала в Москву, а потом в Петербург, где тогда достаточно высоким был уровень естественно-научного образования, к которому стремился всей душой ее сын. Ей удается обеспечить досрочное (по возрасту) поступление сына в институт, а через год она умирает.

В предисловии к одной из первых научных работ Дмитрий Менделеев пишет:

«Это исследование посвящено памяти матери ее последышем. Она смогла его вырастить своим трудом и любовью, воспитывая примером, и, чтобы отдать науке выходца из Сибири, тратила последние средства и силы. Умирая, завещала: избегать самообольщения, настаивать в труде, а не в словах, терпеливо объяснять научную правду, ибо понимала, как при помощи науки, без насилия, любовно, но твердо устраняются предрассудки и ошибки и достигается свобода дальнейшего развития, общее благо и внутреннее благополучие. Заветы матери считаю священными».

В 21 год Менделеев закончил физико-математический факультет Главного педагогического института в Петербурге с золотой медалью и титулом «старший учитель». Два года он работал сначала в Симферополе, а потом в Одессе в гимназии при Ришельевском лицее преподавателем физики, математики и естественных наук. За это время он подготовил и с блеском защитил в Петербургском университете магистерскую диссертацию по химической проблеме и стал приват-доцентом этого университета.

В России тогда наступало новое время — эпоха отмены крепостного права, эпоха преобразований и организация регионального (земского) управления. Правительство Александра II понимало необходимость для этого подготовки просвещенных управленческих кадров, а значит, и развития образования и науки. Резкое увеличение финансирования университетов позволило Менделееву стать стипендиатом двухгодичной стажировки в научные учреждения Германии.

За границей Менделеев не только изучал новейшие достижения химической науки и технологии. Он смог получить средства для создания лаборатории, в которой изучал физико-химические свойства газов и жидкостей, в частности зависимость температуры кипения жидкостей от давления и свойств насыщенного пара.

Менделеев показал, что выше некоторой температуры ни при каком давлении не существует длительного процесса кипения жидкости и, соответственно, не существует явления постепенного сжижения газа. При некоторых температуре и давлении происходит одномоментное сгущение газа или расширение жидкости. Эти параметры впоследствии были названы «критическими», а само состояние вещества при этом — «критическим состоянием». Оказалось, что получение сжиженного газа с помощью сжатия возможно лишь при температуре ниже критической. Открытие Менделеева легло в основу всех будущих технологий получения сжиженных газов.

Во время своей стажировки в Германии Менделеев только начал эти работы. Вернувшись в Россию, он не смог найти подходящее место и финансирование для продолжения работ по сжижению газов. Ведь он формально (по диссертации) был химик, но в химической науке еще не успел проявить себя должным образом. И Менделеев принимает решение отложить на время свои научные занятия. На основе своего обширного знания химии он создает остро необходимый тогда учебник «Органическая химия», а также переводит и издает немецкий учебник «Химическая технология».

Эти издания принесли Д. И. Менделееву известность в научных кругах. А полученная за них академическая Демидовская премия обеспечила некоторое материальное благополучие. Эта премия, между прочим, существует под несколько измененным названием и в наше время и присуждается за выдающиеся научные достижения. Среди недавних лауреатов этой премии такие выдающиеся ученые, как физики Ж. И. Алферов и В. А. Рубаков, математики Л. Д. Фаддеев и Б. В. Раушенбах, историк В. Л. Янин, биологи А. А. Баев и А. С. Спирин, химик И. И. Моисеев.

Демидовская премия позволила Менделееву совершить путешествие по Европе вместе с молодой женой, Феозвой Никитичной Лещевой, его землячкой по Тобольску, падчерицей знаменитого тобольчанина (или «тоболяка», как больше нравится жителям этого города) Петра Павловича Ершова, официального автора «Конька-горбунка». Свое свадебное путешествие Менделеев вовсю использовал для общения с европейскими химиками и изучения всех новинок химической науки.

По возвращении из европейской поездки Менделеев получил место штатного доцента органической химии Петербургского университета и одновременно профессорскую должность в Петербургском технологическом институте. Через два года после защиты докторской диссертации Менделеев становится профессором Петербургского университета по кафедре технической химии.

В это время возникла острая необходимость создать новый учебник по неорганической химии, который бы отражал новейшие достижения бурно развивавшейся химической науки. Эта идея захватила Менделеева. Но в каком порядке излагать описания и химические свойства элементов? Ведь они так разнообразны.

Хорошо изучив свойства всех известных тогда элементов, Менделеев составил картотеку и все время мысленно тасовал эту «колоду», пытаясь найти закономерности расположения элементов. Он знал о подобных попытках европейских химиков, но долгое время у него, как и у них, ничего не выходило. Получила распространение легенда, что решение проблемы пришло к нему во сне. Эту легенду сам Менделеев и создал, живописно описывая, как однажды после бессонной ночи ему в полусне явилось единственно возможное расположение элементов и он тут же записал его на первом попавшемся клочке бумаги. Психологи считают, что это был не сон, а промежуточное состояние между сном и бодрствованием, в котором мозг работает с особой активностью. Менделеев при этом добавлял, что ничего не видит в этом особенного, поскольку долгое время он непрерывно думал об этом, прежде чем решиться на окончательный вариант таблицы, где были вакантные места и где он смело изменял известные тогда атомные веса некоторых элементов, чтобы они заняли соответствующие места в строках и столбцах таблицы. Так, например, несмотря на то, что атомный вес элемента урана тогда считался равным всего лишь 60 условных единиц, Менделеев «присваивает» урану значение атомного веса в 4 раза большее (как оно и оказалось на самом деле) и помещает уран в то самое место таблицы, где он и должен находиться.


Портрет Д. И. Менделеева в мантии доктора права Эдинбургского университета, написанный И. Е. Репиным (1885 г.) («Квант» №5, 2019)

Законный триумф и мировое признание, особенно после открытия предсказанных им элементов, не помешали Менделееву продолжать активно работать. Но его научные интересы сместились в другие области. Он вновь занялся изучением поведения газов при различных давлениях и для не очень высоких давлений переосмыслил открытый в 1834 году французским инженером и физиком Полем Клапейроном закон и ввел понятие универсальной газовой постоянной. С тех пор этот закон носит имя Менделеева — Клапейрона и называется уравнением состояния идеального газа. Но на этом Менделеев не успокоился и стал исследовать отклонения от этого закона. Он ввел понятие «реальные газы» и качественно описал отклонения поведения этих газов от «идеальности».

Велики заслуги Менделеева в физической химии, химической технологии и смежных отраслях техники. Вот только некоторые из них: создание безопасного способа получения одного из вариантов бездымного (пироксилинового) пороха, обеспечившее широкое распространение его в мире («менделеевский» порох); разработка теории растворов, в частности определение наиболее оптимального соотношения компонентов в смеси различных жидкостей; изучение поверхностного натяжения жидкостей и доказательство его исчезновения в критическом состоянии вещества; исследование состава нефти и доказательство ее как биогенного, так и абиогенного происхождения; обоснование значения многих составляющих нефти как ценных химических продуктов и разработка методов извлечения из нефти этих продуктов (знаменитая фраза: «сжигать нефть — это все равно, что топить печку ассигнациями»).

К этому впечатляющему «химическому» перечню можно добавить целый ряд других интересов и достижений Д. И. Менделеева. Например, метрологические исследования, руководство созданной им российской «Палатой мер и весов»; метеорологические исследования, изучение земной атмосферы и солнечной короны; участие в создании первых в мире ледоколов для освоения Арктики; написание 25 статей по проблемам промышленной экологии в энциклопедическом словаре Брокгауза и Эфрона.

Но одно из менделеевских увлечений выделяется из общего ряда. Для полноценных наблюдений за солнечной короной во время полного солнечного затмения летом 1887 года Менделеев разрабатывает проект стратостата, равного которому тогда в мире не существовало (диаметром 20 м и объемом больше 3000 м2). Он делает это совместно с изобретателем и воздухоплавателем С. К. Джевецким. Вместе с Менделеевым должен был лететь пилот-аэронавт. Но когда выясняется, что в неожиданно наставшую дождливую погоду шар не сможет поднять двух человек, Менделеев решает, что он полетит один, и после необходимого инструктажа об управлении шаром поднимается в воздух. К сожалению, и на высоте солнце осталось скрытым за облаками и пришлось довольствоваться только изучением свойств земной атмосферы на различных высотах. При этом из-за отказа клапана шар поднялся выше облаков на незапланированную высоту 3,5 километра, но, увы, затмение уже закончилось. Менделеев сумел исправить клапан и благополучно приземлиться на расстоянии 100 километров от точки старта.

Этот штрих менделеевской биографии иллюстрирует его необычайную смелость, проявившуюся не только в подвиге создания периодической таблицы. Менделеев был смел и принципиален во всех своих делах, в том числе и в отношениях с «властями предержащими». В конце XIX века в России властями стала проводиться политика «укрепления дисциплины и правопорядка» в обществе и прежде всего в университетах, где студенческая молодежь стала стремиться к реформам образования. Менделеев несколько раз обращался в «инстанции», заступаясь за исключаемых из университета «бунтовщиков».

Результатом стало его увольнение из университета и отставка из почти всех комиссий, в которых он деятельно участвовал. Два раза Менделееву было отказано в избрании членом Российской академии наук, хотя он был уже членом нескольких десятков престижных академий и научных обществ всего мира. Дважды правительство настояло на отзыве представлений Менделеева на награждение Нобелевской премией, сделанных видными российскими химиками. И это, безусловно, повлияло на нобелевский комитет, так и не удостоивший Менделеева этой награды, к недоумению всего мирового химического сообщества.

Важное место в жизни Менделеева в то время занимали еженедельные вечера, где собирались коллеги и друзья, в том числе художники И. Е. Репин, А. И. Куинджи, И. И. Шишкин и другие передвижники. В этом салоне непринужденно обсуждались все события научной и политической жизни общества. Жена Менделеева демонстративно не принимала участия в этих встречах. Семейные отношения становились все более сложными и безысходными. В конце 1876 года 42-летний Менделеев на одном из своих салонных вечеров знакомится с 16-летней Анной Ивановной Поповой (1860–1942).

Молодая девушка выбрала необычную для того времени судьбу. Выросши в старозаветной семье донского казацкого атамана, она каким-то образом восприняла передовые идеи нарождавшейся русской интеллигенции, выбрав для себя путь просвещения народа. Тайно от отца (но с материнского благословления) она уехала в столицу, чтобы учиться на женских курсах (прообразе знаменитых «бестужевских курсов» — первого женского университета России). Она училась живописи, была принята в менделеевском салоне, чувствовала себя в нем свободно и непринужденно и, конечно, не могла не обратить внимания на его главу — знаменитого химика. И ни всемирная слава Менделеева, ни 26-летняя разница в возрасте не помешали ей наряду с безмерным уважением почувствовать любовь. А Дмитрий Иванович не мог не интересоваться Анечкой, как ее стали называть в салоне. Не желая быть причиной разрушения семьи, Аня «сбежала» в Италию. Узнав об отъезде, Менделеев бросил все и уехал вслед за Анной. Через месяц они возвратились вместе.

После развода с первой женой жизнь Менделеева резко изменилась. Анна Ивановна была внимательной и заботливой женой и разделяла все взгляды своего мужа. В этом браке родилось четверо детей. Неподалеку от загородного подмосковного дома Менделеева была деревня Шахматово, где в летнее время жила семья дочери ректора Петербургского университета ботаника А. Н. Бекетова большого друга Д. И. Менделеева. И там познакомились старшая дочь Менделеева Любовь Дмитриевна и внук Бекетова, Александр Александрович Блок, будущий великий русский поэт. Они стали мужем и женой.

В биографии многих знаменитых людей вплетаются и анекдотические истории. Присутствуют они и в биографии Менделеева. О легенде открытия, сделанного во сне, уже упоминалось. Другая притча о Менделееве — об изобретении им, якобы, русской сорокаградусной водки. На самом деле введение государственного акциза на водку произошло еще в 1844 году, когда Менделееву не исполнилось и десяти лет. Впоследствии Менделеев много занимался теорией растворов. Этому была посвящена его докторская диссертация, в которой он установил, что существует некоторое оптимальное соотношение смешивания различных жидкостей, при котором плотность смеси максимальна. Но для этилового спирта и воды это было вовсе не 40%, а совершенно другая величина — две части спирта на одну часть воды, что безусловно не годилось для народного алкогольного продукта. А во Франции именно это соотношение было принято, на основе работ Менделеева, для французского абсента — смеси этилового спирта с настойкой из 14 трав.

Но вот рассказы о Менделееве, как об известном мастере чемоданного дела, имели реальное основание. Еще в самом начале своей педагогической деятельности в Симферополе и Одессе его материальное положение было весьма тяжелым. И Менделеев нашел способ его поправить. Он изобрел особый лак, который делал фибровую основу чемодана очень прочной и в то же время легкой. Но кроме этого такой чемодан выглядел как очень дорогое кожаное изделие. Впоследствии это умение стало «хобби» ученого. Он с удовольствием отдыхал, делая чемоданы и раздаривая их знакомым.

Однако самым хорошим отдыхом для Дмитрия Ивановича были шахматы. На своих домашних вечерах он большую часть времени проводил за шахматной доской, что не мешало ему участвовать в интересных беседах. А игроком он был очень сильным.

Невозможно охарактеризовать деятельность Дмитрия Ивановича Менделеева и его достижения одним, даже самым емким определением. Химик Л. А. Чугаев в 1907 году написал о Менделееве так:

«Знаменитый химик, первоклассный физик, плодотворный исследователь в области термодинамики, гидродинамики, метеорологии, геологии, в различных отделах химической технологии и других сопредельных с химией дисциплин, глубокий знаток химической промышленности и промышленности вообще, особенно русской, оригинальный мыслитель в области учения о народном хозяйстве, государственный ум, которому, к сожалению, не суждено было стать государственным человеком, но который видел и понимал задачи и будущность России лучше представителей нашей официальной власти».

Дмитрий Иванович работал до последнего дня. Он скончался от воспаления легких 20 января 1907 года. Память о Менделееве сохраняется в названиях городов и поселков, многих географических и астрономических объектов и в многочисленных памятниках. А на мемориальном камне его могилы на Волковом кладбище Санкт-Петербурга достаточными оказались всего лишь три слова «Дмитрий Иванович Менделеев».

Как-то утром Дмитрий Иванович проснулся в великолепном настроении. Во время завтрака схватил вдруг подвернувшееся под руку письмо секретаря Вольного экономического общества А. И. Ходнена по поводу предстоящей командировки и записал на обороте символы хлора и калия, имевших близкие атомные веса, после чего стал набрасывать символы других элементов, отыскивая среди них сходные в этом отношении пары: фтор и натрий, бром и рубидий, йод и цезий… Потом он закрылся в своем кабинете, достал из конторки пачку визиток и на обратной стороне карточек стал писать символы элементов и их главные химические свойства. Получилась своеобразная игровая колода, из которой Менделеев час за часом выкладывал какие-то пасьянсы.

Так перед ним стала вырисовываться картина будущей Периодической системы химических элементов. Еще только забрезжив в голове своего первооткрывателя, она сразу же стала вносить коррективы в существовавшую до нее систему знаний. Так, вначале Менделеев положил карточку с обозначением бериллия (атомная масса 14) рядом с карточкой алюминия (атомная масса 27,4), по тогдашней традиции считая бериллий аналогом алюминия. Однако затем, сопоставив химические свойства, он поместил бериллий над магнием. Тогда же он изменил атомную массу бериллия на 9,4, а формулу его оксида переделал из Ве2О3 в ВеО (как у оксида магния MgO). Это смело исправленное значение атомной массы бериллия подтвердилось только через десять лет. Точно так же он помещает теллур (127,6) перед йодом (126,9), чтобы теллур попал в один столбец с элементами аналогичной валентности (2), а йод — своей (1).

МЕНДЛВ МЕНШУТКИН.png

Николай Александрович Меншуткин — русский химик. В марте 1869 г. на заседании Русского химического общества доложил от имени Менделеева его Периодический закон — периодическую систему элементов

Wikipedia

В течение дня, покидая кабинет только на обед и ужин, Дмитрий Иванович приходит к твердому выводу, что элементы, расположенные по возрастанию их атомного веса, выказывают явную периодичность физических и химических свойств. В тот же вечер Менделеев отправляет переписанную набело таблицу в типографию — ему нужно разослать ее многим людям. Еще через пару дней он передает написанную по этому поводу статью Николаю Меншуткину — для публикации в журнале Русского химического общества и для доклада от его имени на заседании общества, которое состоится 6 марта, когда автор будет ездить по сыроварням Тверской губернии. Меншуткин выступит, но сообщение не вызовет ажиотажа — скорее наоборот. Так, известный химик Николай Зинин недовольно выскажется в том духе, что пора бы Дмитрию Ивановичу заняться наконец настоящими химическими исследованиями.

Русский приоритет

В мире до сих пор обсуждается вопрос, признанный в России давно решенным, о приоритете в открытии таблицы. Но Дмитрий Иванович многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс. Например, он не имел почти никакой информации о работах француза де Шанкуртуа, англичанина Ньюлендса и немца Мейера.

Немецкий врач и химик Лотар Мейер был очень близок к открытию периодического закона. Вокруг имен Мейера и Менделеева в свое время разгорелась весьма острая дискуссия: кто же из них первым открыл этот закон? В 1864 году в книге «Современные теории химии» Мейер привел таблицу, где элементы были расположены в порядке увеличения их атомной массы. Но в эту таблицу Мейер поместил всего 27 элементов, меньше половины известных в то время. Расположение остальных оставалось неясным; что делать с ними, Мейер не знал. Он даже не пояснил, что означали прочерки, и структура таблицы осталась неопределенной. Только в 1870 году, после опубликования Менделеевым периодического закона и периодической системы, появилась статья Мейера, в которой он рассмотрел общую схему размещения химических элементов.

МЕНДЛВ МЕЙЕР.png

Юлиус Лотар Мейер — немецкий химик, иностранный член-корреспондент Петербургской академии наук с 1890 года

Wikipedia

Сам Мейер вначале признавал приоритет Менделеева в открытии периодического закона. Однако позднее, в 1880 году, он опубликовал статью с претензией на свое первенство. Менделеев по этому поводу заметил: «Лотар Мейер раньше меня не имел в виду периодического закона, а после меня нового ничего к нему не прибавил».

Однако честь открытия Периодической системы элементов принадлежит Менделееву не из-за приоритета публикации, действительная причина состоит в том, как Менделеев построил свою таблицу и какие сделал выводы на ее основе. Для того чтобы выполнялось требование, согласно которому в столбцах должны находиться элементы с одинаковой валентностью, Менделеев в одном или двух случаях был вынужден поместить элемент с несколько большим весом перед элементом с несколько меньшим весом… Поскольку этого оказалось недостаточно, Менделеев счел также необходимым оставить в своей таблице пустые места (пробелы). Причем наличие таких пробелов он объяснил не несовершенством таблицы, а тем, что соответствующие элементы пока еще не открыты. В усовершенствованном варианте таблицы (1871 год) существовало много пробелов, в частности, не заполнены были клетки, отвечающие аналогам бора, алюминия и кремния. Менделеев был настолько уверен в своей правоте, что пришел к заключению о существовании соответствующих этим клеткам элементов и подробно описал их свойства. Он назвал их экабор, экаалюминий и экакремний («эка» на санскрите означает «одно и то же»).

МЕНДЛВ ТАБЛ МЕЙЕРА.png

Wikipedia

Первое подтверждение предположений Менделеева последует в 1875 году, когда француз Поль Эмиль Лекок де Буабодран откроет новый элемент и назовет его галлием. Свойства галлия полностью совпадут с менделеевским экаалюминием. В 1879 году швед Ларс Фредерик Нильсон обнаружит скандий (экабор). В 1886 году немец Клеменс Александр Винклер предъявит миру германий (экакремний). Несмотря на то что все три химика дадут новым элементам названия, связанные с историей или географией своих стран, их открытия навсегда будут вписаны в биографию Менделеева и в историю русской науки.

По версии академика, известного историка и философа науки Бонифатия Кедрова, именно свойственное менделеевской натуре крайнее нервное напряжение вкупе с множеством неотложных дел, в частности со срывом сроков сдачи в типографию заключения к «Основам химии» (издатель был педант и на отсрочку не соглашался), стало условием открытия периодического закона. В спокойном состоянии Менделеев, возможно, не решился бы опубликовать столь нелогичную таблицу. Кедров писал, что создание таблицы элементов — смелый и основанный на интуиции акт, то есть настоящее творчество.

Сторонники менее распространенной версии рождения периодического закона полагают, что 17 февраля 1869 года можно называть датой великого открытия лишь символически, поскольку один этот день нельзя считать даже днем завершения работы над ним. Историк науки Игорь Дмитриев убедительно показывает, что методологические принципы, которые разрабатывались Менделеевым начиная с его студенческих исследований изоморфизма, были будто сразу «заточены» на поиск некоей общей системы признаков веществ. Опираясь на анализ рукописей и опубликованных работ Менделеева, Дмитриев обнаружил, что Менделеев подошел к универсальной классификации элементов, открытию ее концептуального ядра на несколько недель раньше отмечаемой всеми даты, в конце 1868-го — начале 1869 года.

Самая трудная часть работы — собственно осмысление всего массива химической информации (в то время не всегда точной) с точки зрения учения о периодичности — заняла еще год и девять месяцев. Дмитрий Иванович и сам хорошо понимал, что вся тяжесть работы впереди. В тексте, который он передал для оглашения на заседании Химического общества, сказано: «Сам вижу, что эта попытка не окончательна, но в ней, мне кажется, уже ясно выражается применимость выставляемого мною начала ко всей совокупности элементов, пай (здесь: количество. — “Стимул”) которых известен с достоверностью».

litfund.ru // В классическом труде «Основы химии» Менделеев впервые изложил неорганическую химию на основе своего периодического закона

В классическом труде «Основы химии» Менделеев впервые изложил неорганическую химию на основе своего периодического закона

litfund.ru

Не только химия: экономист и промышленник

Отмечая стопятидесятилетие создания Периодической системы, стоит напомнить, что Менделеева без сомнения можно назвать последним энциклопедистом. Мало кому известно, что он был не только выдающимся химиком, но и выдающимся экономистом, метрологом, инженером, наконец, выдающимся организатором науки, образования и промышленности. В его собрании сочинений из 25 томов 17 посвящены химии и семь — работам в других областях знания и практической деятельности.

magnifier.png Основу экспорта составляли поставки сырья. Рост новых предприятий тормозила технологическая неразвитость. Правительство обращалось к общественности с просьбой принять участие в разработке экономических вопросов, содействовало в организации торгово-промышленного движения

«Какой я химик, я политэконом. Что там “Основы химии”, вот “Толковый тариф” — это другое дело» — так полушутя-полусерьезно сказал однажды студентам Менделеев о двух своих фундаментальных трудах. Всего же у Дмитрия Ивановича около ста работ на экономические темы. При его жизни деятельность Менделеева-экономиста в российском обществе привлекала внимание и вызывала споры не меньше, чем его научные работы по химии в мировых научных кругах.

Первое непосредственное знакомство Менделеева с делами промышленными пришлось на годы реформ Александра II. Экономика страны тоже требовала изменений. Основу экспорта составляли поставки сырья. Рост новых предприятий тормозила технологическая неразвитость. Правительство обращалось к общественности с просьбой принять участие в разработке экономических вопросов, содействовало в организации торгово-промышленного движения.

Обеспечить Россию собственным керосином

Одним из зачинщиков, агитаторов привлечения ученых к делу развития промышленности был петербургский миллионер В. А. Кокорев, вложивший средства, нажитые на винных откупах, в строительство первого нефтеперегонного завода в Баку, который, однако, приносил ему порядка 200 тысяч рублей убытков в год. Нефтепромышленник разыскал 29-летнего приват-доцента Менделеева, только что издавшего свой первый учебник «Органическая химия», и уговорил его поехать в Баку изучать нефтяные промыслы с одной только просьбой: «Либо помогите устранить убытки, либо закройте завод». И вышло так, что через год предприятие дало чистый доход более чем в 200 тысяч рублей.

МЕНДЛВ КОКОРЕВ.png

Василий Александрович Кокорев — русский предприниматель и меценат

Wikipedia

В те годы Россия закупала в огромном количестве американский керосин. После присоединения Азербайджана к России правительство отдавало бакинские нефтяные колодцы на откупное содержание. Нефтяные колодцы переходили из рук в руки, нефть добывалась примитивным способом и поставлялась на продажу в сыром виде, а попытки отдельных предпринимателей наладить переработку не могли составить конкуренцию американцам.

В 1873 году в Петербурге собралась комиссия для рассмотрения вопроса о развитии нефтяного промысла. В эту комиссию Менделеев входит, будучи уже мировой знаменитостью после открытия периодического закона, и его мнение сыграло не последнюю роль в решении об отмене откупной системы нефтедобычи. На смену откупам был введен акциз на производство керосина.

Однако меры эти казались Менделееву недостаточными. Дело в том, что принятая система акцизов не стимулировала технические инновации, а напротив, тормозила их внедрение. Министр финансов Николай Бунге откомандировал Менделеева в Америку для изучения постановки и ведения нефтяного дела, мечтая, что Соединенные Штаты и Россия разделят «в будущем между собою выгоды нефтяного промысла». Именно в отсутствии поддержки со стороны государства он видел причины, «которые препятствовали нашей нефтяной промышленности, начавшейся прежде американской, занять надлежащее ей место». Отменить акцизы удалось лишь тогда, когда керосиновый кризис в США и Европе повлек за собой обрушение цен и на российском рынке. Успехи же менделеевских начинаний в нефтяной отрасли сказались в 1895 году, когда российский керосин вытеснил наконец американский.

МЕНДЛВ НЕФТЬ.png

cont.ws

Поддержать промышленность

В 1882 году готовится первый в России торгово-промышленный съезд, который мог оказать влияние на формирование экономической программы Александра III, только что вступившего на престол. Менделеев пишет: «Царь, который позаботится устроить все условия для развития заводского и фабричного дела и для сбыта русских заводских и фабричных продуктов на запад и на восток, займет еще более славное место в истории России». На съезде он выступает с программой «Об условиях развития заводского дела», обращается к правительству с требованием организации льготного кредитования промышленных начинаний и петицией о необходимости создания министерства промышленности. Удивительно, что через полтора столетия после этой записки России приходится решать те же проблемы.

magnifier.png «Я не был и не буду ни фабрикантом, ни заводчиком, ни торговцем, но я знаю, что без них, без придания им важного и существенного значения нельзя думать о прочном развитии благосостояния России»

Менделеев был активным поборником индустриализации России. В статье о Всероссийской выставке 1896 года он писал: «Там впереди… усиление мирового значения России и торжество русского гения на пути промышленного прогресса, а вместе с тем богатство и могущество русского народа».

Дмитрий Иванович считал важным поддерживать не только промышленность, но и промышленников. Как он писал, «я не был и не буду ни фабрикантом, ни заводчиком, ни торговцем, но я знаю, что без них, без придания им важного и существенного значения нельзя думать о прочном развитии благосостояния России».

На службу индустриализации России великий ученый поставил не только свой гений естествоиспытателя и изобретателя, не только выдающиеся экономические познания, но и свое перо публициста и общественный авторитет. Он неоднократно обращался с письмами по вопросам промышленного развития страны к Александру III, Николаю II, многим высокопоставленным царским сановникам, собирался издавать газету, основной целью которой считал развитие начал протекционистской политики — ей он посвятил три письма Николаю II. Письма эти были написаны в 1897, 1898 и 1901 годах по просьбе министра финансов Сергея Витте, который говорил, что он один не в силах убедить царя.

Wikipedia // В своём отчёте С. Ю. Витте Д. И. Менделеев пишет: «истинное развитие промышленности немыслимо без свободного соревнования мелких и средних заводчиков с крупными». Кушвинский завод. 1899 год

В своём отчёте С. Ю. Витте Д. И. Менделеев пишет: «истинное развитие промышленности немыслимо без свободного соревнования мелких и средних заводчиков с крупными». Кушвинский завод. 1899 год

Wikipedia

Тариф «Менделевский»

В 1888 году министра финансов Бунге сменил на этом посту товарищ Менделеева со времен учебы в Педагогическом институте Иван Вышнеградский. И во время встречи, на которой Менделеев хотел обсудить нефтяные вопросы, Вышнеградский предложил ему заняться разбором материалов, подготовленных для предстоящего пересмотра общего таможенного тарифа, с тем чтобы к январю 1890 года представить «соображения и заключения хотя бы по одному разряду товаров, производимых на химических заводах».

Менделеев охотно принял предложение Вышнеградского. Работа для одного человека огромная. Потребовался сбор и обработка статистических данных по многим отраслям, изучение новых материалов по сельскому хозяйству, внешней торговле…

К декабрю 1889 года Менделеев представил Вышнеградскому докладную записку «Связь частей общего таможенного тарифа. Ввоз товаров» и этим докладом, по собственному признанию, определил свою судьбу и, кроме того, привлек себе в союзники Витте, который позже сменил Вышнеградского на посту министра финансов. В 1890 году Менделеев написал дополнение к записке и участвовал в заседаниях комиссии по тарифному вопросу, где был, по замечанию государственного деятеля, ученого и предпринимателя Владимира Ковалевского, «духовной осью всей работы… по созданию промышленного протекционизма».

Императорское вольное экономическое общество, видя такое преимущество, которое на государственном уровне оказывается промышленности в обход интересов аграрного сектора, поспешило обрушиться на Менделеева с критикой. А большинство русских ученых-экономистов того времени считали «нелиберальным» или даже «антинаучным» признавать законность таможенной защиты отечественной промышленности.

Протекционизм

Менделеев, который сам называл себя «реалистом» в противовес «классикам», почитавшим Адама Смита, пишет в статье «Оправдание протекционизма», что он открыто выступает за «рациональный протекционизм» и признает необходимость активного воздействия государства на экономику. Подлинный протекционизм, политика государственного покровительства, по его мнению, подразумевает не только таможенное регулирование, «а всю совокупность мероприятий государства, благоприятствующих промыслам и торговле и к ним приноравливаемых, от школ до внешней политики, от дороги до банков, от законоположений до всемирных выставок, от бороньбы земли до скорости перевозки… Он обязателен и составляет общую формулу, в которой таможенные пошлины только малая часть целого».

magnifier.png Менделеев (как и Витте) испытывал глубокие симпатии к немецкому политэконому Фридриху Листу, впервые в истории экономической мысли попытавшемуся системно и последовательно отстаивать приоритеты национальной экономики вопреки парадигме британской политики господства принципа свободной торговли

Менделеев (как и Витте) испытывал глубокие симпатии к немецкому политэконому Фридриху Листу, впервые в истории экономической мысли попытавшемуся системно и последовательно отстаивать приоритеты национальной экономики вопреки парадигме британской политики господства принципа свободной торговли. Вслед за Листом Менделеев доказывал, что протекционистская политика господствует в большинстве стран. И именно этой политике, а не накоплению капитала, в особенности когда оно происходит в отрыве от труда, по его убеждению, обязаны передовым своим положением страны Запада. Раньше всех других стран этап необходимых вспомогательных мер роста промышленного производства, по его словам, преодолела как раз родина Адама Смита — Англия, и лишь затем, став мировым экономическим лидером, она очень правильно выбрала время, когда ей стало выгодно пропагандировать фритрейдерство.

Но в качестве наиболее яркого образца правильной протекционистской системы государственной политики Менделеев приводит Германию, где период естественного прироста населения, по всем данным статистики, совпадает с экономическим подъемом, обусловленным «не только расширением просвещения, но и развитием всех видов промышленности, достигнутым прежде всего сильным и настойчивым протекционизмом как всем отраслям промышленности, так и рабочему населению». Быстрота, с которой Германия достигла успехов при канцлере Бисмарке, тоже поклоннике Фридриха Листа, доказывает, по мнению Менделеева, что «прогресс страны, зависит от правительственных мероприятий…».

Вологодское масло: бренд на все времена

Но отдавая дань поддержке промышленности, Менделеев вел на средства Вольного экономического общества и серию сельскохозяйственных опытов.

МЕНДЛВ ghtqc.png

Обложка прейскуранта молочного хозяйства Н.В. Верещагина. 1897 год

russkiymir.ru

Двух лет хватило Менделееву для того, чтобы пройти современную ему агрономическую науку. Этого же времени было достаточно, чтобы досконально изучить все возможности и проблемы российского сельского хозяйства. Им лично или под его руководством на разных почвах были испробованы десятки минеральных и органических удобрений, реализована программа физико-химического исследования русских грунтов (в химической лаборатории Петербургского университета было тщательно проанализировано около шестисот образцов), даже предпринята попытка создания общества для организации сбыта сельхозпродуктов. «Эти мысли тогда очень занимали меня; думалось призвать к самодеятельности. Пора на то, видно, еще не пришла, если на то внимания никто не обращал…».

Особенно он увлекся масло- и сыроварением под влиянием своего друга Николая Верещагина, создателя и первого поставщика масла, которое уже в советское время получило название «Вологодское», а тогда называлось «Парижское».

Дважды Менделеев выезжал для осмотра сыроварен Верещагина в Тверскую губернию. Именно ради одной из этих поездок Менделеев отказался лично докладывать об открытии периодического закона. Эпохальный доклад по поручению автора сделал его коллега. Сам же Менделеев в те дни готовил масло, сыр и доил по очереди с Николаем Верещагиным корову по кличке Нянька. Происходило это в хозяйстве «первого русского фермера», которое оба единомышленника пропагандировали на собраниях Вольного экономического общества и в печати. Грандиозный замысел Верещагина: развитие скотоводства и подъем сельского хозяйства северных губерний и Сибири, завоевание европейских рынков для отечественных молочных продуктов — Менделеев разделял и одобрял. Ведь и он сам, как и его друг, брался за решение больших государственных вопросов.

m.rusmir.media // Д.И. Менделеев и Н.В. Верещагин в Едимонове в 1869 году. Рисунок В.И. Бландова

Д.И. Менделеев и Н.В. Верещагин в Едимонове в 1869 году. Рисунок В.И. Бландова

m.rusmir.media

Заветные мысли

Полемика протекционистов и фритрейдеров, одной из основных фигур в которой был Менделеев, приносила Дмитрию Ивановичу большей частью огорчения. На торгово-промышленном съезде, который состоялся в 1892 году в Нижнем Новгороде, одно из центральных мест занимал вопрос о пошлине на сельскохозяйственную технику, а в итоге все вылилось во множественные выступления, доказывающие, что Россия — аграрная страна, и потому правительство должно оказывать покровительство в первую очередь сельскому хозяйству. Политику Витте называли «менделеевщиной» и обвиняли ученого в том, что он состоит на жалованье у промышленников.

magnifier.png «Чем проще, откровеннее и сознательнее станут русские речи, тем бодрее будут наши шаги вперед, тем дольше будут длиться мирные промежутки между оборонительными войнами, нам предстоящими, тем меньше на Западе, Востоке и Юге будут кичиться перед нами и тем более выиграет наше внутреннее единство»

«Толковый тариф», написанный на основе материалов, собранных в ходе подготовки таможенного закона 1891 года, — книгу, с которой Менделеев очень спешил, потому что считал необходимым поскорее сделать имевшиеся у него сведения достоянием общественности, и в особенности предпринимателей, пришлось издавать за собственный счет. Тем не менее книга объемом 900 страниц быстро разошлась и приобрела популярность в кругу заинтересованных читателей. И, в частности, удостоилась комплиментов со стороны Фридриха Энгельса. По сути дела, только Сергей Юльевич Витте видел в Менделееве своего «до смерти верного сотрудника и друга», который «понял и постарался просветить русскую публику в вопросе о значении промышленности в России».

Последние годы жизни Дмитрий Иванович посвятил собиранию подробнейших статистических сведений о большинстве отраслей российской промышленности, ставших основой книги «К познанию России», и обобщению своих политэкономических идей в изданной только в 1995 году книге «Заветные мысли». Системно излагая свои главные общественные идеи, глубоко анализируя вопросы образования, промышленности, сельского хозяйства, внешней торговли, народонаселения, Менделеев стремится выстроить стратегию развития России на несколько столетий вперед и привлечь к осмыслению судеб страны широкий круг граждан. «Чем проще, откровеннее и сознательнее станут русские речи, тем бодрее будут наши шаги вперед, тем дольше будут длиться мирные промежутки между оборонительными войнами, нам предстоящими, тем меньше на Западе, Востоке и Юге будут кичиться перед нами и тем более выиграет наше внутреннее единство».

Таблица химических элементов  известного химика Д. Менделеева – это настоящий прорыв в химии, который смог увидеть весь мир весной 1869 года. Российский химик смог сгруппировать и расставить знания о каждом химическом элементе в виде практичной таблицы, которая сейчас знакома каждому школьнику. Периодическая система стала основой скорого развития такого тяжелого и в то же время увлекательного предмета, при этом ее появление окутано мифами и легендами. Если вам не чуждо такое понятие, как «химия», и вы увлекаетесь всем интересным, то не помешает узнать, как же на самом деле произошло открытие системы.

Содержание:

  • 1
    Как все началось
  • 2 Легенды и факты о происхождении таблицы Менделеева
  • 3 Как организована периодическая система
  • 4 Правильный творческий процесс


Как все началось

За много лет перед тем как Дмитрий Менделеев открыл периодическую таблицу, многие ученые пытались систематизировать известные в то время химические вещества. Но недостаток информации о каждом химическом элементе и верной атомной массе привел к тому, что созданные таблицы не имели достоверных данных.

Именно 1869 год ознаменовался открытием известной таблицы. В это время химик на заседании научного сообщества поведал собственным коллегам о недавно сделанном открытии. Каждый химический элемент имеет свое отдельное место, исходя из величины и молекулярной массы.

Стоит заметить, что также в таблице есть пустые клетки, их в дальнейшем заполнял новый периодический элемент, открытие которого предсказал сам ученый (сюда относится скандий, галлий и германий). После того, как изобретение было представлено миру, оно также несколько раз исправлялось и дополнялось. Во время совместной работы с химиком из Шотландии У. Рамзаем российский ученый дополнил систему группой инертных газов (так называемая нулевая группа).

Далее история разработки системы химических элементов прямым образом связывалась с физикой. Усердный труд над системой ведется в настоящее время, современные светлые умы постоянно дополняют таблицу новыми элементами по мере их открытия. Невозможно переоценить создание системы Менделеева, поскольку за счет нее удалось:

  • классифицировать познания о характеристиках каждого уже открытого элемента;
  • спрогнозировать появление новых веществ;
  • дать толчок развитию физики ядра и атома.

Есть несколько вариантов изложения классификации химических элементов, исходя из периодического закона, но самой известной и распространенной является привычная многим таблица Д. Менделеева.

Легенды и факты о происхождении таблицы Менделеева

Происхождение знаменитой периодической таблицы окутано множеством мифов. Одним из наиболее распространенных является заблуждение, что идея системы пришла к ученому во сне. В действительности сам химик опроверг данную легенду и утверждал, что он на протяжении долгих лет трудился над ее разработкой. Для систематизации элементов он записывал их все на отдельные карточки и множество раз пытался их сочетать, располагая карточки в ряд, исходя из похожих свойств.

Легенда о вещем сне появилась из-за того, что сам ученый трудился над классификацией всех химических веществ сутками, изредка делая перерыв на пару часов сна. Но только многолетняя упорная работа и прирожденный талант Менделеева дали результат в виде всем известной таблицы и принесли перспективному ученому известность на весь мир.

Как организована периодическая система

Все составляющие таблицы располагаются по рядам с учетом увеличения их массы, а сама длина каждого ряда составлена таким способом, чтобы расположенные в нем элементы имели похожие характеристики.

Если описывать кратко, то внутри всех столбцов элементы размещаются в соответствии со схожими свойствами, которые варьируются при переходе между столбцами. Каждый элемент, включая №92, является природным, а уже начиная с №93 идут искусственные соединения, создающиеся исключительно в лабораториях.

Изначально периодическая таблица представляла собой наглядную систему уже существующих в природе элементов, при этом не было никакой основы, почему они должны стоять именно так. Но с появлением квантовой механики все обрело смысл, и расположение каждого элемента теперь было понятно.

Правильный творческий процесс

Если же поднимать вопрос, какой урок организации творческого процесса можно извлечь из истории, как Д. Менделеев создал свою периодическую таблицу, то можно рассмотреть труд А. Пуанкаре и Н. Уоллеса, касаемо исследования творческого мышления. В соответствии с их работами, есть 4 базовых этапа творческого мышления:

  1. Подготовительный этап – здесь должна появляться основная задача и предприниматься первые попытки ее решения.
  2. Этап инкубации – в это время наблюдается временное отвлечение от задумки, но на уровне подсознания все также продолжается работа над поисками решения.
  3. Этап озарения – исследователь интуитивно находит решение. При этом, обнаружиться данное решение может в ситуации, которая не имеет никакого отношения к проблеме.
  4. Проверочный этап – момент испытаний и реализации решения, в это время проводится проверка данного решения и потенциальное развитие в будущем.

Как можно увидеть, во время создания таблицы российский химик интуитивно прошел каждый этап творческого процесса. Об эффективности данного принципа можно судить по итоговому результату, ведь система была разработана. Рассматривая то, что ее систематизация стала большим шагом вперед не только для химии, но и для человечества, указанные выше 4 этапа могут использоваться для реализации небольшого проекта или же масштабного замысла. Стоит только помнить, что ни одно решение задачи или научное открытие не может найтись само по себе, как бы вы этого не желали, но увидеть решение во сне невозможно, насколько бы крепко вы не спали. Чтобы достичь результата, необходимо обладать рядом знаний и навыков, а также грамотно применять собственный потенциал, упорно трудиться и неустанно идти вперед к намеченной цели. И, конечно же, тренировать мозг, например, с помощью онлайн-тренажеров Викиум.

Понравилась статья? Поделить с друзьями:
  • Как найти произведение крайних чисел пропорции
  • Сталкер в западне как найти путепровод
  • Как найти октмо муниципального образования
  • Как найти порчу наведенную
  • Как найти давление газа co2