Как можно найти энергию магнитного поля

Магнитное поле, связанное с электрическим током, характеризуется определенной энергией.

Если через проводник или катушку проходит ток, то часть электроэнергии расходуется на преодоление сопротивления проводника и превращается в тепло, а часть образует магнитное поле, в котором накапливается некоторая часть энергии, превращается в потенциальную энергию.

Определение магнитной энергии

Магнитная энергия и электростатическая потенциальная энергия связаны уравнениями Максвелла. Потенциальная энергия магнитного момента mm в магнитном поле BB определяется как механическая работа магнитной силы (фактически магнитного момента) на повторное выравнивание вектора магнитного дипольного момента и равна:

E=−m⋅BE = — m cdot B

в то время как энергия, запасенная в катушке индуктивности (с индуктивностью LL) при прохождении через нее тока II, определяется как:

E=1/2LI2E = 1/2 LI^2

Это выражение лежит в основе сверхпроводящего накопления магнитной энергии.

Энергия также хранится в магнитном поле. Энергия на единицу объема в области пространства проницаемости μ0μ0, содержащей магнитное поле BB, равна:

U=B2/2μ0U = B^2/2μ_0

В более широком смысле, если мы предположим, что среда является парамагнитной или диамагнитной и существует линейное определяющее уравнение, связывающее BB, то можно показать, что магнитное поле хранит энергию

E=12∫HBdV,E=frac{1}{2}int{HBdV},

где интеграл оценивается по всей области, где существует магнитное поле.

Аналогично энергию магнитного поля тока можно определить также через работу тока против ЭДС самоиндукции, которая выполняется при замыкании цепи.

Сравнивая выражение энергии магнитного поля через индукцию и силу тока с формулой для определения кинетической энергии, делаем вывод, что индуктивность в электромагнитных явлениях играет такую же роль, как масса в механических явлениях, и является мерой инертности электрической цепи.

Энергия магнитного поля соленоида

Индуктивность контура

Физическая величина, определяемая удвоенной энергией магнитного поля, сформированного единичным током в этом контуре.

Определим энергию магнитного поля соленоида, индуктивность которого LL:

L=μμ0n02VL=mu {{mu }_{0}}n_{0}^{2}V

Wm=12μμ0n02I2V{{W}_{m}}=frac{1}{2}mu {{mu }_{0}}n_{0}^{2}{{I}^{2}}V.

Индукция магнитного поля внутри соленоида:

B=μμ0n0IB=mu {{mu }_{0}}{{n}_{0}}I

откуда

I=Bμμ0n0I=frac{B}{mu {{mu }_{0}}{{n}_{0}}}

Из данных формул получаем

Wm=12B2Vμμ0,{{W}_{m}}=frac{1}{2}frac{{{B}^{2}}V}{mu {{mu }_{0}}},

где VV –объем соленоида.

Поскольку поле соленоида однородно и почти полностью локализовано в его объеме, можно определить плотность энергии магнитного поля, то есть энергию, рассчитанную на единицу объема поля:

wm=WmV=12B2μμ0=BH2=μμ0H22{{w}_{m}}=frac{{{W}_{m}}}{V}=frac{1}{2}frac{{{B}^{2}}}{mu {{mu }_{0}}}=frac{BH}{2}=frac{mu {{mu }_{0}}{{H}^{2}}}{2}

Плотность энергии магнитного поля как характеристику поля относят к любой точке поля, в которых заданы векторы BB или HH.

Зная энергию магнитного поля, можно по теории относительности найти подходящую массу поля:

m=Wmc2m=frac{{{W}_{m}}}{{{c}^{2}}}

Итак, как электрическое, так и магнитное поля имеют не только энергию, но и массу. Эти поля так же материальны, как и вещества.

Тест по теме «Энергия магнитного поля»

Допустим, что у нас есть магнитное поле, созданное фиксированным распределением токов в пространстве. Его индукцию можно вычислить так:

B0→(x, y, z)=μoH0→(x, y, z).

А энергию этого магнитного поля – так:

Wm=B2/2μμ0.

Теперь представим, что все пространство заполнено однородным магнетиком с магнитной проницаемостью, равной μ=const. Примем, что поле создается тем же распределением токов. Тогда его напряженность не будет меняться:

H→=H0→.

А индукцию данного поля можно вычислить по формуле:

B=FLqυsin a.

Тогда из двух предыдущих уравнений мы можем найти энергию магнитного поля при наличии магнетика:

wm=12H→B→=12B2μμ0.

Из данного выражения можно сделать вывод, что энергия магнитного поля растет по мере заполнения пространства однородным магнетиком. Это объясняется сторонними движущими силами, придающими энергию процессу, т.к. они поддерживают токи постоянными. Поскольку источники энергии остаются прежними и после заполнения пространства магнетиком, то можно предположить, что энергия магнетика во внешнем поле будет равна:

WB=12∫V1μ0-1μB·Bidv.

Теперь вспомним о таких понятиях, как векторы напряженности и векторы намагниченности. Они связаны между собой выражением:

M=χmH.

Здесь буквой x обозначается магнитная восприимчивость, которая в случае с изотропными магнетиками соотносится с магнитной проницаемостью следующим образом:

J=χH.

Преобразуем подынтегральное выражение и используем формулы, выведенные до этого. Получим:

Тогда энергия магнетика будет равна:

Полученная формула будет иметь ту же структуру, что и формула вычисления энергии диэлектрика во внешнем электрическом поле, но с другим знаком справа. Она рассчитана изначально для магнетика, имеющего постоянную магнитную проницаемость, однако в других случаях ее также можно использовать.

Как изменяется энергия магнетика при изменении магнитной проницаемости среды

Возьмем среду с магнитной проницаемостью μ2, в которой находится магнетик с проницаемостью μ1. Тогда в соответствии с выведенной ранее формулой запишем, что:

Здесь H2→ — это напряженность поля в точках магнетика с проницаемостью μ2 (предположим, что другого магнетика у нас нет), H1→ – фактическая напряженность поля в магнетике с проницаемостью
μ1.

Если магнитная проницаемость среды изменяется на бесконечно малую величину δμ=μ1-μ2, то энергия магнетика во внешнем магнитном поле напряженностью H→ изменяется на δWmυ.

Подставим в формулу H2→=H→, H1→=H→+δH→, откинем величину δμδH→·H→ и получим:

Решение задач на нахождение энергии магнитного поля

Пример 1

Условие: у нас есть соленоид с током без сердечника. Плотность энергии создаваемого им магнитного поля равна 0,1 Джм3. Найдите увеличение плотности энергии при включении в соленоид железного сердечника. Сила тока при этом останется прежней.

Решение

Сразу отметим, что магнитная проницаемость среды для соленоида без сердечника будет равна единице. Чтобы найти напряженность магнитного поля соленоида, используем следующую формулу:

w=μμ0H22.

Выразим напряженность из формулы и получим:

H=2wμμ0.

При включении в соленоид сердечника напряженность поля останется прежней, а для вычисления индукции возьмем эту формулу:

H=2·0,14π·10-7=0,4·103.

Для нахождения индукции по напряженности магнитного поля в железном сердечнике нам нужно будет заглянуть в справочник. Он может быть представлен как в табличной, так и графической форме. Найдем там нужную величину, равную B≈1 Тл. Теперь перейдем к вычислению плотности магнитной энергии поля соленоида с железным сердечником:

w’=BH2.

Теперь вычисляем значение w’:

w’=1·4002=200.

После чего найдем искомое соотношение плотностей:

w’w=2000,1=2000.

Ответ: при включении железного сердечника плотность энергии возрастет в 2 тысячи раз.

Пример 2

Условие: у нас есть квадратная железная рамка с обмоткой из n-ного количества витков, по которой течет ток с силой I. В ней есть прорезь шириной a. Вычислите величину энергии магнитного поля в зазоре рамки, если длина ее средней линии равна d, а площадь поперечного сечения – S. Магнитную проницаемость рамки взять равной μ, рассеяние поля в краях прорези не учитывать.

Решение

Начнем с вычисления напряженности магнитного поля в самой рамке и ее зазоре. Для этого нам понадобится теорема о циркуляции:

∮LH→dl→=∑k=1NIk.

Согласно условиям нашей задачи, основная формула будет иметь следующий вид:

H(d-a)+Ha=IN→H=INd.

Теперь найдем величину магнитной индукции в зазоре:

B→=μ0H→.

Подставим нужные значения и вычислим:

H(d-a)+Bμ0a=IN→B=μ0INa-μ0(d-a)Ha.

Энергия магнитного поля в зазоре будет равна:

Wm1=BH2S·a=12μ0INa-μ0(d-a)INdaINd·S·a=12μ0a(IN)2Sd.

Теперь вычислим магнитную энергию в сердечнике:

Wm2=μμ0H22S(d-a)=μμ0H22INd2(d-a).

Нам осталось только найти полную энергию поля:

Wm=Wm1+Wm2=12μ0a(IN)2Sd+μμ0H22INd2(d-a)=12μ0S(IN)2da+μd(d-a).

Ответ: Wm1=12μ0a(IN)2Sd, Wm=12μ0S(IN)2da+μd(d-a).

Если
в контуре с индуктивностью L
течёт ток I,
то в момент размыкания цепи возникает
индукционный ток и им совершается
работа. Эта работа совершается за счёт
энергии исчезнувшего при размыкании
цепи магнитного поля. На основании
закона сохранения и превращения энергию
магнитного поля превращается главным
образом в энергию электрического поля,
за счёт которой происходит нагревание
проводников. Работа может быть определена
из соотношения

dA=εсмIdt

Так
как
,
то

dA=-LIdI

Уменьшение
энергии магнитного поля равно работе
тока, поэтому

(16.18)

Формула
справедлива для любого контура и
показывает, что энергия магнитного поля
зависит от индуктивности контура и силы
тока, протекающего по нему.

Рассчитаем
энергию однородного магнитного поля
длинного соленоида, индуктивность
которого определяется по формуле L
= μμ0n2V.
B
этом случае формула энергии примет вид

Учитывая,
что напряжённость поля внутри бесконечно
длинного соленоида Н=In,
получаем

(16.19)

Выразим
энергию через индукцию магнитного поля
B=
μμ0H:

(16.20)

Или

(16.21)

Вследствие
того, что магнитное поле соленоида
однородно и локализовано внутри
соленоида, энергия распределена по
объёму соленоида с постоянной плотностью

(16.22)

Учитывая
последние три формулы, получаем



Учитывая
правило Ленца, можно заметить, что
явление самоиндукции аналогично
проявлению инертности тел в механике.
Так, вследствие инертности тело не
мгновенно приобретает определённую
скорость, а постепенно. Так же постепенно
происходит и его торможение. То же самое,
как мы видели, происходит и с силой тока
при самоиндукции. Эту аналогию можно
провести и дальше.


и

эти
уравнения эквивалентны.

т.е.
m
~L
, υ~I

Эквивалентны
и формулы

Примеры решения задач

Пример.
В магнитном поле, изменяющемся по закону
B=B0cosωt
(B0=5мТл,

ω=5с-1),
помещён круговой проволочный виток
радиусом r=30см,
причём нормаль к витку образует с
направлением поля угол α=30º. Определите
ЭДС индукции, возникающую в витке в
момент времени t=10с.

Дано:
B=B0cosωt;
B0=5мТл=5∙10-3
Тл;
ω=5с-1;
r=30см=0,3
м;
α=30º; t=10 с.

Найти:
εi.

Решение:
Согласно
закону Фарадея,

,
(1)

Где
магнитный поток, сцепленный с витком
при произвольном его расположении
относительно магнитного поля.

Ф=BScosα.

По
условию задачи B=B0cosωt,
а площадь кольца S=πr2,
поэтому

Ф=πr2
B0cosωt∙cosα.
(2)

Подставив
выражение (2) в формулу (1) и продифференцировав,
получаем искомую ЭДС индукции в заданный
момент времени:

Ответ:
εi=4,69
мВ.

Пример
В
соленоиде длиной ℓ=50см и диаметром
d=6см
сила тока равномерно увеличивается на
0,3А за одну секунду. Определите число
витков соленоида, если сила индукционного
тока в кольце радиусом 3,1 см из медной
проволоки (ρ=17нОм∙м), надетом на катушку,
Iк=0,3
А.

Дано:
ℓ=50см=0,5
м; d=6см=0,06м;
;rк=3,1см=3.1∙10-2м;
ρ=17нОм∙м=17∙10-9
Ом∙м; Iк=0,3
А.

Найти:
N.

Решение.
При изменении силы тока в соленоиде
возникает ЭДС самоиндукции

(1)

где

индуктивность соленоида. Подставив это
выражение в (1)

с
учётом

.

ЭДС
индукции, возникающая в одном кольце,
в N
раз меньше, чем найденное значение ЭДС
самоиндукции в соленоиде, состоящем из
N
витков, т.е.

.
(2)

Согласно
закону Ома, сила индукционного тока в
кольце

,
(3)

где

сопротивление кольца. Поскольку ℓк=πd,
а Sк=πrк2,
выражение (3) примет вид

Подставив
в эту формулу выражение (2), найдём искомое
число витков соленоид

.

Ответ:
N=150

Пример
В
однородном магнитном поле подвижная
сторона (её длина ℓ=20см) прямоугольной
рамки (см. рисунок) перемещается
перпендикулярно линиям магнитной
индукции со скоростью υ=5 м/с. Определите
индукцию В магнитного поля, если
возникающая в рамке ЭДС индукции εi=0,2
В.

Дано:
ℓ=20см=0,2
м; υ=5 м/с; εi=0,2
В.

Найти:
B.

Решение.
При движении в магнитном поле подвижной
стороны рамки поток Ф вектора магнитной
индукции сквозь рамку возрастает, что,
согласно закону Фарадея,

,
(1)

приводит
к возникновению ЭДС индукции.

Поток
вектора магнитной индукции, сцепленный
с рамкой,

Ф=Bℓx.
(2)

Подставив
выражение (2) в формулу (1) и учитывая, что
B
и ℓ — величины постоянные, получаем

откуда
искомая индукция магнитного поля

Ответ:
В=0,2 Тл.

Пример
В
однородном магнитном поле с индукцией
В=0,2 Тл равномерно вращается катушка,
содержащая N=600
витков, с частотой n=6
с-1.
Площадь
S
поперечного сечения катушка 100см2.
Ось вращения перпендикулярна оси катушки
и направлению магнитного поля. Определите
максимальную ЭДС индукции вращающейся
катушки.

Дано:
В=0,2
Тл; N=600;
n=6
с-1;
S=100см2=10-2
м2.

Найти:
i)max.

Решение.
Согласно закону Фарадея,

где
Ф – полный магнитный поток, сцеплённый
со всеми витками катушки. При произвольном
расположении катушки относительно
магнитного поля

Ф=NBScosωt,
(1)

где
круговая частота ω=2πn.
Подставив ω в (1), получим

Ф=NBScos2πnt.

Тогда

εi=-NBS2πn(-sin2πnt)=2πnNBSsin2πnt,

εi=(
εi)max
при
sin2πnt=1, поэтому

i)max=2πnNBS

Ответ:
i)max=45,2
В.

Пример
Однослойная
длинная катушка содержит N=300
витков, плотно прилегающих друг к другу.
Определите индуктивность катушки, если
диаметр проволоки d=0,7
мм (изоляция ничтожной толщины) и она
намотана на картонный цилиндр радиусом
r=1
см. .

Дано:
N=300;
d=0,7
мм=7∙10-4
м; r=1
см=10-2
м.

Найти:
L.

Решение.
Индуктивность катушки

(1)

где
Ф – полный магнитный поток, сцепленный
со всеми витками катушки; I
— сила тока в катушке.

Учитывая,
что полный магнитный поток

Ф=NBS

(N-число
витков катушки; В – магнитная индукция;
S
– площадь поперечного сечения катушки);
магнитная индукция в катушке без
сердечника

0
– магнитная постоянная; ℓ- длина
катушки), длина катушки

ℓ=Nd

(d-диаметр
проволоки; витки вплотную прилегают
друг к другу), площадь поперечного
сечения катушки

S=πr2,

Получим
осле подстановки записанных выражений
в формулу (1) искомую индуктивность
катушки:

Ответ:
L=1,69
мГн.

Пример
Первичная
обмотка понижающего трансформатора с
коэффициентом трансформации k=0,1
включена в сеть с источником переменного
напряжения с ЭДС ε1=220
В. Пренебрегая потерями энергии в
первичной обмотке, определите напряжение
U2
на зажимах вторичной обмотки, если её
сопротивление R2=5
Ом и сила тока в ней I2=2А.

Дано:
k=0,1;
ε1=220
В; R2=5
Ом; I2=2А.

Найти:
U2.

Решение.
В первичной обмотке под действием
переменной ЭДС ε1
возникает переменный ток I1,
создающий в сердечнике трансформатора
переменногый магнитный поток Ф, который
пронизывает вторичную обмотку. Согласно
закону Ома, для первичной обмотки

где
R1
– сопротивление первичной обмотки.
Падение напряжения I1R1
при быстропеременных полях мало по
сравнению с ε1
и ε2.
Тогда можем записать:

(1)

ЭДС
взаимной индукции, возникающая во
вторичной обмотке,

(2)

Из
выражений (1) и (2) получаем

,

где

коэффициент трансформации, а знак «-»
показывает, что ЭДС в первичной и
вторичной обмотках противоположны по
фазе. Следовательно, ЭДС во вторичной
обмотке

ε2=k
ε2.

Напряжение
на зажимах вторичной обмотки

U2=
ε2-I2R2=
1-I2R2.

Ответ:
U2=12
В.

Пример
Соленоид
без сердечника с однослойной обмоткой
из проволоки диаметром d=0,4
мм имеет длину ℓ=0.5 м и поперечное сечение
S=60см2.
За какое время при напряжении U=10
В и силе тока I=1,5
А в обмотке выделится количество теплоты,
равное энергии поля внутри соленоида?
Поле считать однородным.

Дано:
d=0,4
мм=0,4∙10-4
м; ℓ=0,5 м; S=60см2=6∙10-3
м2;
I=1,5А;
U=10В;
Q=W.

Найти:
t.

Решение.
При прохождении тока I
при напряжении U
в обмотке за время t
выделяется теплота

Q=IUt.
(1)

Энергия
поля внутри соленоида

(2)

где
(N
– общее число витков соленоида). Если
витки вплотную прилегают друг к другу,
то ℓ=Nd,
откуда
.
Подставив выражение для В иN
в
(2), получаем

.
(3)

Согласно
условию задачи, Q=W.
Приравняв выражение (1) и (3),найдём искомое
время:

Ответ:
t
=1,77 мс.

Пример
Катушка
без сердечника длиной ℓ=50 см содержит
N=200
витков. По катушке течёт ток I=1А.
Определите объёмную плотность энергии
магнитного поля внутри катушки..

Дано:
ℓ=50
см=0,5
м;
N=200; I=1 А.

Найти:
ω.

Решение.
Объёмная плотность энергии магнитного
поля (энергия единицы объёма)

,
(1)

где

энергия магнитного поля (L
— индуктивность катушки); V=Sℓ-
объём катушки (S
— площадь катушки; ℓ- длина катушки).

Магнитная
индукция поля внутри соленоида с
сердечником с магнитной проницаемостью
μ равна

.

Полный
магнитный поток, сцепленный со всеми
витками соленоида,

.

Учитывая,
что Ф=LI,
получаем формулу для индуктивности
соленоида:

(2)

Подставив
выражение (2) в формулу (1) с учётом того,
что
,
найдём искомую объёмную плотность
энергии магнитного поля внутри катушки:

Ответ:
ω=0,1
Дж/м3.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Что такое энергия магнитного поля

Определение

Энергия магнитного поля — величина, обозначающая работу, затраченную электрическим током в проводнике или катушке индуктивности на образование этого магнитного поля.

Существует зависимость энергии магнитного поля от индуктивности проводника, вокруг которого это поле образовалось. Для обозначения величины используют букву W. Единицами измерения энергии являются Дж/м3 или МГсЭ (Мега Гаусс Эрстеды). К примеру, максимальное значение энергии магнитного поля неодимовых магнитов равно 278-360 Дж/м3, а ферритовых — составляет до 30 Дж/м3.

Описание явления, закон Фарадея

Магнитное поле обладает энергией. Данный факт можно доказать с помощью практического эксперимента. Опыт заключается в исследовании процесса убывания силы тока в катушке при отключении от нее источника тока. Предположим, что до того момента, когда был разомкнут ключ, в катушке имелся ток I, что способствовало образованию магнитного поля. После размыкания ключа катушка и сопротивление соединяются последовательно. В результате самоиндукции ток в катушке будет постепенно уменьшаться. Процесс сопровождается выделением теплоты на сопротивлении. Источник тока отключен, поэтому необходимо определить источник энергии, которая расходуется на тепло. Так как убывает ток и создаваемое им магнитное поле, допустимо говорить о понятии энергии тока или энергии магнитного поля, которое он создает.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В том случае, когда магнитное поле образовано постоянным током, определить место сосредоточения энергии не представляется возможным, так как ток по своему свойству образует магнитное поле, которое в любом случае сопровождается токами. Можно рассмотреть переменное магнитное поле в электромагнитной волне. Такая волна характеризуется наличием магнитных полей в условиях отсутствия токов. Известно, что электромагнитные волны являются переносчиками энергии, что позволяет сделать вывод о существовании энергии в магнитном поле. Таким образом, электрический ток обладает энергией, локализованной в магнитном поле, то есть в среде, окружающей этот ток. Согласно закона сохранения энергии, на примере эксперимента вся энергия магнитного поля выделяется в виде Джоулева тепла на сопротивлении R. 

Определение

Электромагнитная индукция представляет собой явление возникновения электрического тока, поля или электрической поляризации при изменении с течением времени магнитного поля или в процессе движения материальной среды в нем.

С помощью опытов с катушками и магнитом Фарадею удалось обнаружить зависимость между величиной электродвижущей силы и скорости, с которой перемещаются катушки или магнит. Данное наблюдение послужило основанием для выявления закономерности и формулировки закона электромагнитной индукции.

Определение

Закон электромагнитной индукции: электродвижущая сила пропорциональна скорости изменения магнитного потока, проходящего через контур.

(E=frac{-Delta Phi }{Delta t})

E — электродвижущая сила; (Delta Phi) — изменение магнитного потока; (Delta t) — время, в течение которого происходило изменение магнитного потока.

Единицами измерения ЭДС являются вольты магнитного потока — веберы. (Delta) определяет разницу между конечным и начальным параметром.

Формула закона Фарадея содержит знак минуса. К данному выражению применено правило Ленца, как пояснение того, что ток, образовавшийся в результате индукции, в любом случае противоположно направлен образующему его магнитному потоку. Магнитное поле индукционного тока всегда препятствует магнитному потоку из внешнего источника. По смыслу правило схоже с законом сохранения энергии.

Связь энергии магнитного поля и его основных характеристик

На примере длинного соленоида можно рассмотреть проявление энергии магнитного поля. Предположим, что поля является однородным и сосредоточено внутри соленоида. В таком случае, для нахождения силы тока можно воспользоваться формулой:

(I=frac{Hl}{N})

Здесь H — напряженность магнитного поля соленоида; l — длина соленоида; N — число витков соленоида.

В случае эксперимента с соленоидом:

(L=mu mu _{0}n^{2}Sl)

Здесь (mu) — магнитная проницаемость сердечника соленоида; S — площадь сечения соленоида; n=Nl.

Таким образом:

(E_{m}=frac{mu mu _{0}N^{2}Sl}{2l^{2}}frac{H^{2}l^{2}}{N^{2}}=mu mu _{0}frac{H^{2}}{2}Sl=mu mu _{0}frac{H^{2}}{2}V)

Как правило, роль энергетической характеристики магнитного поля играет такой параметр, как плотность энергии магнитного поля:

(omega =frac{E_{m}}{V}=mu mu _{0}frac{H^{2}}{2})

Данное выражение справедливо в случае любого магнитного поля, несмотря на характер его происхождения. Формула определяет энергию магнитного поля в единице его объема. Если имеется магнитоизотропная среда, то уравнение можно преобразовать, таким образом:

(vec{B}=mu mu _{0}vec{H})

Следовательно:

(omega =frac{BH}{2})

В случае неоднородного магнитного поля целесообразно разбить его на элементарные объемы (dV), то есть малые объемы, в которых магнитное поле считается однородным. Энергия магнитного поля, заключенная в рассматриваемых объемах, составляет:

(dE_{m}=omega dV)

При этом суммарная энергия магнитного поля равна:

(E_{m}=int_{V}^{}{omega dV})

Интегрированию в данном случае подлежит весь объем, занимаемый магнитным полем.

От чего зависит величина

Существует ряд некоторых ограничений в применении формулы для расчета энергии магнитного поля. При записи выражения выполнялось несколько условий:

  • индуктивность контура, а также магнитная проницаемость вещества стабильны;
  • вся энергия источника тока трансформируется в энергию магнитного поля.

Перечисленные условия справедливы лишь в случае вакуума, то есть при (mu)=1. Если контур с током поместить в вещество, то необходимо принимать во внимание следующие параметры:

  • намагничивание вещества, что способствует его нагреву;
  • объем и плотность вещества в магнитном поле могут изменяться даже при стабильной температуре.

Таким образом, магнитная проницаемость вещества (mu), изменяющаяся при перепадах температуры и плотности среды, не может оставаться постоянной в процессе намагничивания. Также работа источника ЭДС не полностью трансформируется в энергию магнитного поля. В том случае, когда объем вещества изменяется в малой степени, сохраняется стабильной температура среды, внешняя работа затрачивается на увеличение энергии магнитного поля (E_{m}) и на теплоотдачу Q, чтобы поддерживать постоянную температуру.

Работа внешних сил, в нашем случае источника тока, совершаемая над телом при квазистатическом изотермическом процессе, соответствует увеличению свободной энергии тела. Таким образом, формула определяет часть свободной энергии намагниченного вещества, которая обладает связью с магнитным полем:

(omega =frac{E_{m}}{V}=mu mu _{0}frac{H^{2}}{2})

При малом количестве теплоты Q, относительно энергии поля (E_{m}), справедливо равенство:

(-E_{m}=A_{i})

Согласно условию стабильности магнитной проницаемости вещества, выполняется линейная зависимость:

(vec{B}=mu mu _{0}vec{H})

Выражение применимо при рассмотрении ситуаций в условиях вакуума для парамагнетиков и диамагнетиков. Но при опытах с ферромагнетиками магнитная индукция и напряженность магнитного поля связаны нелинейно, даже при T=const.

Чему равна энергия, как найти, формула

Согласно закону сохранения энергии, вся энергия магнитного поля по итогам опыта преобразиться в Джоулево тепло на сопротивлении R. Величину уменьшения энергии магнитного поля определяют в виде работы индукционного тока:

(-Delta E_{m}=A_{i})

Результирующие значение силы тока, индукции магнитного поля и энергии равны нулю. Можно принять начальную величину энергии за (E_{m}) и записать, что:

(-E_{m}=A_{i})

Элементарная работа, которую совершает ток, вычисляется, таким образом:

(dA_{i}=varepsilon _{i}Idt=-LIfrac{dI}{dt}dt=-LIdI)

Здесь dt — время, в течение которого совершается работа током индукции; (varepsilon _{i}=-Lfrac{dI}{dt}) — ЭДС самоиндукции.

В связи с изменением тока от I до 0, получим:

(E_{m}=-int dA_{i}=Lint_{I}^{0}{IdI}=frac{LI^{2}}{2})

Записанная формула справедлива для любого контура и определяет, каким образом связаны энергия магнитного поля, сила тока и индуктивность контура. Можно сопоставить выражение с уравнением кинетической энергии поступательного движения:

(E_{k}=frac{mv^{2}}{2})

Данное соотношение демонстрирует связь индуктивности контура с его инерционностью. Если тело совершает движение, то его невозможно остановить без энергетических превращений. По тому же принципу, нельзя прекратить электрический ток без трансформации энергии.

Энергия магнитного поля изолированного контура с током.

Для того чтобы в неподвижном контуре создать электрический ток, необходимо включить в цепь источник сторонних э. д.с. Если в цепи течет постоянный ток, то энергия, поступающая в цепь из источника сторонних э. д.с., расходуется на выделение джоулевой теплоты и на совершение работы в потребителе энергии. Индукция магнитного поля, как и его энергия, при этом неизменна. Индукция изменяется с изменением силы тока. Следовательно, источник сторонних э. д.с. передает в цепь энергию на создание магнитного поля в процессе увеличения силы тока. Вычислив работу, совершаемую источником сторонних э. д.с. для увеличения силы тока от нуля до конечного значения, получим энергию магнитного поля, которое связано с этим током.

При изменении потока магнитной индукции, охватываемого контуром, в контуре возникает э. д.с. индукции в соответствии с законом (23.1). У изолированного контура поток электромагнитной индукции Ф возникает за счет магнитного поля, создаваемого током в контуре. При увеличении силы тока возрастает поток Ф, охватываемый током, и в контуре по закону Фарадея возникает э. д.с. индукции, которая в данном случае называется э. д.с. самоиндукции. По правилу Ленца, она направлена так, что препятствует увеличению силы тока. Для увеличения силы тока необходимо, чтобы сторонняя э. д.с. источника была направлена противоположно э. д.с. самоиндукции и равна ей. Таким образом, в процессе роста силы тока источник сторонних э. д.с. совершает работу против э. д.с. самоиндукции. За промежуток времени dt по контуру проходит количество электричества и, следовательно, против э. д.с. самоиндукции источник сторонних сил в течение совершает работу

, (24.1)

Где для использована формула (23.1) . При совершении этой работы происходит превращение энергии источника сторонних э. д.с. в энергию магнитного поля тока в контуре. Поэтому изменение энергии магнитного поля связано с изменением потока соотношением

(24.2)

Индукция магнитного поля тока в соответствии с законом Био-Савара линейно зависит от силы тока. Поэтому при переменной силе тока, протекающего по жесткому неподвижному контуру, картина силовых линий остается прежней, а индукция в каждой точке растет пропорционально силе тока. А это означает, что поток магнитной индукции Ф сквозь фиксированную неподвижную площадь также пропорционален силе тока, и поэтому

(24.3)

Где L – постоянный коэффициент пропорциональности, не зависящий от силы тока и индукции магнитного поля. Этот коэффициент называется индуктивностью контура.

Подставляя обе части (24.3) в (24.2), находим

(24.4)

Интегрируя обе части (24.4) от до некоторого значения I , получаем формулу

, (24.5)

Которая определяет энергию магнитного поля, создаваемого током силы I, текущим по контуру с индуктивностью L.

Это и есть формула, определяющая энергию магнитного поля, созданного током , текущим по контуру с индуктивностью .

Если есть несколько контуров с током, то происходит взаимовлияние контуров друг на друга с помощью так называемых коэффициентов взаимной индукции , . величины определяет индуктивность каждого поля. При наличии нескольких контуров

. (24.6)

Явление самоиндукции.

Рассмотрим явление возникновения в замкнутом контуре при изменении силы тока в этом контуре.

описание: 24

При замыкании ключа в первом случае (а) лампочка мгновенно достигает максимальной яркости и далее горит с постоянным накалом. При размыкании ключа лампочка мгновенно гаснет. Во втором случае (б), где вместо сопротивления включена катушка индуктивности, при замыкании ключа лампочка медленно набирает яркость, а при размыкании гаснет постепенно. Это связано с явлением электромагнитной индукции. Действительно, при замыкании ключа ток нарастает, значит , следовательно , , т. е. в цепи имеется две э. д.с.: , т. е. препятствует нарастанию тока. При размыкании ключа ток в контуре начинает уменьшаться , а значит , , , т. е. поддерживает уменьшающийся ток. С учетом (24.3)

(24.7)

Включение и выключение постоянной э. д.с. в цепи с сопротивлением и индуктивностью.

Если в момент в цепь (рис. б) включается источник сторонней э. д.с. постоянной величины, например, батарея, то сила тока I в цепи начинает расти. Однако за счет роста индукции поля в контуре возникает э. д.с. самоиндукции, действующая противоположно сторонней э. д.с. В результате рост силы тока в цепи замедляется. Для каждого момента времени соблюдается закон Ома, который с учетом (24.7) записывается в виде уравнения

, (24.8)

Где — полное сопротивление в цепи (включая внутреннее сопротивление источника). Это уравнение необходимо решить при начальном условии . Говоря о том, что в каждый момент соблюдается закон Ома, мы предполагаем, что сила тока во всех участках цепи одна и та же, т. е. ток квазистационарен. Решение уравнения (24.8) элементарно

(24.9)

Ток нарастает и установившееся значение силы тока , соответствующее закону Ома для постоянного тока, достигается лишь в смысле предела при бесконечном времени. Учитывая экспоненциальную зависимость силы тока от времени, можно как обычно за время нарастания силы тока в цепи принять такое значение , при котором показатель экспоненты обращается в минус единицу, т. е.

(24.10)

При большой индуктивности в цепи нарастание силы тока происходит медленно. Например, если в цепь включить большую катушку индуктивности и лампу накаливания, то после замыкания цепи проходит значительный промежуток времени, в течение которого лампа разгорается до своего полного постоянного накала.

При выключении постоянного источника сторонних э. д.с. например, закоротив его, можно наблюдать, что сила тока не падает мгновенно до нуля, а уменьшается постепенно. Уравнение для силы тока в этом случае, очевидно, имеет вид

(24.11)

и решается при начальном условии

(24.12)

Время убывания силы тока дается той же формулой (24.10). При достаточно больших индуктивностях после выключения сторонней э. д.с. лампа накаливания в цепи гаснет лишь постепенно в течение заметного промежутка времени. Электродвижущей силой, которая обеспечивает существование тока в цепи в течение этого промежутка времени, является электродвижущая сила самоиндукции, а источником энергии – энергия магнитного поля катушки индуктивности.

Плотность энергии магнитного поля.

Формула (24.5) определяет энергию магнитного поля через ток. Найдем другую формулу, описывающую энергию магнитного поля через его характеристики, т. е. через индукцию и напряженность.

, но , т. е. . Если перейти в этой формуле от линейных токов к объемным токам, то . Преобразуем подынтегральное выражение. Для этого рассмотрим выражение . Тогда мы найдем . После подстановки этого выражения найдем, что

. (24.13)

Но . Оценим второе слагаемое в (24.13). Пусть токи находятся в одной области пространства, а энергию рассматриваем в удаленных областях пространства. Чтобы оценить интеграл при больших значениях r, учтем, что, векторный потенциал пропорционален , т. е. . Напряженность магнитного поля, а. Тогда весь интеграл имеет порядок , а значит при переходе в (24.13.) к интегрированию по всему пространству второй интеграл будет равен нулю и тогда энергия магнитного поля будет определяться формулой:

(24.14)

Формула (24.14) предполагает, что магнитное поле «размазано» по пространству. Плотность энергии магнитного поля:

W (24.15)

В заключение отметим, что формула (24.5) предполагает, что энергия магнитного поля “локализована” в токе, а формула (24.15) – что эта энергия заполняет все пространство.

Понравилась статья? Поделить с друзьями:
  • Как найти картинки новогодние
  • Как составить военный приказ
  • Как в stalcraft найти артефакт
  • Как найти одинаковые фотки в галерее
  • Как найти длину ломаной abcde