Как можно найти работу электростатического поля

Содержание

  • 1 Работа электростатического поля
  • 2 Потенциал

    • 2.1 Свойства потенциала.
  • 3 Разность потенциалов. Напряжение
  • 4 Разность потенциалов и напряженность
  • 5 Литература

Работа электростатического поля

На электрические заряды в электростатическом поле действуют силы. Поэтому, если заряды перемещаются, то эти силы совершают работу. Рассчитаем работу сил однородного электростатического поля при перемещении положительного заряда q из точки A в точку B (рис. 1).

На заряд q, помещенный в однородное электрическое поле с напряженностью E, действует сила (~vec F = q cdot vec E ). Работу поля можно рассчитать по формуле

(~A_{AB} = F cdot Delta r cdot cos alpha,)

где Δr⋅cos α = AC = x2x1 = Δx — проекция перемещения на силовую линию (рис. 2).

Тогда

(~A_{AB} = q cdot E cdot Delta x. (1))

Рассмотрим теперь перемещение заряда по траектории ACB (см. рис. 1). В этом случае работа однородного поля может быть представлена как сумма работ на участках AC и CB:

(~A_{ACB} = A_{AC} + A_{CB} = q cdot E cdot Delta x + 0 = q cdot E cdot Delta x)

(на участке CB работа равна нулю, т.к. перемещение перпендикулярна силе (~vec F )). Как видно, работа поля такая же, как и при перемещении заряда по отрезку AB.

Не сложно доказать, что работа поля при перемещении заряда между точками AB по любой траектории будет находиться все по той же формуле 1.

Таким образом,

  • работа по перемещению заряда в электростатическом поле не зависит от формы траектории, по которой двигался заряд q, а зависит только от начального и конечного положений заряда.
  • Это утверждение справедливо и для неоднородного электростатического поля.

Найдем работу на замкнутой траектории ABCA:

(~A_{ABCA} = A_{AB} + A_{BC} + A_{CA} = q cdot E cdot Delta x + 0 — q cdot E cdot Delta x = 0.)

Поле, работа сил которого не зависит от формы траектории и на замкнутой траектории равна нулю, называется потенциальным или консервативным.

Потенциал

Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система «заряд — электростатическое поле» обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:

(~A_{12} = -(W_{2} — W_{1}) = W_{1} — W_{2} . )

Сравнивая полученное выражение с уравнением 1, можно сделать вывод, что

(~W = -q cdot E cdot x, )

где x — координата заряда на ось 0Х, направленную вдоль силовой линии (см. рис. 1). Так как координата заряда зависит от выбора системы отсчета, то и потенциальная энергия заряда так же зависит от выбора системы отсчета.

Если W2 = 0, то в каждой точке электростатического поля потенциальная энергия заряда q0 равна работе, которая была бы совершена при перемещении заряда q0 из данной точки в точку с нулевой энергией.

Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q. Будем помещать в некоторую точку этого поля различные пробные заряды q0. Потенциальная энергия их различна, но отношение (~dfrac{W}{q_0} = operatorname{const}) для данной точки поля и служит характеристикой поля, называемой потенциалом поля φ в данной точке.

  • Потенциал электростатического поля φ в данной точке пространства — скалярная физическая величина, равная отношению потенциальной энергии W, которой обладает точечный заряд q в данной точке пространства, к величине этого заряда:

(~varphi = dfrac{W}{q} .)

Единицей потенциала в СИ является вольт (В): 1 В = 1 Дж/Кл.

  • Потенциал — это энергетическая характеристика поля.

Свойства потенциала.

  • Потенциал, как и потенциальная энергия заряда, зависит от выбора системы отсчета (нулевого уровня).
    В технике за нулевой потенциал выбирают потенциал поверхности Земли или проводника, соединенного с землей. Такой проводник называют заземленным.
    В физике за начало отсчета (нулевой уровень) потенциала (и потенциальной энергии) принимается любая точка, бесконечно удаленная от зарядов, создающих поле.
  • На расстоянии r от точечного заряда q, создающего поле, потенциал определяется формулой

(~varphi = k cdot dfrac{q}{r}.)

  • Потенциал в любой точке поля, создаваемого положительным зарядом q, положителен, а поля, создаваемого отрицательным зарядом, отрицателен:

    если q > 0, то φ > 0; если q < 0, то φ < 0.

  • Потенциал поля, образованного равномерно заряженной проводящей сферой радиусом R, в точке, находящейся на расстоянии r от центра сферы

    (~varphi = k cdot dfrac{q}{R}) при rR и (~varphi = k cdot dfrac{q}{r}) при r > R .

  • Принцип суперпозиции: потенциал φ поля, созданного системой зарядов, в некоторой точке пространства равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом в отдельности:

(~varphi = varphi_1 + varphi_2 + varphi_3 + … = sum_{i=1}^n varphi_i .)

Зная потенциал φ поля в данной точке, можно рассчитать потенциальную энергию заряда q0 помещенного в эту точку: W1 = q0⋅φ. Если положить, что вторая точка находится в бесконечности, т.е. W2 = 0, то

(~A_{1infty} = W_{1} = q_0 cdot varphi_1 .)

Потенциальная энергия заряда q0 в данной точке поля будет равна работе сил электростатического поля по перемещению заряда q0 из данной точки в бесконечность. Из последней формулы имеем

(~varphi_1 = dfrac{A_{1infty}}{q_0}.)

  • Физический смысл потенциала:

    потенциал поля в данной точке численно равен работе по перемещению единичного положительного заряда из данной точки в бесконечность.

Потенциальная энергия заряда q0 помещенного в электростатическое поле точечного заряда q на расстоянии r от него,

(~W = k cdot dfrac{q cdot q_0}{r}.)

  • Если q и q0 — одноименные заряды, то W > 0, если q и q0 — разные по знаку заряды, то W < 0.
  • Отметим, что по этой формуле можно рассчитать потенциальную энергию взаимодействия двух точечных зарядов, если за нулевое значение W выбрано ее значение при r = ∞.

Разность потенциалов. Напряжение

Работа сил электростатического поля по перемещению заряда q0 из точки 1 в точку 2 поля

(~A_{12} = W_{1} — W_{2} .)

Выразим потенциальную энергию через потенциалы поля в соответствующих точках:

(~W_{1} = q_0 cdot varphi_1 , W_{2} = q_0 cdot varphi_2 .)

Тогда

(~A_{12} = q_0 cdot (varphi_1 — varphi_2) .)

Таким образом, работа определяется произведением заряда на разность потенциалов начальной и конечной точек.

Из этой формулы разность потенциалов

(~varphi_1 — varphi_2 = dfrac{A_{12}}{q_0} .)

  • Разность потенциалов — это скалярная физическая величина, численно равная отношению работы сил поля по перемещению заряда между данными точками поля к этому заряду.

В СИ единицей разности потенциалов является вольт (В).

  • 1 В — разность потенциалов между двумя такими точками электростатического поля, при перемещении между которыми заряда в 1 Кл силами поля совершается работа в 1 Дж.

Разность потенциалов в отличие от потенциала не зависит от выбора нулевой точки. Разность потенциалов φ1 — φ2 часто называют электрическим напряжением между данными точками поля и обозначают U:

(~U = varphi_1 — varphi_2 .)

  • Напряжение между двумя точками поля определяется работой сил этого поля по перемещению заряда в 1 Кл из одной точки в другую.

Работу сил электрического поля иногда выражают не в джоулях, а в электронвольтах.

  • 1 эВ равен работе, совершаемой силами поля при перемещении электрона (е = 1,6·10-19 Кл) между двумя точками, напряжение между которыми равно 1 В.

1 эВ = 1,6·10-19 Кл·1 В = 1,6·10-19 Дж.

1 МэВ = 106 эВ = 1,6·10-13 Дж.

Разность потенциалов и напряженность

Рассчитаем работу, совершаемую силами электростатического поля при перемещении электрического заряда q0 из точки с потенциалом φ1 в точку с потенциалом φ2 однородного электрического поля.

С одной стороны работа сил поля (~A = q_0 cdot (varphi_1 — varphi_2)).

С другой стороны работа по перемещению заряда q0 в однородном электростатическом поле (~A = q_0 cdot E cdot Delta x).

Приравнивая два выражения для работы, получим:

(~q_0 cdot (varphi_1 — varphi_2) = q_0 cdot E cdot Delta x, ;; E = dfrac{varphi_1 — varphi_2}{Delta x},)

где Δx — проекция перемещения на силовую линию.

Эта формула выражает связь между напряженностью и разностью потенциалов однородного электростатического поля. На основании этой формулы можно установить единицу напряженности в СИ: вольт на метр (В/м).

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 228-233.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. — 2-е изд., исправленное. — Минск: Нар. асвета, 2008. — С. 86-95.

На заряд qпр
помещённый в произвольную точку
электростатического поля с напряжённостью
Е, действует сила F=
qпр
E.
Если заряд не закреплён, то сила заставит
его перемещаться и, значит, будет
совершаться работа. Элементарная работа,
совершаемая силой F
при перемещении точечного электрического
заряда qпр
из точки а электрического поля в точку
b
на отрезке пути dℓ,
по определению, равна

dA
= Fdℓcosα

(α
— угол между F
и направлением движения) (рис.12.13).

Если работа
совершается внешними силами, то dA<
0 , если силами поля, то dA
> 0. Интегрируя последнее выражение,
получим, что работа против сил поля при
перемещении qпр
из точки a
в точку b


(12.20)

Рисунок -12.13

(
— кулоновская сила, действующая на
пробный заряд qпр
в каждой точке поля с напряжённостью
E).

Тогда работа


(12.21)

Перемещение
совершается перпендикулярно вектору
,
следовательно cosα
=1, работа переноса пробного заряда qпр
от a
к b
равна


(12.22)

Работа сил
электрического поля при перемещении
заряда не зависит от формы пути, а зависит
лишь от взаимного расположения начальной
и конечной точек траектории.

Следовательно,
электростатического поля точечного
заряда является
потенциальным
, а электростатические силы –
консервативными.

Это свойство
потенциальных полей. Из него следует,
что работа совершаемая в электрическом
поле по замкнутому контуру, равна нулю:


(12.23)

Интеграл

называется циркуляцией
вектора напряженности
.
Из обращения в нуль циркуляции вектора
Е следует, что линии напряжённости
электростатического поля не могут быть
замкнутыми, они начинаются на положительных
и кончаются на отрицательных зарядах.

Как известно,
работа консервативных сил совершается
за счёт убыли потенциальной энергии.
Поэтому, работу сил электростатического
поля можно представить как разность
потенциальных энергий, которыми обладает
точечный заряд qпр
в начальной и конечной точках поля
заряда q:


(12.24)

откуда следует,
что потенциальная энергия заряда qпр
в поле заряда q
равна


(12.25)

Для одноименных
зарядов qпрq
>0 и
потенциальная энергия их взаимодействия
(отталкивания) положительна, для
разноимённых зарядов qпрq
< 0 и
потенциальная энергия их взаимодействия
(притяжения) отрицательна.

Если поле
создаётся системой n
точечных зарядов q1,
q2,
…. qn,
то потенциальная энергия U
заряда qпр,
находящегося в этом поле, равна сумме
его потенциальных энергий Ui,
создаваемых каждым из зарядов в
отдельности:


(12.26)

Отношение

не зависят от заряда q
и является энергетической характеристикой
электростатического поля.

Скалярная
физическая величина, измеряемая
отношением потенциальной энергии
пробного заряда в электростатическом
поле к величине этого заряда, называется

потенциалом электростатического поля.


(12.27)

Потенциал поля,
создаваемый точечным зарядом q,
равен


(12.28)

Единица потенциала
вольт.

Работа, совершаемая
силами электростатического поля при
перемещении заряда qпр
из точки 1 в точку 2 может быть представлена
как


(12.29)

т.е. равна произведению
перемещаемого заряда на разность
потенциалов в начальной и конечной
точках.

Разность
потенциалов двух точек электростатического
поля φ12
равна напряжению. Тогда

Отношение работы,
совершаемой электростатическим полем
при перемещении пробного заряда из
одной точки поля в другую, к величине
этого заряда называется
напряжением
между этими точками.


(12.30)

Графически
электрическое поле можно изображать
не только с помощью линий напряжённости,
но и с помощью эквипотенциальных
поверхностей.

Эквипотенциальные
поверхности
– совокупность точек, имеющих одинаковый
потенциал.

Из рисунка видно, что линии напряжённости
(радиальные лучи) перпендикулярны
эквипотенциальным линиям.

Эквипотенциальных
поверхностей вокруг каждого заряда и
каждой системы зарядов можно провести
бесчисленное множество
(рис.12.14).
Однако их
проводят так, чтобы разности потенциалов
между любыми двумя соседними
эквипотенциальными поверхностями были
одинаковы. Тогда густота эквипотенциальных
поверхностей наглядно характеризует
напряжённость поля в разных точках.
Там, где эти поверхности расположены
гуще, напряжённость поля больше. Зная
расположение эквипотенциальных линий
(поверхностей), можно построить линии
напряжённости или по известному
расположению линий напряжённости можно
построить эквипотенциальные поверхности.

Соседние файлы в папке Физика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

From Wikipedia, the free encyclopedia

For other examples of «work» in physics, see Work (physics).

Electric field work is the work performed by an electric field on a charged particle in its vicinity. The particle located experiences an interaction with the electric field. The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions[clarification needed] generating an electromotive force.

Electric field work is formally equivalent to work by other force fields in physics,[1] and the formalism for electrical work is identical to that of mechanical work.

Physical process[edit]

Particles that are free to move, if positively charged, normally tend towards regions of lower electric potential (net negative charge), while negatively charged particles tend to shift towards regions of higher potential (net positive charge).

Any movement of a positive charge into a region of higher potential requires external work to be done against the electric field, which is equal to the work that the electric field would do in moving that positive charge the same distance in the opposite direction. Similarly, it requires positive external work to transfer a negatively charged particle from a region of higher potential to a region of lower potential.

Kirchhoff’s voltage law, one of the most fundamental laws governing electrical and electronic circuits, tells us that the voltage gains and the drops in any electrical circuit always sum to zero.

The formalism for electric work has an equivalent format to that of mechanical work. The work per unit of charge, when moving a negligible test charge between two points, is defined as the voltage between those points.

{displaystyle W=Qint _{a}^{b}mathbf {E} cdot ,dmathbf {r} =Qint _{a}^{b}{frac {mathbf {F_{E}} }{Q}}cdot ,dmathbf {r} =int _{a}^{b}mathbf {F_{E}} cdot ,dmathbf {r} }

where

Q is the electric charge of the particle
E is the electric field, which at a location is the force at that location divided by a unit (‘test’) charge
FE is the Coulomb (electric) force
r is the displacement
cdot is the dot product operator

Mathematical description[edit]

Given a charged object in empty space, Q+. To move q+ closer to Q+ (starting from {displaystyle r_{0}=infty }, where the potential energy=0, for convenience), we would have to apply an external force against the Coulomb field and positive work would be performed. Mathematically, using the definition of a conservative force, we know that we can relate this force to a potential energy gradient as:

{displaystyle -{frac {partial U}{partial mathbf {r} }}=mathbf {F} _{ext}}

Where U(r) is the potential energy of q+ at a distance r from the source Q. So, integrating and using Coulomb’s Law for the force:

{displaystyle U(r)=Delta U=-int _{r_{0}}^{r}mathbf {F} _{ext}cdot ,dmathbf {r} =-int _{r_{0}}^{r}{frac {1}{4pi varepsilon _{0}}}{frac {q_{1}q_{2}}{mathbf {r^{2}} }}cdot ,dmathbf {r} ={frac {q_{1}q_{2}}{4pi varepsilon _{0}}}left({frac {1}{r_{0}}}-{frac {1}{r}}right)=-{frac {q_{1}q_{2}}{4pi varepsilon _{0}}}{frac {1}{r}}}

Now, use the relationship

W=-Delta U!

To show that the external work done to move a point charge q+ from infinity to a distance r is:

{displaystyle W_{ext}={frac {q_{1}q_{2}}{4pi varepsilon _{0}}}{frac {1}{r}}}

This could have been obtained equally by using the definition of W and integrating F with respect to r, which will prove the above relationship.

In the example both charges are positive; this equation is applicable to any charge configuration (as the product of the charges will be either positive or negative according to their (dis)similarity).
If one of the charges were to be negative in the earlier example, the work taken to wrench that charge away to infinity would be exactly the same as the work needed in the earlier example to push that charge back to that same position.
This is easy to see mathematically, as reversing the boundaries of integration reverses the sign.

Uniform electric field[edit]

Where the electric field is constant (i.e. not a function of displacement, r), the work equation simplifies to:

W=Q({mathbf  {E}}cdot ,{mathbf  {r}})={mathbf  {F_{E}}}cdot ,{mathbf  {r}}

or ‘force times distance’ (times the cosine of the angle between them).

Electric power[edit]

The electric power is the rate of energy transferred in an electric circuit. As a partial derivative, it is expressed as the change of work over time:

P={frac  {partial W}{partial t}}={frac  {partial QV}{partial t}},

where V is the voltage. Work is defined by:

delta W={mathbf  {F}}cdot {mathbf  {v}}delta t,

Therefore

{frac  {partial W}{partial t}}={mathbf  {F_{E}}}cdot ,{mathbf  {v}}

References[edit]

  1. ^ Debora M. Katz (1 January 2016). Physics for Scientists and Engineers: Foundations and Connections. Cengage Learning. pp. 1088–. ISBN 978-1-337-02634-5.
Где находится электростатическое поле?

Однородное электрическое поле сосредоточено между разноименно заряженными пластинами (обкладками конденсатора).

Характеристики однородного электростатического поля

Силовые линии Начинаются на положительно заряженной пластине, а заканчиваются на отрицательно заряженной. Силовые линии параллельны друг другу, т. е. поле однородно.
Напряженность

E

Потенциал

φ=Er

Разность потенциалов

φ1φ2=Er12

Напряжение между пластинами

U=Ed

d — расстояние между заряженными пластинами.

Эквипотенциальные поверхности Плоскости, параллельные заряженным пластинам.
Закон Кулона

FK=qE=qUd

Ускорение силы Кулона (следует из второго закона Ньютона)

a=FKm=qEm=qUmd

Подсказки к решению задач:

Равновесие заряженного тела в электростатическом поле:

Fтяж=FK

Сила тяжести равна произведению массы заряженного тела на ускорение свободного падения:

Fтяж=mg

Сила Кулона равна:

FK=qE=qUd

Отклонение от вертикали нити с заряженным телом в горизонтальном электростатическом поле.

Второй закон Ньютона в векторной форме:

FK+mg+T=ma

Проекции на оси:

OX:TsinαFK=0

OY:Tcosαmg=0

Отсюда сила Кулона равна:

FK=mgtanα

FK=qE=qUd

Направление траектории полого шарика массой m и зарядом q, который движется в горизонтальном электрическом поле напряженностью E.

Важно! Направление траектории совпадает с направлением равнодействующей силы.

Равнодействующая силы находится по второму закону Ньютона:

R=FK+mg

Из рисунка видно, что:

tanα=FKFтяж=qEmg

Пример №1. Полый шарик массой m = 0,4 г с зарядом q = 8 нКл движется в горизонтальном однородном электрическом поле, напряженность которого E = 500 кВ/м. Какой угол α образует с вертикалью траектория шарика, если его начальная скорость равна нулю?

0,4 г = 0,4∙10–3 кг

8 нКл = 8∙10–9 Кл

500 кВ/м = 5∙105 В/м

При движении в электрическом поле на заряженную частицу действует сила тяжести:

Fтяж=mg

На нее также действует сила Кулона со стороны электрического поля:

FK=qE

В инерциальной система отсчета, связанной с Землей, в соответствии со вторым законом Ньютона:

FK+mg=ma

При движении из состояния покоя с постоянным ускорением тело движется по прямой в направлении вектора ускорения, т. е. в направлении равнодействующей приложенных сил. Прямая, вдоль которой направлен вектор ускорения, образует угол с вертикалью, равный:

Тангенс, равный единице, соответствует углу, равному 45 градусам.

Работа однородного электрического поля

Из курса механики вспомним, что работа определяется произведением силы, действующей на тело, на его перемещение и косинус угла между векторами силы и этого перемещения:

A=Fscosα

Эту же формулу можно использовать для нахождения работы однородного электрического поля. В качестве силы в данном случае выступает сила Кулона:

FK=qE=qUd

А произведение перемещения на косинус угла между силой и перемещением в этом случае равно разности начального и конечного положения заряда:

scosα=r0r

Отсюда работа однородного электрического поля равна:

Формулы работы электрического поля

A=±qE(r0r)=±qUd(r0r)

или

A=FKscosα=±qEscosα=±qUdscosα

  • E (В/м или Н/Кл) — модуль напряженности электрического поля;
  • U (В) — разность потенциалов (напряжение) между пластинами;
  • d (м) — расстояние между пластинами;
  • ±q — заряд, переносимый полем;
  • s (м) — модуль перемещения заряда;
  • α — угол между силой Кулона и перемещением;
  • r0 (м) — начальное положение заряда;
  • r (м) — конечное положение заряда.

Работу также можно выразить через разность потенциалов:

A=±q(φ1φ2)=±qU12

  • φ1 — начальный потенциал;
  • φ2 — конечный потенциал;
  • U12 — напряжение между начальным и конечным положением заряда.

Внимание! Работа электростатического поля не зависит от вида траектории.

Работа и изменение кинетической энергии:

A=mv22mv202=ΔEk

Работа и изменение потенциальной энергии:

A=(qErqEr0)=ΔWp

Пример №2. В точке А потенциал электрического поля равен 200 В. Потенциал в точке В равен 100В. Какую работу совершают силы электростатического поля при перемещении заряда 5 мКл из точки А в точку В?

5 мКл = 5∙10–3 Кл

A=±q(φ1φ2)=5·103(200100)=0,5 (Дж)

Задание EF17633

Положительный заряд перемещается в однородном электростатическом поле из точки 1 в точку 2 по разным траекториям. Работа сил электростатического поля

Ответ:

а) максимальна в случае перемещения по траектории I

б) не совершается в случае перемещения по траектории II

в) минимальна в случае перемещения по траектории III

г) одинакова при перемещении по всем траекториям


Алгоритм решения

  1. Установить, от чего зависит работа электростатического поля, затрачиваемая на перемещение в нем заряженной частицы.
  2. Определить, какую работу совершает поле при движении заряда по каждой из траекторий.

Решение

Кулоновская сила — это потенциальная сила. Поэтому работа, которую она совершает, не зависит от вида траектории. Учитываться будет только перемещение, равное кратчайшему расстоянию между точками 1 и 2. Следовательно, работа будет одинаковой при перемещении положительного заряда по всем траекториям.

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18815

Однородное электростатическое поле создано равномерно заряженной протяжённой горизонтальной пластиной. Линии напряжённости поля направлены вертикально вверх (см. рисунок).

Из приведённого ниже списка выберите два правильных утверждения и укажите их номера.

Ответ:

1) Пластина имеет отрицательный заряд.

2) Потенциал электростатического поля в точке В ниже, чем в точке С.

3) Работа электростатического поля по перемещению пробного точечного отрицательного заряда из точки А и в точку В равна нулю.

4) Если в точку А поместить пробный точечный отрицательный заряд, то на него со стороны пластины будет действовать сила, направленная вертикально вниз.

5) Напряжённость поля в точке А меньше, чем в точке С.


Алгоритм решения

1.Проанализировать каждое из утверждений.

2.Установить, какие из утверждений являются истинными.

3.Записать номера верных утверждений.

Решение

Согласно утверждению 1, пластина имеет отрицательный заряд. Известно, что векторы напряженности поля, создаваемого отрицательным зарядом, направляются в сторону этого заряда. Но мы видим, что векторы направляются от заряда. Следовательно, пластина заряжена положительно, а утверждение 1 неверно.

Согласно утверждению 2, потенциал электростатического поля в точке В ниже, чем в точке С. Известно, что потенциал зависит от расстояния до отрицательно пластины. Поскольку в нашем случае пластина заряжена положительно, с увеличением расстояния от нее потенциал уменьшается. Поэтому потенциал в точке С меньше потенциала в точке В, а утверждение 2 неверно.

Согласно утверждению 3, работа электростатического поля по перемещению пробного точечного отрицательного заряда из точки А и в точку В равна нулю. Работа определяется формулой:

A=FKscosα=±qEscosα

Видно, что работа зависит от перемещения относительно заряженной пластины. Но точки А и В находятся от пластины на одинаковом расстоянии. Следовательно, перемещение относительно нее равно 0. Поэтому работа по перемещению заряда тоже будет нулевой, и утверждение 3 верно.

Согласно утверждению 4, если в точку А поместить пробный точечный отрицательный заряд, то на него со стороны пластины будет действовать сила, направленная вертикально вниз. Это действительно так. Мы выяснили, что пластина заряжена положительно. Следовательно, отрицательный заряд будет притягиваться к ней, и утверждение 4 верно.

Согласно утверждению 5, напряжённость поля в точке А меньше, чем в точке С. Это не так, потому что речь идет об однородном поле. Напряженность однородного поля одинакова во всех точках, и утверждение 5 неверно.

Верные утверждения: 3 и 4.

Ответ: 34

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 3.6k

Основные ссылки

CSS adjustments for Marinelli theme

Объединение учителей Санкт-Петербурга

Вы здесь

Главная » Работа электростатического поля по перемещению…

Работа электростатического поля по перемещению заряда

Работа электростатического поля по перемещению заряда.

а) Однородное электростатическое поле: Однородное электростатическое поле в каждой точке поля.    

Работа электростатического поля по перемещению заряда.   Следовательно: Работа электростатического поля по перемещению заряда

Работа электростатического поля по перемещению заряда

Работа электростатического поля по перемещению заряда

W=qEr

Работа электростатического поля по перемещению заряда

Т.к. если вектор перемещения перпендикулярен вектору силы (напряженности поля), работа поля равна нулю, то работа электростатического поля по перемещению заряда по любой траектории определяется разностью координат этих точек.

Если обозначить координаты заряда в начальной и последующей точках r1 и r2, то: 

Т.е. работа равна разности двух эквивалентных величин, зависящих от характера взаимодействия и взаимного расположения. Но мы знаем, что работа — мера изменения энергии. Можно предположить: W=qEr — потенциальная энергия заряда в данной точке электростатического поля. Зависит от выбора начальной точки отсчета потенциальной энергии.

Тогда: наиболее общий способ расчета работы в электростатическом поле — наиболее общий способ расчета работы в электростатическом поле

Т. е. работа при перемещении заряда между двумя точками в электростати­ческом поле

—  не зависит от формы тра­ектории, а зависит от положения этих точек.

— равна убыли потенциальной энергии заряда в этом поле;

— работа по замкнутой траектории равна нулю.

работа при перемещении заряда между двумя точками в электростати­ческом поле

Электростатическое поле, как и гравитационное, потенциаль­ное:

А =  — mg(h2— h1)   = —ΔW

б) Произвольное электростатическое поле.

При перемещении заряда в произвольном поле из точки 1 в точку 2 работа должна быть равна по величине и противоположна по знаку работе в направлении от точки 2 к точке 1. В противном случае нарушается закон сохранения энергии:

Пусть А12 < A21. Тогда внешняя сила может перемещать заряд по пути 12, а силы поля — по пути 21. Мы будем получать выигрыш в работе, т.е. получим вечный двигатель, что невозможно.

Произвольное электростатическое поле

Понравилась статья? Поделить с друзьями:
  • Как найти значение точек экстремума функции
  • Как составить контент план для социальных сетей
  • Отношения на расстоянии как это исправить
  • Как найти косинус среднего угла треугольника
  • Как найти электроемкость земли