Способы прозвонки деталей платы мультиметром
Часто возникает ситуация, когда из-за вышедшей из строя маленькой незначительной детали перестает работать бытовой прибор. Поэтому, ответ на вопрос, как прозванивать плату мультиметром, хотели бы знать многие начинающие радиолюбители. Главное в этом деле быстро обнаружить причину поломки.
Перед выполнением инструментальной проверки, необходимо осмотреть плату на наличие поломок. Электрическая схема платы должна быть без повреждений мостиков, детали не должны быть распухшими и черными.
Приведем правила проверки некоторых элементов, в том числе и материнской платы.
Проверка отдельных деталей
Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.
Резистор
На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления.
При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.
Диод
Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом.
Переставляем щупы мультиметра, теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.
Катушка индуктивности
Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:
- витковое короткое замыкание;
- обрыв цепи.
Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности – цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.
Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции.
На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула – замыкания нет.
Шлейф
В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны.
При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими – значит, пришло время менять шлейф, поскольку на старом короткое замыкание.
Микросхема
Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci.
Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.
Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить.
Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.
Тестер материнских плат – это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.
Стабилизаторы
Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.
При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности – эта деталь исправна и годится для дальнейшего использования.
На неисправной — величина при двух измерениях будет равна бесконечности – при внутреннем обрыве. При величине сопротивления до 500-сот Ом – произошел полупробой.
Но чаще всего на микросхеме материнской платы сгорают мосты – северный и южный. Это стабилизаторы питания схемы, от которых поступает напряжение на материнку.
Определяют эту «неприятность» достаточно легко. Включаем блок питания на компьютере, и подносим руку к материнской плате. В месте поражения она будет сильно нагреваться.
Одной из причин такой поломки может быть полевой транзистор моста. Затем проводим прозвонку на их выводах и при необходимости заменяем неисправную деталь. Сопротивление на исправном участке должно быть не более 600 Ом.
Методом обнаружения нагревающего устройства, определяют короткое замыкание (КЗ) на некоторых деталях платы. При подаче питания и обнаружения участка нагрева, кисточкой смазываем место нагрева. По испарению спирта определяется деталь с КЗ.
Методы поиска неисправностей
Негласно среди ремонтников в любой отрасли существуют два метода:
- Обезьяний метод. Это метод, при котором проверяется каждый узел сломанного устройства визуально или «методом тыка». «А что будет, если я сделаю так и эдак?». То есть ставим опыты и смотрим на реакцию сломанного устройства. Чаще всего такой метод очень сильно экономит время и нервы.
- Метод умного специалиста. Надеваем очки и делаем умный вид). Берем книжки с инструкциями и описаниями, измерительные приборы, схемы, карты Таро и тд))). Сначала внимательно изучаем схемы, читаем книги, все анализируем в голове и только уже потом начинаем ковырять устройство. Этот метод очень длительный и муторный, но со временем дает хороший результат. Он в основном применяется интеллектуалами. Его также используют и простые ремонтники, после того, как не сработал первый метод)
Алгоритм поиска неисправности
Анализируем ситуацию
Анализ ситуации предполагает обзор и исследование возникшей проблемы. Будьте Шерлоками Холмсами! Ответьте себе на все вопросы: где, куда, откуда, как, почему, когда, зачем??? Нужно внимательно осмотреть пациента, перед тем как его вскрывать. Может кто смотрел сериал Доктор Хаус? Всю серию они анализируют ситуацию, и только уже потом лечат. Если вы все-таки не знаете с чего начать, вот вам небольшой план:
- обсудите неисправность с владельцем данного электронного устройства
- может вы раньше ремонтировали что то подобное, вспомните что-нибудь похожее из своей практики, бывает так, что узлы радиоэлектронных устройств строятся по одинаковому принципу.
- а если все-таки неисправности нет, просто у владельца нет толка общения с данным устройством. Помню как то у мужичка громкость не добавлялась на мобиле, так он оказывается ее не теми кнопками пытался добавить))).
- определите различия между поломанным устройством и с тем какое оно должно быть при правильной работе.
- оцените ситуацию и сделайте правильные выводы из всего выше сказанного
Определяем причину
Самый большой по времени и серьезный шаг. Начните с подготовки соответствующих схем. Не старайтесь сократить этот этап, бросаясь сразу работать и тратя много времени на исправление устройства, в то время как простое чтение руководства по техническому обслуживанию может способствовать скорейшему решению проблемы. Когда вы подготовились, выполните следующие операции:
- опишите проблему про себя
- сравните ситуацию с условиями работы устройства до возникновения неисправности
- вспомните различные симптомы которые были замечены при возникновении дефекта. Это может быть какой-то шум, запах, искры, дым и тд.
- сравните компоненты. Какие компоненты в порядке, а какие нет. Например, большой резистор во включенной аппаратуре должен быть чуть нагретый.
- сделайте тестирование оборудования с помощью мультика и других приборов.
Принимаем решение
На этом этапе рассматриваем различные варианты решения проблем. Ремонтировать его или выкинуть? Что дешевле и проще? Покупать микросхему или выпаять ее из другого устройства? Смотрим, что будет экономнее по времени и по деньгам. Решать вам.
Помните о необходимости всегда выполнять эти три фазы. Для того, чтобы стать первоклассным специалистом, нужно строго им следовать.
Поиск неисправности лабораторного блока питания
Анализ ситуации
Поиск неисправностей начинаем с анализа ситуации.
Итак, у нас в ремонте лабораторный блок питания. Ну что, ситуацию я проанализировал. Перегрузка по питанию, в результате чего он стал выдавать 24 Вольта, вместо положенных 0-15 Вольт. Напряжение не регулируется. Значит, помер какой-то радиоэлемент. Для того, чтобы определить причину возникновения неисправности, мы должны найти на него схему и вскрыть наш блок питания. Как говорится, «вскрытие покажет».
Вскрываем наш блок питания
Находим причину возникновения неисправности
На этом этапе мы должны определить причину возникновения поломки, а также параллельно анализировать ситуацию. Как обычно, начинаем осмотр с источника питания. Трансформатор у нас в норме, как и по схеме, он выдает нам переменное напряжение 20 Вольт. После диодного моста на конденсаторе напряжение 35 Вольт. Идем таким путем, проверяя все элементы на своем пути. Для того, чтобы научиться проверять радиоэлементы, нужно прочитать статьи:
Как измерить:
- ток мультиметром
- как проверить и измерить напряжение
- сопротивление мультиметром
Как проверить:
- биполярный транзистор мультиметром
- диод мультиметром
- конденсатор мультиметром
- предохранитель мультиметром
а лучше вообще прочитать все статьи сайта)
Ваши органы чувств — ваши помощники
Для того, чтобы определить неисправность, очень часто помогают наши пять чувств, но будем пользоваться четырьмя:
- Зрение (глаза)
- Осязание (кожа)
- Обоняние (запах)
- Слух (уши)
Используйте их как можно чаще. Визуальный осмотр может дать Вам 80% нахождения неисправности. Это может быть сгоревший элемент, или печатная дорожка, а также обрыв или наоборот короткое замыкание. Не поленитесь, осмотрите хорошенько со всех сторон сломанную вещь.
Осязание может также сильно помочь вам в поиске неисправности. Если прибор включить в сеть и потрогать большие резисторы ( их мощность рассеивания, как правило, большая), то они должны быть теплые или даже чуток горячие. Если холодные, значит или в резисторах обрыв, либо напряжение до них не доходит. Микросхемы должны быть холодноватые или чуточку теплые. Процессоры или мощные микросхемы горяченькие. Если уж слишком горячие — то следовательно микросхеме или процессору хана. Холодными должны быть конденсаторы и катушки индуктивности.
Все это приходит с опытом. Используйте осязание как можно чаще, но будьте очень осторожны. Если коснетесь выводов элементов, то вас хорошенько может «дернуть» током, ну смотря, конечно, в какой цепи какой ток.
Читай интересную статью про мощность электрического тока.
Настоящий электронщик должен знать запах горелого кремния, проводов, запах горелого трансформатора, горелой платы и тд наизусть. Напрягите свой нюх и попробуйте уловить «аромат» неисправности. Если аппаратура сгорела при вас, то сразу принюхивайтесь и визуально осмотрите ее.
Прислушайтесь к работе неисправной аппаратуры. Может слышится какое-то потрескивание, писк, гудение или еще что-то. Например, гудение асинхронного двигателя говорит о том, что может быть оборвана одна из фаз или не крутятся подшипники. Если гудит трансформатор, то это может значить короткое замыкание в обмотках.
Определяем дефектный узел
Вскрыв блок питания, я обнаружил, что у меня микросхема греется очень сильно при включении блока питания в сеть и нажатия кнопки POWER на самом блоке. Скорее всего в ней возникло короткое замыкание. Находим в интернете даташит на эту микросхему. В моем случае — это LM723. Она является регулятором напряжения.
Но беда не приходит одна. Сгорел еще и транзистор — BD140.
Принимаем решение
Пошел в магазин за новыми запчастями. Итого, микросхема 20 рублей, транзистор — 10 рублей. Вместе 30 рублей.
Ну что же, надо отпаять микросхему, для этого используем наш оловоотсос. На фото вид платы снизу микросхемы.
Получаем
Выдергиваем микросхему с помощью нехитрого инструмента экстрактора
Подготавливаем новую микросхему, и лудим ее выводы флюсом ЛТИ-120
Вставляем ее в наши отверстия, где находилась микросхема. Вставляйте точно также, как стояла дохлая микросхема! Кто не помнит, как она стояла, производители аппаратуры часто рисуют ее образ на плате. Получается, что выемка микросхемы должна быть справа.
Вставляем ее как надо
Смазываем площадки гелевым флюсом
И запаиваем по очереди каждую контактную площадку капелькой припоя на кончике паяльника.
Все те же самые операции проводим и с транзистором.
Блок питания у меня заработал как надо. Можно, конечно, его доработать, но на это требуется время и соответствующие знания. Но меня пока что вполне устраивает.
Заключение
Поиск неисправностей приходит с опытом и с годами. Следуйте этим простым этапам определять работоспособность компонентов, и вы никогда не будете носить аппаратуру мастеру-электронику, который сдерет с вас ого-го! Во-первых, вы сэкономите деньги, во-вторых, свою репутацию, ну и в-третьих, получите реальные знания на опыте.
И буду благодарен, если ты прочитаешь что такое протон.
Ремонт электроники. Поиск неисправностей на плате
- Подробности
- Категория: Начинающим
- Опубликовано 05.09.2016 11:15
- Автор: Admin
- Просмотров: 3746
Сегодня ни одно производство не обходится без электроники и каких-либо электронных установок. К сожалению, периодически приходится обращаться к специалистам за помощью в их ремонте. Но цена на ремонт электроники в основном довольно кусачие. Если у вас есть знания в области электроники то можно попробовать отремонтировать сломанную электронику самостоятельно, для этого нужно знать как осуществляется поиск неисправностей. Существует несколько правил и премудростей, благодаря которым можно самостоятельно осуществить ремонт электроники любой сложности и области использования. Конечно прежде чем начинать поиск неисправности вам нужно как проверять ту или иную делать.
Диагностика прибора
Поврежденную деталь в электроприборе перепаять не так уж и сложно, гораздо сложнее правильно и точно обнаружить место поломки. Существует три типа обнаружения неисправностей электроники. От правильной диагностики зависит порядок выполнения дальнейших работ.
- К первому типу можно отнести неработающие приборы, которые не издают каких-либо звуков, не светятся индикаторы, которые никак не реагируют на управление.
- Ко второму типу относятся приборы, в которых неисправна какая-то одна часть. Такой прибор не выполняет какие-то функции, но «признаки жизни» все-таки подает.
- Приборы, которые относятся к третьему типу сломанными полностью назвать нельзя. Они в рабочем состоянии, но иногда их работа может давать сбои. Именно для приборов третьего типа наиболее важен этап диагностики. Считается, что подобную электронику починить сложнее, чем неработающую полностью.
Ремонт приборов поломкой первого типа
В том случае, если прибор не работает полностью, его починку необходимо начинать с питания. Так как у любой электронный аппарат потребляет энергию, то вероятность поломки его питания очень высока. Самым надежным методом обнаружения неисправности, можно назвать метод исключения.
Из списка возможных проблем необходимо по мере диагностики исключать неправильные варианты. В первую очередь необходимо тщательно осмотреть внешний вид прибора. Это необходимо делать даже при уверенности, что причина неисправности находится внутри. Ведь при таком осмотре можно найти дефекты, в будущем могут вывести из строя прибор.
В том случае, если осмотр не принес никаких результатов, на помощь приходит мультиметр. При помощи этого прибора осуществляется поиск неисправностей на плате, диодах, тиристорах, входных транзисторах и силовых микросхемах. Если причина неисправности все еще остается ненайденной проверить следует также электролитические конденсаторы и все остальные полупроводники. В последнюю очередь проверяют пассивные электроэлементы.
Для механических приборов характерно изнашивание элементов трения, а для электроники – ток. Чем больше элемент потребляет энергии, тем быстрее он нагревается, что приводит к быстрому его изнашиванию. Чем чаще элемент нагревается и остывает, тем быстрее деформируется материал, из которого он изготовлен. Частые перепады температуры приводят к так называемому эффекту усталости в период использования электрооборудования.
Не стоит забывать, что блок питания необходимо еще проверять на наличие помех, образующихся на шинах питания и перепады входящих пульсаций. Не редко причиной неработоспособности становится короткое замыкание.
Ремонт приборов с поломкой второго типа
Начинать ремонт приборов второго типа необходимо также с внешнего осмотра. Но в отличие от первого типа, необходимо постараться запомнить состояние световой, цветовой и цифровой индикации агрегата, запомнить код ошибки на дисплее. Далее следует продолжить поиск неисправности на плате. Проблема иногда исчезает, если почистить радиаторы охлаждения, немного пошевелить шлейфы, плату, блоки питания. Полезно иногда проверить напряжение и на лампе накаливания.
Определить проблему можно и по запаху. Необходимо понюхать прибор. Наличие запаха горелой изоляции может выдавать проблему. Особое внимание следует уделить элементам из реактивных пластмасс. Необходимо обратить внимание на переключатели. Их положение может не соответствовать. Так же следует проверить состояние конденсаторов. Возможно среди них есть вздувшиеся или взорвавшиеся. Следует помнить, что внутри прибора не должно быть мусора, пыли или воды.
В том случае, если электроприбор находится в эксплуатации достаточно давно, то причиной поломки может заключаться в износе каких-либо механических элементов или изменения их формы из-за процесса трения.
После тщательного осмотра внешнего вида прибора второго типа можно приступать к диагностике. Не стоит лесть сразу в самые дебри. Следует хорошо исследовать периферические элементы. И только, после этого можно продолжать поиск неисправностей на плате.
Ремонт приборов с поломкой третьего типа
Самой сложной считается диагностика неисправностей приборов третьего типа, так как большинство возникающих дефектов носят случайный характер. Подобный ремонт также не исключает этапа осмотра внешнего вида прибора. Подобная процедура, в этом случае, носит еще и профилактический характер. Наиболее частыми причинами возникновения неполадок может быть:
В первую очередь плохой контакт.
Длительные нагрузки повышение температуры окружающей среды могут привести к перегреву всего прибора.
Сбои может создавать и слой пыли на блоках, платах и узлах.
Грязные радиаторы охлаждения способствуют перегреву полупроводниковых элементов.
Помехи сети питания прибора.
При поиске неисправностей на плате подобного прибора иногда можно найти на ее поверхности небольшие трещинки. В этом случае плату следует закрепить на жестком основании таким образом, что деформация может коснуться только ее краев. Проблему на плате можно найти и при легком постукивании по ее поверхности. Для такой цели отлично подойдет обычная шариковая ручка. Используя лупу на плате можно найти даже самые маленькие трещины. В периодических сбоях электроприборов становится слабый контакт какого-либо элемента. В большинстве случаев устранение таких неполадок через какое-то время опять дает о себе знать.
Ремонт редко возникающих сбоев работы электрооборудования – работа неблагодарная. Он отнимает много времени и сил на обнаружение и устранение проблемы, при этом гарантий того, что проблема не повторится, практически нет. И поэтому многие специалисты по ремонту электроники просто не берутся за выполнение подобной работы.
Добавить комментарий
В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.
Ремонт ЖК ТВ
Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.
Включаем в сеть прибор
Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.
Коды ошибок ТВ по миганию LED
После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.
Сервис мануал
Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?
Блок схема ЖК ТВ
В таком случае, можно попробовать попросить помощи на специализированных форумах по ремонту техники, после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. Читайте тут как пользоваться обычным мультиметром.
Тестер в режиме звуковой прозвонки
Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.
Разъем питания платы управления ТВ
Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме – это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR подробнее здесь.
Таблица ESR конденсаторов
В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо транзистор тестер, правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.
Мой прибор ESR метр
Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.
Фото – вздувшийся конденсатор
То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.
Мультиметр в режиме Омметра
Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.
Цветовая маркировка резисторов
Если есть возможность прочитать его номинал, по маркировке цветными кольцами, нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.
Транзисторы разные на фото
Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.
Проверка транзистора мультиметром
Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод описан тут. У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. Мосфеты, полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.
Мосфет в SMD и обычном корпусе
При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.
Мосфеты на материнской плате ПК
Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.
Диодные сборки на схеме
Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте, шокирует – им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.
Параллельное и последовательное соединение резисторов
Здесь лучше всего один раз запомнить, правило подобных соединений:
- При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
- А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.
Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы – AKV.
Форум по ремонту
Содержание
- Способы прозвонки деталей платы мультиметром
- Проверка отдельных деталей
- Резистор
- Катушка индуктивности
- Шлейф
- Микросхема
- Стабилизаторы
- Как прозванивать мультиметром
- Почему режим называется «прозвонка»
- Обозначение прозвонки на мультиметре
- Принцип работы прозвонки
- Что показывает мультиметр при прозвонке
- как пользоваться прозвонкой
- Прозвонка мультиметром провода
- Что делать если у мультиметра нет режима прозвонки
- Проверка микросхем мультиметром: инструкция и советы
- Содержание статьи
- Способы проверки
- Внешний осмотр
- Проверка работоспособности с помощью мультиметра
- Выявление нарушений в работе выходов
- Влияние разновидности микросхем на способы проверки
Способы прозвонки деталей платы мультиметром
Часто возникает ситуация, когда из-за вышедшей из строя маленькой незначительной детали перестает работать бытовой прибор. Поэтому, ответ на вопрос, как прозванивать плату мультиметром, хотели бы знать многие начинающие радиолюбители. Главное в этом деле быстро обнаружить причину поломки.
Перед выполнением инструментальной проверки, необходимо осмотреть плату на наличие поломок. Электрическая схема платы должна быть без повреждений мостиков, детали не должны быть распухшими и черными.
Приведем правила проверки некоторых элементов, в том числе и материнской платы.
Проверка отдельных деталей
Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.
Резистор
На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления.
При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.
Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом.
Переставляем щупы мультиметра, теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.
Катушка индуктивности
Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:
- витковое короткое замыкание;
- обрыв цепи.
Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности – цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.
Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции.
На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула – замыкания нет.
Шлейф
В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны.
При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими – значит, пришло время менять шлейф, поскольку на старом короткое замыкание.
Микросхема
Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci.
Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.
Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить.
Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.
Тестер материнских плат – это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.
Стабилизаторы
Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.
При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности – эта деталь исправна и годится для дальнейшего использования.
На неисправной — величина при двух измерениях будет равна бесконечности – при внутреннем обрыве. При величине сопротивления до 500-сот Ом – произошел полупробой.
Но чаще всего на микросхеме материнской платы сгорают мосты – северный и южный. Это стабилизаторы питания схемы, от которых поступает напряжение на материнку.
Определяют эту «неприятность» достаточно легко. Включаем блок питания на компьютере, и подносим руку к материнской плате. В месте поражения она будет сильно нагреваться.
Одной из причин такой поломки может быть полевой транзистор моста. Затем проводим прозвонку на их выводах и при необходимости заменяем неисправную деталь. Сопротивление на исправном участке должно быть не более 600 Ом.
Методом обнаружения нагревающего устройства, определяют короткое замыкание (КЗ) на некоторых деталях платы. При подаче питания и обнаружения участка нагрева, кисточкой смазываем место нагрева. По испарению спирта определяется деталь с КЗ.
Источник
Как прозванивать мультиметром
Один из самых востребованных, особенно в быту, режимов работы мультиметра – это «прозвонка». Именно с помощью этой функции можно найти, обрыв в электрической цепи или замыкание, а это, зачастую, позволяет быстро диагностировать и устранить неисправность.
Почему режим называется «прозвонка»
Проверить целостность цепи можно было и раньше, используя режим замера сопротивления — омметра. Главное же отличие прозвонки в том, что при замерах, если электрическая связь есть между тестируемыми участками то, дополнительно к показаниям на экране, раздаётся звуковой сигнал — зуммер, от сюда и возник термин прозвонка или прозвон.
Этот звуковой сигнал значительно ускоряет процесс проверки, вам не приходится отвлекаться, смотреть на экран, да и не всегда это удобно, а услышав зуммер (либо не услышав) вы уже знаете результат. Особенно это полезно при массовых замерах, например, при поиске в пучке проводов одного определенного.
Обозначение прозвонки на мультиметре
В одной из недавних статей – «Как пользоваться мультиметром», я уже рассказывал об основных режимах работы стандартного тестера, пределах измерений и способах тестирования, в частности и о функции прозвонки, которая имеет следующее обозначение:
Как видите, маркировка точно передаёт основной смысл этого режима, ведь она состоит из двух элементов – значка диода, который символизирует проверку и зуммера, обозначающего звуковой сигнал.
Принцип работы прозвонки
Для лучшего понимания, как именно мультиметр узнаёт есть ли обрыв в цепи или нет, я, общих чертах, опишу принцип работает этого режима.
Здесь всё предельно просто, принцип действия прозвонки, основан на всем известном законе Ома, главном правиле электрики и электротехники:
I = U / R , где I – Сил тока, U – Напряжение в сети, R — сопротивление
В каждом мультиметре имеется источник питания – батарейка или аккумулятор, с помощью них создаётся напряжение на проверяемом участке сети – подаётся ток и зная его характеристики – высчитывается результат.
Что показывает мультиметр при прозвонке
Мультиметр, при прозвонке, показывает вычисленную им величину падения напряжения в милливольтах в этой цепи.
Создаваемый же тестером ток, на проверяемом участке, величиной около 1 миллиампера, выбран так не случайно, так как падение напряжения в милливольтах в таком случае соответствует сопротивлению в Омах.
Другими словами, при прозвонке электрических цепей или электроматериалов нам показывается величина падения напряжения, которая равна сопротивлению этого участка в Омах.
как пользоваться прозвонкой
Вот мы подошли к самому главному вопросу, как правильно прозванивать мультиметром:
Первое и самое главное правило: Прозванивать можно только полностью обесточенные цепи, ни в коем случае не проверяйте, например, целостность провода, который находится под напряжением.
Для большей наглядности, давайте рассмотрим, как пользоваться прозвонкой на самом простом примере – проверке куска провода:
Прозвонка мультиметром провода
1. Устанавливаем щупы в разъемы мультиметра:
— Красный щуп в гнездо V Ω mA
— Черный щуп в гнездо COM
2. Переводим колесо управления в режим прозвонки , который промаркирован соответствующим образом (значок диода и зуммера)
На экране, при этом, должна высветится единица.
3. Проверяем правильность работы мультиметра , соединяя контакты щупов, закоротив их.
Если прибор работает правильно, вы услышите звук зуммера, а на экране высветится значение близкое к нулю.
4. Прозваниваем провод . Прикладывая щупы мультиметра к его жилам с двух сторон, как показано на изображении ниже. Если проводник целый, то вы сразу же услышите звуковой сигнал зуммера, а показания на экране будут близкие к «0», например 0,001.
Если же жила провода повреждена и один из её концов не имеет электрической связи со вторым, то показания мультиметра не изменятся, будет высвечиваться «1» и звукового сигнала не будет.
Как видите, всё довольно просто, и вы, если у вас есть под рукой мультиметр, можете сами попробывать прозвонить, что-нибудь. Только я еще раз напомню – не прозванивайте под напряжением, даже под небольшим.
Один из наглядных, часто встречающихся в быту, примеров проверки мультиметром проводки описан в следующей нашей статье — КАК ПРОЗВОНИТЬ РОЗЕТКУ. Это подробная, пошаговая инструкция диагностики неработающей розетки, обязательно изучите её, чтобы понять, как прозванивать электропроводку.
Что делать если у мультиметра нет режима прозвонки
У некоторых бюджетных электронных тестеров нет отдельного режима прозвонки со звуковым оповещением, но при этом проверить целостность цепи можно и ими, только это не так удобно.
Например, у достаточно популярной модели dt 830b, нет зуммера, но вот режим проверки диодов есть, можно воспользоваться им, наблюдая изменение показаний на экране. Щупы при этом подключаются так же, как описано выше в порты COM и V Ω mA.
Если показания при замерах на экране будут отличные от единицы – то электрическая связь на проверяемом участке есть. Проверить работоспособность этого способа можно соединив щупы, если все в порядке, то на экране должны появится нули.
В моделях мультиметров, где вообще нет никаких дополнительных функций, в частности в аналоговых приборах, прозвонить можно переключив регулятор в режим измерения сопротивления – омметра.
При этом выбирать необходимо самый минимальный доступный порог – например 50 Ом или 200 Ом. После чего измерять по обычной схеме, описанной выше, и смотреть за изменением показаний на экране – если изменения есть – цепь цела. Для домашних, бытовых условий, этого вполне достаточно, чтобы найти какой провод оборван, определить сгоревшую дорожку на плате и многое другое.
На этом у меня всё, на мой взгляд этой информации вполне достаточно, чтобы любой человек смог научиться прозванивать мультимтром, даже не делая этого никогда ранее. Если же у вас остались вопросы или есть здоровая критика, дополнения – обязательно пишите в комментариях к статье, кроме того подписывайтесь на нашу группу ВКОНТАКТЕ – следите за появлением новых материалов.
В следующих статьях мы поговорим о других полезных функциях и способах использования цифрового мультиметра в быту, определим фазу и ноль в розетке, измерим напряжение в сети и многое другое, оставайтесь с нами.
Источник
Проверка микросхем мультиметром: инструкция и советы
Содержание статьи
Чтобы проверить микросхему радиолюбители используют такие устройства, как мультиметры, специальные тестеры, осциллографы. Однако в простых случаях вполне можно и без всего вышеперечисленного. Для успешной проверки необходимо хотя бы примерно знать устройство микросхемы, какие сигналы и напряжения должны поступать на ее входы и формироваться на ее выходах. Рассмотрим вероятные сценарии проведения проверочных работ.
Способы проверки
Существует несколько способов, позволяющих проверить микросхему на работоспособность.
Внешний осмотр
Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.
Проверка работоспособности с помощью мультиметра
Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.
Выявление нарушений в работе выходов
Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.
Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.
Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.
Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.
Влияние разновидности микросхем на способы проверки
Способ и сложность проверочных работ во многом зависит от типа схемы:
- Самые простые для проверки мультиметром являются микросхемы серии КР 142, имеющие три вывода. Проверка осуществляется подачей напряжения на вход и его измерением на выходе. На основании этих измерений делается вывод об исправности системы.
- Более сложные для проверки – микросхемы серий К 155, К 176. Для проверочных мероприятий понадобятся: колодка и источник питания с определенным уровнем напряжения, который подбирается под конкретную систему. На вход подается сигнал, контролируемый на выходе с помощью мультиметра.
- При необходимости проведения более сложных проверок используют не мультиметры, а специальные тестеры, которые можно собрать самостоятельно или купить в магазине радиоэлектроники. Тестеры позволяют проверить прозвонкой исправность отдельных узлов схемы. Данные проверки обычно отображаются на экране тестера, что позволяет сделать вывод о работоспособности отдельных элементов устройства.
При проведении проверок работоспособности микросхемы необходимо смоделировать нормальный режим ее работы. Для этого подаваемое напряжение должно соответствовать нормальному уровню, который соответствует конкретной системе. Проверять микросхемы на исправность рекомендуется на специальных проверочных платах.
Источник