Как найди длину разности векторов

Для того, чтобы уяснить, что собой представляет разность векторов, введём понятие откладывания вектора от определённой точки и понятие суммы векторов.

Определение

Если некоторая точка A является началом вектора a, то говорят, что он является отложенным от точки A.

Теорема. От каждой точки можно отложить только один вектор, имеющий заданный модуль и направление. Докажем эту теорему.

Доказательство:

В случае, когда вектор нулевой, то теорема очевидна. Нулевые вектора в одной и той же точки совпадают между собой, т. е. являются одним и тем же вектором.

Сделаем построение. Точкой A обозначим начало вектора a, а точкой B его конец. Пусть у нас имеется некоторая точка K. Проведём через неё прямую b, которая параллельна вектору a. Отложим на данной прямой равные по своей абсолютной величине вектору a отрезки KL и KM. Из векторов, образованных этими отрезками искомым можно назвать только сонаправленный с a.

Векторы 1

Единственность нашего вектора следует из того, что мы построили и видим.

Теорема доказана.

Определение

Суммой векторов a и b называется вектор с тем же началом, что вектор a и концом, как у вектора b. При этом вектор b должен начинаться в той же самой точке, в которой заканчивается вектор a.

Равные векторы, начинающиеся в разных точках, нередко обозначают одной и той же буквой. Иногда про подобные векторы говорят, как об одном и том же векторе, отложенном из разных мест.  

Разность векторов

Определение

Разностью векторов a и b называется сумма вектора a c вектором, который противоположно направлен к вектору b.

По-другому это определение можно сформулировать следующим образом: разностью двух векторов a и b называется вектор c, который при сложении с вычитаемым b образует уменьшаемое, т. е. вектор a.

Формулами это записывается так:

b + c = a

a  b = c

Как найти разность векторов аналитическим способом

В двухмерном пространстве векторов a {x1, y1} и b {x2, y₂} разность векторов можно вычислить, как показано ниже:

c {x3, y3} = {x₁ — x2, y1 — y₂}.

Вычитание векторов в 3-мерном пространстве выглядит следующим образом:

c {x3; y3; z₃} = {x₁ — x2, y₂ — y₂, z1 — z2}.

Как найти разность векторов графическим способом

Нужно воспользоваться правилом треугольника. Последовательность действий следующая:

  1. Постройте по координатам векторы, для которых требуется найти разность;
  2. Совместите концы построенных векторов. Для этого нужно построить два равных заданным направленных отрезка, концы у которых будут в одной и той же точке;
  3. Соедините начала построенных отрезков и укажите их направление. Вектор c, называемый разностью векторов, будет иметь своё начало в той же точке, где начинается вектор, именуемый уменьшаемым и заканчивается в точке начала вычитаемого. Смотрите рисунок ниже.

Векторы 2

Есть ещё один способ графического нахождения разности векторов. Он предусматривает следующий порядок действий:

  1. Постройте исходные направленные отрезки;
  2. Отразите вычитаемый отрезок. Для этого постройте противоположно направленный и равный ему отрезок и затем совместите начало этого отрезка с уменьшаемым;
  3. Постройте сумму, т. е. соедините начало первого отрезка и конец второго.

Векторы 3

Нет времени решать самому?

Наши эксперты помогут!

Примеры вычисления разности векторов

Примеры

Вычислить вектор c, который представляет собой разность вектора a ={1;
2} и вектора b = {4; 8}.

Решение:

Действуем по выше указанному правилу

ab = {1 — 4; 2 — 8} = {-3; -6}

Ответ: с{-3; -6}.


Вычислить вектор c, который является разностью векторов a = {1; 2; 5} и
b = {4; 8; 1}.

Решение:

Почти всё делается, как в уже рассмотренном примере, только добавляется третья координата.

a — b = {1 — 4; 2 — 8; 5 — 1} = {-3; -6; 4}

Ответ: c {-3; -6; 4}.


На рисунке векторы

Векторы 4

Требуется построить разности: pn, m
n,mnp и найти ту из них, которая
имеет наименьший модуль.

Решение:

Для изображения p — n проще всего воспользоваться правилом треугольника. Параллельным переносом
отрезки
следует соединить таким образом, чтобы совпали их конечные точки. Далее нужно соединить начальные точки и
определить направление. В нашем случае вектор разности берёт своё начало там же, где и вычитаемый n.

Векторы 5

Для изображения m — n правильнее будет воспользоваться вторым графическим способом нахождения разности
векторов. Сначала построим вектор противоположный n и найдём его суммы с вектором m.

Векторы 6

Для нахождения разности m — n — p разобьём это выражение на два действия. Возможны следующие варианты:

  • m — (n + p). Сначала нужно построить сумму,
    затем уже вычесть её из m;
  • (m n) — p. Сначала находим m — n,
    осле этого от полученной разности отнимаем p;
  • (mp) — n. Сначала определяем m — p, затем от
    полученного результата отнимаем n.

Из вычислений выше нам известна разность m — n. Для получения решения нам нужно вычесть из неё
p.
Используя определение 3 построим разность векторов на рисунке. На нём изображён окончательный результат
и промежуточный.

Векторы 7

Теперь нужно определить наименьший модуль. В нашем случае для этого можно лишь визуально оценить длины p — n,
m — n и m — n — p. Из построения сразу видно, что наименьшим модулем обладает вектор разности m — n —
p
.

В статье Сумма векторов мы научились складывать векторы, здесь мы научимся их вычитать. На самом деле, все предельно просто. Пусть у нас есть два вектора a⃗vec{a} и b⃗vec{b}, как найти вектор a⃗−b⃗vec{a}-vec{b}, то есть, разность векторов a⃗vec{a} и b⃗vec{b}? Мы можем написать так:

a⃗−b⃗=a⃗+(−1)⋅b⃗vec{a}-vec{b}=vec{a}+(-1)cdotvec{b}

Смотрите, мы от разности векторов перешли к сумме векторов. Нам нужно сложить векторы a⃗vec{a} и (−1)⋅b⃗(-1)cdotvec{b}. Ну с первым то все понятно, а что такое (−1)b⃗(-1)vec{b}? Это просто вектор b⃗vec{b}, умноженный на минус единицу, это вектор −b⃗-vec{b}.

При умножении любого вектора на (−1)(-1) его длина остается той же, а направление меняется на противоположное.

1.png

Итак, у нас есть векторы a⃗vec{a} и b⃗vec{b}:

2.png

Найдем их разность. Для этого перейдем от этих векторов к векторам a⃗vec{a} и −b⃗-vec{b} и сложим их. Складывать векторы мы уже умеем, для этого можно воспользоваться или правилом треугольника или правилом параллелограмма:

3.png

Теперь забудем о векторе −b⃗-vec{b}, у нас ведь вначале были только a⃗vec{a} и b⃗vec{b}:

4.png

Как видите, вычитать векторы ничуть не сложнее, чем их складывать. В какой-то мере вычитать ещё проще.

Чтобы найти разность векторов a⃗vec{a} и b⃗vec{b} нужно совместить начала этих векторов, а потом провести вектор из конца вектора b⃗vec{b} в конец вектора a⃗vec{a}.

На практике вам может помочь следующие рассуждения. Подумайте, какой вектор нужно добавить к вектору b⃗vec{b} чтобы получить вектор a⃗vec{a}. Этот вектор и будет a⃗−b⃗vec{a}-vec{b}.

Если у нас есть несколько векторов a⃗,b⃗,c⃗,d⃗vec{a}, vec{b}, vec{c}, vec{d} и нам нужно, например найти разность a⃗−b⃗−c⃗−d⃗vec{a}-vec{b}-vec{c}-vec{d} то нужно действовать поочередно. Сначала находим разность a⃗−b⃗vec{a}-vec{b}, потом от получившегося вектора отнимаем c⃗vec{c}, потом отнимаем d⃗vec{d}.

Тест по теме «Разность векторов»

Не можешь разобраться в этой теме?

Обратись за помощью к экспертам

Бесплатные доработки

Гарантированные бесплатные доработки

Быстрое выполнение

Быстрое выполнение от 2 часов

Проверка работы

Проверка работы на плагиат

Определение разности двух векторов

В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых — это численное значение? В том, что они обладают направлением.
[block >

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) — это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c, начало которого совпадает с началом первого, а конец — с концом второго при условии, что b начинается в той же точке, в которой заканчивается a.
  7. Разностью векторов a и b называют сумму a и (b), где (b) — противоположно направленный к вектору b. Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c, который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a <a₁; a₂> и b <b₁; b₂> расчёты будут иметь следующий вид: c <c₁; c₂> = <a₁ — b₁; a₂ — b₂>.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a <a₁; a₂; a₃> и b <b₁; b₂; b₃> координаты разности будут также получены попарным вычитанием: c <c₁; c₂; c₃> = <a₁ — b₁; a₂ — b₂; a₃ — b₃>.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

[block > Результат операции вычитания показан на рисунке ниже.

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1. На плоскости заданы 4 точки: A (1; —3), B (0; 4), C (5; 8), D (—3; 2). Определить координаты вектора q = AB — CD, а также рассчитать его длину.

Решение. Вначале следует найти координаты AB и CD. Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; —3), а концом — B (0; 4). Рассчитаем координаты направленного отрезка:

Аналогичный расчёт выполняется для CD:

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = ab координаты имеют вид <c₁; c₂> = <a₁ — b₁; a₂ — b₂>. Для конкретного случая можно записать:

Чтобы найти длину q, воспользуемся формулой | q | = √(q₁² + q₂²) = √((— 9)² + (— 1)²) = √(81 + 1) = √82 ≈ 9,06.
[block > Задача 2. На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p — n; m — n; m — n — p. Выяснить, какая из них обладает наименьшим модулем.

Решение. В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p — n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m — n. Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

[block > Часть 3. Для того чтобы найти разность m — n — p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m — (n + p): в этом случае вначале строится сумма n + p, которая затем вычитается из m;
  • (m — n) — p: здесь сначала нужно найти m — n, а затем отнять от этой разности p;
  • (m — p) — n: первым действием определяется m — p, после чего из полученного результата нужно вычесть n.

Так как в предыдущей части задачи мы уже нашли разность m — n, нам остаётся лишь вычесть из неё p. Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным — окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p — n, m — n и m — n — p. Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m — n — p.
[block > [block >

Сложение векторов: длина суммы векторов и теорема косинусов

Определения скалярного произведения векторов через угол между ними

Сложение векторов по правилу треугольника (суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец — с концом вектора , при условии, что начало вектора приложено к концу вектора ) даёт возможность упрощать выражение перед вычислением произведений векторов.

Сложение векторов, заданных координатами (при сложении одноимённые координаты складываются) даёт возможность узнать, как расположен относительно начала координат вектор, являющийся суммой слагаемых векторов. Подробно эти две операции разбирались на уроке «Векторы и операции над векторами».

Теперь же нам предстоит узнать, как найти длину вектора, являющегося результатом сложения векторов. Для этого потребуется использовать теорему косинусов. Такую задачу приходится решать, например, когда дорога из пункта A в пункт С — не прямая, а отклоняется от прямой, чтобы пройти ещё через какой-то пункт B, а нужно узнать длину предполагаемой прямой дороги. Кстати, геодезия — одна из тех сфер деятельности, где тригонометрические функции применяются во всех их полноте.

При сложении векторов для нахождения длины суммы векторов используется теорема косинусов. Пусть и — векторы, — угол между ними, а — сумма векторов как результат сложения векторов по правилу треугольника. Тогда верно следующее соотношение:

,

где — угол, смежный с углом . У смежных углов одна сторона общая, а другие стороны лежат на одной прямой (см. рисунок выше).

Поэтому для сложения векторов и определения длины суммы векторов нужно извлечь квадратный корень из каждой части равенства, тогда получится формула длины:

.

В случае вычитания векторов () происходит сложение вектора с вектором , противоположным вектору , то есть имеющим ту же длину, но противоположным по направлению. Углы между и и и между и являются смежными углами, у них, как уже было отмечено, одна сторона общая, а другие стороны лежат на одной прямой. В случае вычитания векторов для нахождения длины разности векторов нужно знать следующее свойство косинусов смежных углов:

косинусы смежных углов равны по абсолютной величине (величине по модулю), но имеют противоположные знаки.

Перейдём к примерам.

Сложение векторов — решение примеров

Пример 1. Векторы и образуют угол . Их длины: и . Выполнить сложение векторов и найти их сумму . Выполнить вычитание векторов и найти их разность .

Решение. Из элементарной тригонометрии известно, что .

Шаг 1. Выполняем сложение векторов. Находим длину суммы векторов, поставляя в формулу длины косинус угла, смежного с углом между векторами:

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Выполнить сложение и вычитание векторов самостоятельно, а затем посмотреть решение

Пример 2. Векторы и образуют угол . Их длины: и . Выполнить сложение векторов и найти их сумму . Выполнить вычитание векторов и найти их разность .

Пример 3. Даны длины векторов и длина их суммы . Найти длину их разности .

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус угла, смежного с углом между векторами и находим его:

Не забываем, что косинус смежного угла получился со знаком минус. Это значит, что косинус «изначального» угла будет со знаком плюс.

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Пример 4. Даны длины векторов и длина их разности . Найти длину их суммы .

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус «изначального» угла (задача обратная по отношению к примеру 1) и находим его:

Шаг 2. Меняем знак косинуса и получаем косинус смежного угла между и :

Шаг 3. Выполняем сложение векторов. Находим длину суммы векторов, подставляя в формулу косинус смежного угла:

Пример 5. Векторы и взаимно перпендикулярны, а их длины . Найти длину их суммы и и длину их разности .

Два смежных угла, как нетрудно догадаться из приведённого в начале урока определения, в сумме составляют 180 градусов. Следовательно, смежный с прямым углом (90 градусов) угол — тоже прямой (тоже 90 градусов). Косинус такого угла равен нулю, то же самое относится и к косинусу смежного угла. Поэтому, подставляя это значение в выражения под корнем в формуле длины суммы и разности векторов, получаем нули как последние выражения — произведения под знаком корня. То есть длины суммы и разности данных векторов равны, вычисляем их:

Пример 6. Какому условию должны удовлетворять векторы и , чтобы имели место слелующие соотношения:

1) длина суммы векторов равна длине разности векторов, т. е. ,

2) длина суммы векторов больше длины разности векторов, т. е. ,

3) длина суммы векторов меньше длины разности векторов, т. е. ?

Находим условие для первого соотношения. Для этого решаем следующее уравнение:

То есть, для того, чтобы длина суммы векторов была равна длине их разности, необходимы, чтобы косинус угла между ними и косинус смежного ему угла были равны. Это условие выполняется, когда углы образуют прямой угол.

Находим условие для второго соотношения. Решаем уравнение:

Найденное условие выполняется, когда косинус угла между векторами меньше косинуса смежных углов. То есть, чтобы длина суммы векторов была больше длины разности векторов, необходимо, чтобы углы образовали острый угол (пример 1).

Находим условие для третьего соотношения. Решаем уравнение:

Найденное условие выполняется, когда косинус угла между векторами больше косинуса смежных углов. То есть, чтобы длина суммы векторов была меньше длины разности векторов, необходимо, чтобы углы образовали тупой угол.

Сумма и разность векторов

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Геометрическая интерпретация:

Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .

Для сложения векторов также используется правило параллелограмма.

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

Элементы вектора c равняются попарной сумме соответствующих элементов a и b .

» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач a + b = x + bx; ay + by>
Для трехмерных задач a + b = x + bx; ay + by; az + bz>
Для n-мерных векторов a + b = 1 + b1; a2 + b2; . an + bn>

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: ( a + b ) + c = a + ( b + c )

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (- a ) = 0

Примечание: Вектор – a коллинеарен и равен по длине a , но имеет противоположное направление, из-за чего называется противоположным.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие:

Формула вычитания векторов

Элементы вектора c равны попарной разности соответствующих элементов a и b .

» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач a — b = x — bx; ay — by>
Для трехмерных задач a — b = x — bx; ay — by; az — bz>
Для n-мерных векторов a — b = 1 — b1; a2 — b2; . an — bn>

Примеры задач

Задание 1
Вычислим сумму векторов и .

Задание 2
Найдем разность векторов и .

источники:

http://function-x.ru/vectors_cosinus.html

Сумма и разность векторов

Найти длину разности векторов

Определение разности двух векторов

В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых — это численное значение? В том, что они обладают направлением.
[block >

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) — это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c, начало которого совпадает с началом первого, а конец — с концом второго при условии, что b начинается в той же точке, в которой заканчивается a.
  7. Разностью векторов a и b называют сумму a и (b), где (b) — противоположно направленный к вектору b. Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c, который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a и b расчёты будут иметь следующий вид: c = .

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a и b координаты разности будут также получены попарным вычитанием: c = .

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

[block > Результат операции вычитания показан на рисунке ниже.

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1. На плоскости заданы 4 точки: A (1; —3), B (0; 4), C (5; 8), D (—3; 2). Определить координаты вектора q = AB — CD, а также рассчитать его длину.

Решение. Вначале следует найти координаты AB и CD. Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; —3), а концом — B (0; 4). Рассчитаем координаты направленного отрезка:

Аналогичный расчёт выполняется для CD:

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = ab координаты имеют вид = . Для конкретного случая можно записать:

Чтобы найти длину q, воспользуемся формулой | q | = √(q₁² + q₂²) = √((— 9)² + (— 1)²) = √(81 + 1) = √82 ≈ 9,06.
[block > Задача 2. На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p — n; m — n; m — n — p. Выяснить, какая из них обладает наименьшим модулем.

Решение. В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p — n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m — n. Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

[block > Часть 3. Для того чтобы найти разность m — n — p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m — (n + p): в этом случае вначале строится сумма n + p, которая затем вычитается из m;
  • (m — n) — p: здесь сначала нужно найти m — n, а затем отнять от этой разности p;
  • (m — p) — n: первым действием определяется m — p, после чего из полученного результата нужно вычесть n.

Так как в предыдущей части задачи мы уже нашли разность m — n, нам остаётся лишь вычесть из неё p. Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным — окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p — n, m — n и m — n — p. Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m — n — p.
[block > [block >

Как найти разность векторов

Формула

Примеры нахождения разности векторов

Задание. Найти разность векторов $bar-bar$, где $bar=(3 ; 0)$ и $bar=(1 ; 2)$

Решение. Для нахождения разности векторов $bar$ и $bar$, вычтем их соответствующие координаты:

Решение. Для нахождения искомой разности векторов вычтем их соответствующие координаты:

Остались вопросы?

Здесь вы найдете ответы.

Поможем выполнить
любую работу

Все еще сложно?

Наши эксперты помогут разобраться

Не получается написать работу самому?

Доверь это кандидату наук!

Ищещь ответ на вопрос с которым нужна помощь?

Сумма и разность векторов

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Геометрическая интерпретация:

Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .

Для сложения векторов также используется правило параллелограмма.

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

Элементы вектора c равняются попарной сумме соответствующих элементов a и b .

Для плоских задач

Для трехмерных задач Для n-мерных векторов

Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие:

Формула вычитания векторов

Элементы вектора c равны попарной разности соответствующих элементов a и b .

Для плоских задач

Для трехмерных задач Для n-мерных векторов В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых — это численное значение? В том, что они обладают направлением.
[block >

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) — это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c, начало которого совпадает с началом первого, а конец — с концом второго при условии, что b начинается в той же точке, в которой заканчивается a.
  7. Разностью векторов a и b называют сумму a и (b), где (b) — противоположно направленный к вектору b. Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c, который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a <a₁; a₂> и b <b₁; b₂> расчёты будут иметь следующий вид: c <c₁; c₂> = <a₁ — b₁; a₂ — b₂>.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a <a₁; a₂; a₃> и b <b₁; b₂; b₃> координаты разности будут также получены попарным вычитанием: c <c₁; c₂; c₃> = <a₁ — b₁; a₂ — b₂; a₃ — b₃>.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

[block > Результат операции вычитания показан на рисунке ниже.

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1. На плоскости заданы 4 точки: A (1; —3), B (0; 4), C (5; 8), D (—3; 2). Определить координаты вектора q = AB — CD, а также рассчитать его длину.

Решение. Вначале следует найти координаты AB и CD. Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; —3), а концом — B (0; 4). Рассчитаем координаты направленного отрезка:

Аналогичный расчёт выполняется для CD:

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = ab координаты имеют вид <c₁; c₂> = <a₁ — b₁; a₂ — b₂>. Для конкретного случая можно записать:

Чтобы найти длину q, воспользуемся формулой | q | = √(q₁² + q₂²) = √((— 9)² + (— 1)²) = √(81 + 1) = √82 ≈ 9,06.
[block > Задача 2. На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p — n; m — n; m — n — p. Выяснить, какая из них обладает наименьшим модулем.

Решение. В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p — n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m — n. Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

[block > Часть 3. Для того чтобы найти разность m — n — p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m — (n + p): в этом случае вначале строится сумма n + p, которая затем вычитается из m;
  • (m — n) — p: здесь сначала нужно найти m — n, а затем отнять от этой разности p;
  • (m — p) — n: первым действием определяется m — p, после чего из полученного результата нужно вычесть n.

Так как в предыдущей части задачи мы уже нашли разность m — n, нам остаётся лишь вычесть из неё p. Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным — окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p — n, m — n и m — n — p. Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m — n — p.
[block > [block >

Как найти разность векторов

Формула

Примеры нахождения разности векторов

Задание. Найти разность векторов $bar-bar$, где $bar=(3 ; 0)$ и $bar=(1 ; 2)$

Решение. Для нахождения разности векторов $bar$ и $bar$, вычтем их соответствующие координаты:

Решение. Для нахождения искомой разности векторов вычтем их соответствующие координаты:

Остались вопросы?

Здесь вы найдете ответы.

Поможем выполнить
любую работу

Все еще сложно?

Наши эксперты помогут разобраться

Не получается написать работу самому?

Доверь это кандидату наук!

Ищещь ответ на вопрос с которым нужна помощь?

источники:

Определение разности двух векторов

http://www.webmath.ru/poleznoe/formules_13_2.php

Как найти длину суммы векторов? — Мегаобучалка

Линейные операции над геометрическими векторами

Произведение вектора на число

Произведением вектора на число называется вектор, получающийся из вектора растяжением (при ) или сжатием (при ) в раз, причём направление вектора сохраняется, если , и меняется на противоположное, если . (Рис. 2)

Из определения следует, что векторы и = всегда расположены на одной или на параллельных прямых. Такие векторы называютсяколлинеарными. (Можно говорить также, что эти векторы параллельны, однако в векторной алгебре принято говорить «коллинеарны».) Справедливо и обратное утверждение: если векторы и коллинеарны, то они связаны отношением

. (1)

Следовательно, равенство (1) выражает условие коллинеарности двух векторов.

Сумма векторов

Суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец — с концом вектора , при условии, что начало вектора приложено к концу вектора . (Рис. 3)

Это определение может быть распределено на любое конечное число векторов. Пусть в пространстве даны n свободных векторов . Если к концу вектора приложить начало вектора , а к концу вектора — начало вектора и т.д. и, наконец, к концу вектора — начало вектора , то суммой этих векторов служит замыкающий вектор , начало которого совпадает с началом первого вектора , а конец — с концом последнего вектора . (Рис. 4)

Слагаемые называются составляющими вектора , а сформулированное правило — правилом многоугольника. Этот многоугольник может и не быть плоским.

При умножении вектора на число -1 получается противоположный вектор . Векторы и имеют одинаковые длины и противоположные направления. Их сумма даёт нулевой вектор, длина которого равна нулю. Направление нулевого вектора не определено.

В векторной алгебре нет необходимости рассматривать отдельно операцию вычитания: вычесть из вектора вектор означает прибавить к вектору противоположный вектор , т. е.

Пример 1. Упростить выражение:

.

Решение:

,

то есть, векторы можно складывать и умножать на числа так же, как и многочлены (в частности, также задачи на упрощение выражений). Обычно необходимость упрощать линейно подобные выражения с векторами возникает перед вычислением произведений векторов.

Пример 2. Векторы и служат диагоналями параллелограмма ABCD (рис. 4а). Выразить через и векторы , , и , являющиеся сторонами этого параллелограмма.

Решение. Точка пересечения диагоналей параллелограмма делит каждую диагональ пополам. Длины искомых векторов находим либо как половины сумм векторов, образующих с искомыми треугольник, либо как половины разностей (в зависимости от направления вектора, служащего диагональю), либо, как в последнем случае, половины суммы, взятой со знаком минус. Итак, искомые векторы равны:

Как найти длину суммы векторов?

Эта задача занимает особое место в операциях с векторами, так как предполагает использование тригонометрических свойств. Допустим, Вам попалась задача вроде следующей:

Даны длины векторов и длина суммы этих векторов . Найти длину разности этих векторов .

Решения этой и других подобных задач и объяснения, как их решать — в уроке «Длина суммы векторов и теорема косинусов«.

Простейшие задачи Как найти вектор по двум точкам?

Если
даны две точки плоскости 
 и 
,
то вектор 
 имеет
следующие координаты:

Если
даны две точки пространства 
 и 
,
то вектор 
 имеет
следующие координаты:

То
есть, из
координат конца вектора
 нужно
вычесть соответствующие координаты начала
вектора
.

Пример

Даны
две точки плоскости 
 и 
.
Найти координаты вектора 

Решение: по
соответствующей формуле:

Как
вариант, можно было использовать
следующую запись: 

Можно
и так: 

Обязательно
нужно понимать различие
между координатами точек и координатами
векторов
:

Координаты
точек
 –
это обычные координаты в прямоугольной
системе координат. Каждая точка обладает
строгим местом на плоскости, и перемещать
их куда-либо нельзя.

Координаты
же вектора
 –
это его разложение по базису 
,
в данном случае 
.
Любой вектор является свободным, поэтому
при необходимости мы легко можем отложить
его от какой-нибудь другой точки
плоскости. Интересно, что для векторов
можно вообще не строить оси, прямоугольную
систему координат, нужен лишь базис, в
данном случае ортонормированный базис
плоскости 
.

Записи
координат точек и координат векторов
вроде бы схожи: 
,
а смысл
координат
 абсолютно разный,
и следует хорошо понимать эту разницу.

Пример

Даны
точки 
.
Найти векторы 
.

Как найти длину отрезка?

Если
даны две точки плоскости 
 и 
,
то длину отрезка 
 можно
вычислить по формуле 

Если
даны две точки пространства 
 и 
,
то длину отрезка 
 можно
вычислить по формуле 

Примечание: Формулы
останутся корректными, если переставить
местами соответствующие координаты:
  и ,
но более стандартен первый вариант

Пример

Даны
точки 
 и 
.

Найти длину отрезка 
.

Ответ:

Если
дан вектор плоскости 
,
то его длина вычисляется по формуле 
.

Если
дан вектор пространства 
,
то его длина вычисляется по формуле 
.

Пример

Даны
точки 
 и 
.
Найти длину вектора 
.

Решение: Сначала
найдём вектор 
:

По
формуле 
 вычислим
длину вектора:

Ответ: 

Пример

а)
Даны точки 
 и 
.
Найти длину вектора 
.
б)
Даны векторы 


 и 
.
Найти их длины.

а)  Решение: найдём
вектор
 
:
Вычислим
длину вектора:

Ответ: 

б) Решение:
Вычислим
длины векторов:

Действия с векторами в координатах

1) Правило
сложения векторов
.
Рассмотрим два вектора плоскости 
 и 
.
Для того, чтобы сложить векторы,
необходимо сложить
их соответствующие координаты


.

Частный
случай – формула разности векторов: 
.

Аналогичное
правило справедливо для суммы любого
количества векторов, например, найдём
сумму трёх векторов: 

Если
речь идёт о векторах в пространстве, то
всё точно так же, только добавится
дополнительная координата. Если даны
векторы 
,
то их суммой является вектор 
.

2) Правило
умножения вектора на число.
 
Для того чтобы вектор 
 умножить
на число 
,
необходимо каждую координату данного
вектора умножить на число 
:
.

Для
пространственного вектора 
 правило
такое же:

Пример

Даны
векторы 
 и 
.
Найти 
 и 

Решение: Для
действий с векторами справедлив обычный
алгебраический приоритет: сначала
умножаем, потом складываем:

Ответ: 

Вычисление векторных P-норм — линейная алгебра для науки о данных -IV | by Harshit Tyagi

Математические принципы, лежащие в основе методов регуляризации в машинном обучении

В серии «Линейная алгебра», чтобы дать вам краткий обзор, мы узнали, что такое векторы, матрицы и тензоры, как вычислить скалярное произведение для решать системы линейных уравнений, и что такое единичные и обратные матрицы.

Продолжая серию, следующая очень важная тема Векторные нормы.

Итак,

Что такое векторные нормы?

Векторные нормы — это любые функции, которые отображают вектор в положительное значение, которое является величиной вектора или длиной вектора. Теперь есть разные функции, которые предлагают нам разные способы вычисления длин векторов.

Это нормально, но зачем мы это изучаем и что представляет собой длина этого вектора…?

Зачем изучать Нормы??

Нормы — это очень важная концепция в машинном и глубоком обучении, которая обычно используется для расчета ошибки в прогнозах модели ML/DL.

Длина вектора обычно представляет собой ошибку между предсказанием и фактическим наблюдением (меткой).

Нам часто нужно вычислить длину или величину векторов, чтобы использовать их непосредственно в качестве метода регуляризации в ML или как часть более широких векторных или матричных операций.

Итак, что это за функции?

Нормы — это любые функции, которые характеризуются следующими свойствами:

  1. Нормы возвращают неотрицательные значения, поскольку это величина или длина вектора, которые не могут быть отрицательными.
  2. Нормы равны 0 тогда и только тогда, когда вектор является нулевым вектором.
  3. Нормы следуют неравенству треугольника, т. е. норма суммы двух (или более) векторов меньше или равна сумме норм отдельных векторов. Он просто утверждает, что геометрически кратчайший путь между любыми двумя точками — это линия.
    Представлено уравнением:
    ∥a+b∥≤∥a∥+∥b∥
    , где a и b — два вектора, а вертикальные черты ∥ обычно обозначают норму.
  4. Норма вектора, умноженная на скаляр, равна абсолютному значению этого скаляра, умноженному на норму вектора.
    Представляющее уравнение: ∥k⋅ x ∥=|k|⋅∥ x

Расчет P-нормы основан на центральной формуле:

x 5(0 0 ∑ᵢ| x ᵢ|ᵖ)¹/ᵖ

Вот быстрый четырехэтапный процесс получения p-нормы вектора

  1. Получите абсолютное значение каждого элемента вектора.
  2. Возведите эти абсолютные значения в степень р.
  3. Подсчитайте сумму всех этих увеличенных абсолютных значений.
  4. Получите p ₜₕ root или поднимите степень до 1/p по результату предыдущего шага.

Теперь, исходя из значения P в формуле , получаем разные типы Норм. Давайте обсудим их один за другим:

Подставив p = 0 в формулу, мы получим норму L⁰.

Все, что возведено в степень 0, вернет 1, кроме 0. L⁰ на самом деле не является нормой, поскольку не обладает характеристикой #4 (описанной выше). Умножение константы даст нам само это число.

Если положить p = 1 , получим L¹ нормы. По сути, формула будет вычислять сумму абсолютных значений вектора.

Формула: |x|₁=(∑ᵢ |xᵢ|)

Используется для расчета средней абсолютной ошибки.

Код Python

Мы можем получить норму L¹, используя модуль линейной алгебры пакета Numpy, который предлагает метод norm(). По умолчанию функция norm настроена на вычисление нормы L2, но мы можем передать значение p в качестве аргумента. Итак, для нормы L¹ мы передадим ей 1:

 from numpy import linalg#создание вектора 
a = np.array([1,2,3])#вычисление нормы L¹
linalg.norm(a, 1)##output: 6.0

Ввод p = 2 дает нам норму L². Формула будет вычислять квадратный корень из суммы квадратов значений вектора.

Также известна как евклидова норма. Это широко используемая норма в машинном обучении, которая используется для вычисления среднеквадратичной ошибки.

∥x∥₂ = (∑ᵢ xᵢ²)¹/²

Итак, для вектора u, L² Норма будет выглядеть так:

Код Python

Опять же, используя ту же функцию нормы, мы можем вычислить норму L²:

 норма(а) # или вы можете передать 2 следующим образом: норма(а,2 )## output: 3.7416573867739413 

∑ᵢ|xᵢ|²

Квадрат нормы L2 — это просто норма L2, но без квадратного корня. Возведение в квадрат нормы L2, рассчитанной выше, даст нам норму L2.

Это удобно, потому что удаляет квадратный корень, и мы получаем простую сумму всех квадратов значений вектора.

Евклидова норма в квадрате широко используется в машинном обучении отчасти потому, что ее можно вычислить с помощью векторной операции x x.

Код Python

Давайте проверим это в коде Python:

 x = np.array([[1], [3], [5], [7]]) 
euclideanNorm = x.T.dot(x)## output: array([[84]])np.linalg.norm(x)**2
##ouput: 84.0

Это норма L∞, которая просто возвращает абсолютное значение наибольшего элемента вектора.

Формула принимает следующий вид:

‖x‖∞=maxᵢ|xᵢ|

Код Python

Давайте проверим это в коде Python, нам просто нужно передать бесконечность в функцию нормы:

 x = np.array([[1], [3], [5], [7] ]) 
norm(x, np.inf)##output: 7.0

Вы можете поиграть со всеми кодами Python здесь:

Google Colaboratory

Расчет норм

colab. research.google.com

25 Попробуем проанализировать графики графически. Я использовал ту же формулу для двух измерений (x, y), а третье измерение представляет саму норму.

Вы можете проверить этот поверхностный плоттер, который я использовал для получения этих графиков.

L¹ Норма

Создано с использованием https://academo.org/demos/3d-surface-plotter/

Больше похоже на прикрепленные друг к другу плоскости. X и Y являются параметрами здесь.

Норма L²

https://academo.org/demos/3d-surface-plotter/

Квадрат L² Норма

https://academo.org/demos/3d-surface-plotter/

Квадрат нормы L2 и норма L2 выглядят одинаково, но здесь есть важное отличие в отношении крутизны графика около нулевой отметки (в средней синей области). Квадратная норма L2 плохо различает ноль и другие меньшие значения. Таким образом, это раскрывает одну проблему с его использованием.

В этом уроке мы рассмотрели различные способы вычисления длин или величин векторов, называемые векторными нормами.

В частности, мы научились:

  • вычислять норму L1, которая рассчитывается как сумма абсолютных значений вектора.
  • вычислить норму L2, которая рассчитывается как квадратный корень из суммы квадратов векторных значений.
  • вычислить максимальную норму, которая рассчитывается как максимальные значения вектора.

С помощью этого канала я планирую выпустить пару серий, охватывающих все пространство науки о данных. Вот почему вам стоит подписаться на канал:

  • Эти серии будут охватывать все необходимые/требуемые качественные учебные пособия по каждой из тем и подтем, таких как основы Python для науки о данных.
  • Объяснение математики и причин того, почему мы делаем то, что делаем в машинном обучении и глубоком обучении.
  • Подкасты с учеными и инженерами данных из Google, Microsoft, Amazon и т. д., а также с руководителями компаний, работающих с большими данными.
  • Проекты и инструкции по реализации изученных тем. Узнайте о новых сертификатах, Bootcamp и ресурсах, чтобы взломать эти сертификаты, подобные этому Экзамен на сертификат разработчика TensorFlow от Google.

Введение в векторы — Уроки Wyzant

Векторы обычно используются для представления скорости и ускорения, силы и других
направленных величин в физике.

Векторы — это величины размера и направления .

Все объекты, с которыми мы работали в исчислении с одной переменной (Исчисление 1 и
2), имели количество, т. е. мы могли их измерить.

Некоторые величины имеют только размер, например время, температура или вес. Эти величины
называются скалярами . Другие величины могут иметь размер и направление .
Скорости, например, тоже имеют направление, и поэтому они описываются
как векторы. Мы обозначаем векторы стрелкой, указывающей в направлении, в котором они ориентированы.

Направление вектора на координатной плоскости интуитивно понятно. Положительное направление Y,
вверху — это север, а положительное направление х — восток. Следующий вектор

находится немного восточнее севера.

Направление вектора также можно описать с помощью количества. Обычно направление
векторов указывается по отношению к другому направлению. Следующий вектор —
, описанный как «5 миль в час 53,13 градуса к северу от востока».

Этот вектор можно также описать как «5 миль в час 36,87 градуса к востоку от севера».

Чтобы упростить значения векторов, мы используем ось x (или восток) в качестве отправной точки
для измерения. Линия, лежащая на оси x, будет иметь направление 0 градусов.

Следующий вектор может быть обозначен многими различными направлениями.

Последний вектор будет 53,13 градуса к югу от запада.


Скаляры и векторы

Помните, что у скаляров есть только размер, а у векторов есть размер и направление.

Скорость и скорость тоже разные. Хотя они иногда используются взаимозаменяемо, скорость
считается скаляром, а скорость считается вектором.

Существует также расстояние между расстоянием и перемещением. Расстояние является скаляром
, потому что оно имеет только размер. Смещение, однако, является вектором, потому что оно сообщает нам
, как далеко объект переместился в определенном направлении.

Скалярами можно манипулировать по законам арифметики для действительных чисел, тогда как векторы
имеют особые законы, которым необходимо следовать при работе друг с другом. Например,

, если вы прошли 4 квартала, а затем еще 3 квартала, сколько кварталов вы прошли?
Мы можем сложить эти количества, чтобы получить 7 блоков. Однако, если вы прошли 4 квартала
на восток и 3 квартала на север, как далеко вы прошли от начальной точки?
Поскольку эти векторы имеют разные направления, мы не можем просто сложить их вместе.

Количество пройденных градусов можно либо измерить по изображению, либо рассчитать
с помощью тригонометрии.

Результирующий вектор будет состоять из 5 блоков по 0,644 радиана.


Векторное обозначение

Векторы имеют специальные обозначения, отличающие их от скаляров. Векторы может
отметить как

Для наших целей мы всегда будем обозначать вектор стрелкой вверху, чтобы обозначить
величину с направлением.

Предыдущий вектор будет обозначаться как

Мы также можем использовать единичные векторы i и j для обозначения вектора, где i = 1,0 >
и j = 0,1>

Величина или длина вектора обозначается как

Мы используем величину, чтобы найти количество вектора. Всякий раз, когда мы хотим игнорировать

направление вектора (учитывая площадь, объем и т. д.), мы можем просто взять величину.

направление вектора обозначается как


Векторные равенства и операции


Равные векторы

Имеют одинаковую величину и одинаковое направление, они не обязательно должны иметь одинаковые
начальных точки.


Противоположные векторы

Имеют одинаковую длину, но направлены в противоположном направлении. При сложении
противоположных вектора компенсируют друг друга.


Параллельные векторы

Имеют одинаковое направление, но разную длину.

Векторы, имеющие одинаковое направление, могут быть умножены на скаляры, чтобы получить другую величину
.


Добавление вектора

При добавлении векторов мы присоединяем начало второго вектора (начальную точку) к
конец первого вектора (конечная точка).


Вычитание векторов


Скалярное умножение

Скалярное умножение — это когда вектор умножается на скаляр, чтобы увеличить или
уменьшить величину вектора. Скаляр не влияет на направление
вектора.


Точечный продукт

Если у нас есть два вектора u и v , скалярное произведение обозначается как

где |и| и |v| — величины, а Θ — угол между векторами.

Чтобы проиллюстрировать, что означает скалярное произведение, давайте возьмем последнюю часть формулы
и разберем ее.

Если мы возьмем вектор v , умноженный на cos(Θ) , мы получим
проекцию v на u . Проекция образована опусканием перпендикулярной линии
из конечной точки v на u, таким образом образуя прямой угол
. Проекция v на u — это количество вектора v, идущего в направлении u.
Скалярное произведение v и u просто умножает проекцию v на вектор u
(или наоборот).

Если мы вернемся к нашей формуле, мы можем заменить проекцию v на вектор
v.

Этот результат говорит нам, какая часть вектора v идет в направлении вектора
u .

Чем это полезно? Если мы подумаем о физических приложениях, если у нас есть два
силы под углом, мы можем видеть, какая сила действует в определенном направлении.
Скалярное произведение иногда называют скалярным произведением, поскольку оно всегда дает
скалярную величину. Скалярное произведение также может помочь нам измерить угол между векторами,
найти проекции и определить, перпендикулярны ли два вектора, как мы увидим
в следующих примерах.

Обратите внимание, что перпендикулярные векторы всегда будут давать скалярное произведение, равное 0, потому что
не является проекцией, то есть никакое количество векторов не идет в направлении другого вектора.

Понравилась статья? Поделить с друзьями:
  • Как найти спонсора для помощи денег
  • Как составить предложении со словам притом
  • Как найти в экселе критерий стьюдента
  • Как найти площадь зеркала озера
  • Вирус ратник как найти