Как найти 100 процентов в задаче

Задачи с процентами часто попадаются в экзаменационных заданиях. Многих они сбивают с толку – как разобраться с условием и как это решить? И совершенно зря, потому что с задачами на проценты каждый часто встречается в обычной жизни.

Пока такие задачки остаются оторванными от реальности строчками в учебнике, их бывает сложно понять и тем более решить. Чтобы стало понятнее, мы вам сейчас покажем примеры из обычной жизни, где вам могут встретиться проценты. А еще просто и доступно объясним, как решать задачи на проценты. И все у вас станет на свои места.

Задачи про проценты вокруг нас

Давайте оглядимся по сторонам: значения в процентах указаны на упаковках с любыми продуктами. Значок процента «%» смотрит на нас с рекламных плакатов скидок и распродаж. В новостях проценты сразу бросаются в глаза, когда речь идет о повышении цен на товары или коммунальные услуги. Разве вы сможете расшифровать все эти послания, если не научитесь решать задачи с процентами? Но вы, конечно, научитесь – мы в вас верим.

А вот такая ситуация: вы купили что-нибудь через интернет и получили извещение от ближайшего почтового отделения. Или сами собираетесь послать подарок другу в другой город. Вам обязательно надо уметь разбираться с процентами, чтобы узнать, сколько денег почта захочет получить за свои услуги по пересылке.

Или возьмем банковские кредиты и ипотеку. Банки в договорах всегда пишут мелкими буквами всякие вещи, которые полезно понимать. Например, какой процент по кредиту придется заплатить банку кроме тех денег, которые вы у него «одолжили» и обязаны вернуть.

А самый близкий школьникам пример связан с ЕГЭ. Каждый год после экзаменов публикуют официальную статистику. В которой немало задействованы и проценты. И эти проценты имеют прямое отношение к будущим выпускникам. Например, процент ребят, сдавших экзамен по математике на «хорошо» и «отлично» косвенно говорит о том, сколько абитуриентов с высокими баллами могли подать документы в вузы на технические специальности. А еще на программирование, прикладную математику и т.п. Чем их больше, тем выше конкурс. Если сравнивать их результаты со своими оценками, можно прикинуть собственные шансы на поступление.

Что такое процент?

Самое очевидное определение: процент – это десятичная дробь. В жизни редко что-то можно сравнивать целиком, чаще приходится сравнивать разные части чего-то целого. Поэтому мы используем такие понятия, как половина (1/2), треть (1/3), четверть (1/4). Ну да, все так привыкли к слову «четверть» в школе, что забывают о его формальном значении – «четвертая часть учебного года». Сравнивать сотые доли удобнее всего – так появился процент (1/100): pro centum – «за сто» на латыни.

Все задачи по математике на проценты вертятся вокруг сравнения частей одного целого, определения, какую долю составляет часть от целого, нахождения целого исходя из величины его части и т.п.

Проценты можно записать со знакомым всем значком процента: 1%. Можно представить в виде десятичной дроби (или натурального числа). Для этого нужно разделить на 100: 0,01. Можно наоборот: выразить число в процентах. Тогда его следует умножить на 100%.

Типы задач на проценты

Раз мы уже договорились, что задачи на проценты – это задачи на дроби, такой тактики будем придерживаться и дальше.

Тип 1: Находим процент (дробь) от числа.

  • Задача. За месяц на предприятии изготовили 500 приборов. 20% изготовленных приборов не смогли пройти контроль качества. Сколько приборов не прошло контроль качества?
  • Решение. Нужно найти 20% от общего количества изготовленных приборов (500). 20% = 0,2. 500 * 0,2 = 100. 100 из общего количества изготовленных приборов контроль не прошло.

Тип 2: Находим число по его проценту (дроби).

  • Задача. Готовясь к экзамену, школьник решил 38 задач из пособия для самоподготовки. Что составляет 23% числа всех задач в пособии. Сколько всего задач собрано в этом пособии для самоподготовки?
  • Решение. Мы не знаем, сколько всего задача в пособии. Но зато нам известно, что 38 задач составляют 25% от общего их количества. Запишем 23% в виде дроби: 0,23. Далее нам следует известную нам часть целого разделить на ту долю, которую она составляет от всего целого: 38/0,25 = 38 * 100/25 = 152. Именно 152 задачи включили в этот сборник.

Тип 3: Находим процентное отношение двух чисел (часть от целого числа).

  • Задача. В классе 30 учеников. 14 из них – девочки. Сколько процентов девочек в классе?
  • Решение. Чтобы узнать, какой процент составляет одно число от другого, нужно то число, которое требуется найти, разделить на общее количество и умножить на 100%. Значит, 14/30*100% = 7/15*100% = 7*100%/15 = 47%.

Тип 4: Увеличиваем число на процент.

  • Задача. На прошлогоднем экзамене по математике 140 старшеклассников получили пятерки. В этом году число отличников выросло на 15%. Сколько человек получили пятерки за экзамен по математике в этом году?
  • Решение. Если некое число а увеличено на х%, то оно увеличилось в (1 + х /100) раз. Откуда а * (1 + х /100). Подставим в эту формулу данные нам по условию задачи цифры и получим ответ: 140 * (1 + 15/100) = 161.

Тип 5: Уменьшаем число на процент.

  • Задача. Год назад школу закончили 100 ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году?
  • Решение. Если число а уменьшено на х% и при этом 0 ≤ х ≤ 100, то число уменьшено в (1 – х/100) раз. И нужное нам число находим по формуле а * (1 – х/100). Подставляем цифры из условия задачи и получаем ответ: 100 * (1 – 25/100) = 75.

Тип 6: Задачи на простые проценты.

  • Задача. Родители взяли в банке кредит 5000 рублей сроком на год под 15% ежемесячно. Сколько денег они заплатят банку через год?
  • Решение. Простые проценты называются так, потому что они начисляются многократно, но всякий раз к исходной сумме. Если обозначить исходную сумму как а, сумму, которая наращивается, как S, процентную ставку как х% и количество периодов начисления процента как у, то формулу можно записать так: S = а * (1 + у * х/100). Теперь подставим сюда цифры из условия задачи и узнаем, сколько денег родители заплатят банку: S = 5000 * (1 + 12 * 15/100) = 14000.

Тип 7: Задачи на сложные проценты.

  • Задача. На этот раз сумма кредита 25000 рублей, взятых под те же 15% сроком на 3 месяца. Снова надо узнать, сколько денег придется заплатить банку по истечении срока кредита.
  • Решение. Сложные проценты отличаются от простых тем, что процент много раз начисляется не к исходной сумме, а к сумме с уже начисленными раньше процентами. Пускай снова S – наращиваемая сумма, а – исходная, х% — процентная ставка, у – количество периодов начисления процента. В этом случае формула принимает вид: S = а * (1 + х/100)у. Подставляем цифры из условия: S = 25000 * (1 + 15/100)3 = 38021,875 – искомая сумма.

Кстати, простые задачи на проценты можно очень легко решать с помощью пропорции. Этот метод наглядный и дает такой же результат, так что выбирать можно каждому тот способ решения, который кажется проще. Давайте решим задачу №3 про класс и процент девочек в нем, составив пропорцию.

  • Решение. Обозначим искомый процент девочек в классе как х, общее количество учеников примем за 100%. Пропорция выглядит так:

30 – 100%
14 – х%

Перемножим крест накрест левую и правую части пропорции и получим, что 30* х = 14 * 100 («30 относится к х также, как 14 относится к 100»). Откуда найти х уже совсем несложно: х = 14 * 100/30 = 47%.

Задачи на проценты с решением

Давайте решим несколько задач для подготовки к ЕГЭ. Как вы сами видите, решать их совсем несложно. Сейчас просто закрепим материал.

Задача 1. После открытия торгов на бирже в понедельник акции некой компании выросли в цене на неизвестное количество процентов. А во вторник на то же самое количество процентов упали в цене. В итоге они подешевели на 4% по отношению к своей первоначальной стоимости в понедельник. На какой процент акции этой компании поднимались в цене в понедельник?

Решение. Пускай первоначальная стоимость акций это 1. В понедельник акции дорожают на х * 100%. Их стоимость в это время: 1 + х * 1. Во вторник акции дешевеют на х * 100%. Их стоимость после этого: 1 + х – х * (1 + х). После чего они стали дешевле на 4%, т.е. стали стоить 0,96.

Отсюда 1 + х – х * (1 + х) = 0,96 ↔1 – х2 = 0,96 ↔ х2 = 0,04 ↔ х = 0,2. Т.е. в понедельник акции компании дорожали на 20%.

Задача 2. Четыре пары брюк дешевле одного пальто на 8%. Подсчитайте, на сколько процентов пять пар брюк стоят дороже, чем одно пальто.

Решение. Исходя из условия задачи, стоимость четырех пар брюк – это 92% от стоимости пальто. Легко подсчитать, что стоимость одной пары брюк – это 23% стоимости пальто (92/4 = 23). Теперь умножим стоимость одной пары брюк на пять и узнаем, что пять пар брюк обойдутся в 115% стоимости пальто (23 * 5 = 115). Т.е. пять пар брюк на 15% дороже, чем одно пальто.

Задача 3. Семья состоит из трех человек: муж, жена и дочь-студентка. Если зарплата мужа вырастет в два раза, общий доход семьи возрастет на 67%. Если дочери в три раза урежут стипендию, общий доход этой семьи уменьшится на 4%. Надо вычислить, какой процент в общий доход семьи приносит заработок жены.

Решение. Из условия следует, что общий доход семьи находится в прямой зависимости от доходов мужа. Не так важно, насколько ему поднимут зарплату. В любом случае общий доход семьи вырастет на 67%. Значит, зарплата мужа составляет как раз эти 67% от общего дохода. Если стипендия дочери уменьшится в три раза (т.е. на 1/3), останется 2/3 – это и есть 4%, на которые уменьшился бы семейных доход. Можно составить простую пропорцию и выяснить, что раз 2/3 стипендии – это 4% дохода, то вся стипендия – это 6%. А теперь отнимем от всего дохода вклад мужа и дочери и узнаем, какой процент составляет заработок жены в общем доходе семьи: 100% – 67%  – 6% = 27%.

Задача 4. В емкости находится 5 литров водного раствора с концентраций вещества, равной 12%. В емкость добавили еще 7 литров воды. Раствор какой концентрации (с каким процентным содержанием вещества) получился после этого?

Решение. Опишем концентрацию вещества в растворе такой формулой: С = Vвещества/ Vраствора * 100%. Изначально в растворе содержится 0,12 * 5 = 0,6 литра вещества. Когда были добавлены 7 литров воды, объем раствора в емкости увеличился. Но концентрация вещества понизилась (его объем остался неизменным). Подставим все известные нам цифры в формулу и получим ответ: 0,6/5 + 7 *100% = 0,6 /12 * 100% = 5%.

Задача 5. В свежих абрикосах 90% влаги, а в кураге, которая из них получается, только 5%. Сколько килограммов абрикосов нужно, чтобы получить 20 килограммов кураги?

Решение. Исходя из условия, в абрикосах 10% питательного вещества, а в кураге оно содержится в концентрированном виде – 95%. Поэтому в 20 килограммах кураги 20 * 0,95 = 19 кг питательного вещества. На вопрос задачи мы ответим, если разделим одинаковое количество питательного вещества, которое содержится в разных объемах свежих абрикосов и кураги, на его процентное содержание в абрикосах. Чтобы получить 20 килограммов кураги, нужно взять 19/0,1 = 190 килограммов свежих абрикосов.

Заключение

Сами видите, решать задачи на проценты не так уж сложно. Если усвоить основные правила и подключить воображение, вы сможете щелкать такие задачки как орешки.

Вы даже можете составить задачу на проценты сами по нашим образцам. Кстати, будет очень хорошо, если вы так и поступите. Можете оставить нам свои задачи в комментариях – пускай другие наши читатели решат ваши задачи. А вы сможете решить те, что придумают они. Чтобы задач для подготовки к экзаменам получилось больше, расскажите про эту статью своим друзьям в социальных сетях.

Вот увидите, задачи на проценты вам придется решать еще много раз даже после того, как вы закончите школу. Они встречаются в физике, химии, биологии. Да и в повседневной жизни умение решать их может не раз пригодится. Не бойтесь сложных задач – мы всегда поможем вам найти к ним ключ.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Проценты — сотые части числа. Если известно, какую часть целого составляет число, то при помощи процентов легко определить само целое. Для этого используется простая формула или наш онлайн-калькулятор.

История понятия

Люди используют проценты с античных времен, правда тогда части целого обозначались дробями. В Древнем Египте землемеры активно использовали египетские дроби, которые отличались от обыкновенных тем, что представляли собой сумму дробей, в числителе которых обязательно находилась единица. Например, египетский математик использовал бы в расчетах не 7/10, а сумму 1/2 и 1/5. Чуть позднее ученые мужи поняли, что в некоторых ситуациях куда удобнее использовать дроби, в знаменателе которых стоит сотня. Так и появились проценты.

Считается, что родина процентов — это Древняя Индия, ведь именно индийцы первыми начали использовать десятичную систему исчисления. Несмотря на сложную римскую систему счисления, сотые части нашли свое применение и в Древнем Риме, где проценты использовались при вычислении античного аналога подоходного налога. На протяжении тысячелетия роль процентов ограничивалась вычислением прибыли или убытков на сотню затраченных монет. Сегодня же проценты буквально пронизывают жизнь человека, и их легко найти на этикетках продуктов, кредитных договорах, кулинарных рецептах или экранах смартфонов.

Проценты в действии

Термин процент происходит от латинского выражения «pro centum», которое переводится как «на сотню», и именно сотую часть чего-либо и подразумевает процент. Если у нас есть 10 арбузов, то 2 арбуза из этой горки составляют 2/10 или 20 %. Если у нас есть корзина с 57 персиками, то 11 персиков из них составят 11/57. Без перевода в десятичную дробь не ясно, сколько процентов в таком случае составляют персики, а сократить дробь не выйдет, ведь 11 — простое число. Подсчитав на калькуляторе видим, что 11/57 — это 0,192 или 19,2 %.

В некоторых задачах рассматривается обратная ситуация. Если 10 персиков — это 25 % от их общего числа, то сколько всего персиков в корзинке? Решить такую задачку можно при помощи пресловутого «правила трех», которое было сформулировано еще в Древней Индии. Сегодня правило носит название «метод пропорций» и известно каждому школьнику. Если 10 — это 25 %, а X — 100 %, то несложно выразить X и определить его. Запишем пропорцию:

  • 10 — 25 %
  • Х — 100 %
  • 25Х = 1 000
  • Х = 40

Таким образом, всего в корзинке 40 персиков. Если выразить пропорцию в общем виде, то получим формулу определения ста процентов:

  • A — B
  • X — 100
  • X = 100 × A / B

Калькулятор вычисления 100 %

Онлайн-инструмент позволяет мгновенно вычислить значение 100 %, если известно, какую часть от целого составляет число. В программный код калькулятора заложена выше приведенная формула, и для вычислений достаточно заполнить всего 2 ячейки.

Примеры из реальной жизни

Банковский депозит

Банковский вклад ежегодно приносит прибыль в размере 13 %. В первый год в банковской выписке значилось, что на счет была начислена прибыль в размере 260 долларов. Сколько изначально было положено денег на депозит? Для вычисления нужно использовать наш калькулятор и определить 100 %, которые в этом случае равны 2 000 долларов. Следовательно, на счету теперь 2 260 долларов.

Кошелек

Из кошелька выкатилось 7 монет, что составляет 14 % от их общего количества. Сколько всего монет в кошельке? Это легко подсчитать по формуле:

  • X = 100 × 7 / 14
  • X = 50

Следовательно, всего в кошелке 50 монет. Идентичный результат мы получим, если посчитаем при помощи калькулятора.

Дележ добычи

Представим, что пираты захватили испанскую шхуну и нашли на нем сундук с пиастрами. Пират Джек получил на руки всего 30 пиастров, но по заверению капитана, это составляло аж 8 % от общей добычи. Сколько всего пиастров было в сундуке? Давайте используем калькулятор и получим мгновенный результат: в сундуке было 375 пиастров.

Заключение

Определение 100 % по простой пропорции может пригодиться во многих случаях за пределами школьных стен. Используйте наш онлайн-калькулятор для мгновенных и точных вычислений.

Предлагаю
вашему вниманию легкий способ разобраться, как решать задачи на проценты в 6
классе.

При решении задачи на проценты первым делом нужно определить вид
задачи. Задачи на проценты в 6 классе можно подразделить на  три вида:

1) Нахождение процентов от числа.

2) Нахождение числа по его процентам.

3) Нахождение процентного отношения двух чисел.

Определить вид задачи на проценты можно по записи ее условия. Если
напротив 100% стоит число, то это — задача на нахождение процентов от числа.
Если число напротив 100% неизвестно, то это — задача на нахождение числа по его
процентам. Если же неизвестное значение стоит в колонке процентов, то это —
задача на нахождение процентного отношения двух чисел.

Рассмотрим на примерах, как научиться определять вид задачи на
проценты.

1. Из картофеля выходит 20% крахмала. Сколько крахмала выйдет из
45 т картофеля?

            тонны

                  %

Картофель

               
45т

              
100%

Крахмал

                 
?

                
20%

 Это задача на нахождение процентов от числа (так как
напротив 100% стоит число).

2. Руда содержит 67% железа. Сколько нужно руды для получения 13,4
т железа?

              тонны

                     %

Руда

              
    ?

             
     100%

Железо

              
  13,4т

               
    67%

Это задача на нахождение числа по его процентам (так как
напротив 100% стоит ?)

3. Из 400 зерен пшеницы взошло 360. Определить процент всхожести
семян.

            
 Зерна

                     %

Всего посеяли

             
   400

             
     100%

Взошло

              
  360

               
      ?

Это задача на процентное отношение (так как в колонке
процентов стоит ?). 

II. Решите задачу (нахождение процентов числа).

1.    В
школе 400 учащихся, 52% этого числа составляют девочки. Сколько мальчиков в
школе? (Ответ: 192 мальчика)

2.    Товар
стоил 5000 р. Его цена повысилась на 20%. Какова новая цена товара? (Ответ:
6000 р.)

3.    Масса
сушёных груш составляет 20% массы свежих. Сколько сушёных груш получится из 350
кг свежих? Сколько процентов массы свежих груш потеряется при сушке? (Ответ: 70
кг, 80%)

4.    Что
больше 30% от 40 или 40% от 30? (Ответ: равно)

5.    Банк
выплачивает доход из расчёта 2% вложенной суммы в год. Сколько рублей оказалось
на счёте через год, если на него положили 70000 р.? (Ответ: 71400 р.)

6.    Надо
окрасить 60 м
2 поверхности стены. 75% работы уже
сделали. Какую площадь осталось окрасить? (Ответ: 15
м2)

III. Решите задачу (нахождение числа по его процентам).

1.    Трава
при сушке теряет 80% своей массы. Сколько тонн травы надо накосить, чтобы
насушить 14 тонн сена? (Ответ: 70 тонн)

2.    Цена
альбома была снижена на 15%. Новая цена альбома 34 рубля. Определите его
первоначальную цену. (Ответ: 40 р.)

3.    Цена
товара повысилась на 30% и составляет теперь 91 рубль. Сколько стоит товар до
повышения цены? (Ответ: 70 р.)

4.    Сколько
учеников в классе, если 1 ученик составляет 4% всех учащихся класса? (Ответ: 25
человек)

5.    При
продаже товара за 693 рубля получено 10% прибыли. Определите себестоимость
товара. (Ответ: 630 рублей)

6.    60%
класса пошли в кино, а остальные 12 человек на выставку. Сколько учащихся в
классе? (Ответ: 30 человек)

IV. Решите задачу (нахождение процентного отношения).

1.    Даша
прочитала 120 страниц, ей осталось прочитать 130 страниц книги. Сколько
процентов всех страниц она прочитала? (Ответ: 48%)

2.    В
месяце было 12 пасмурных и 18 солнечных дней. Сколько процентов месяца
составляют солнечные дни? Пасмурные дни? (Ответ: 60%, 40%)

3.    На
сколько процентов 50 больше 40? (Ответ: 25%)

4.    Цена
товара снизилась с 40 рублей до 30 рублей. На сколько процентов снизилась цена?
(Ответ: 25%)

5.    Для
приготовления компота купили 2 кг чернослива, 1кг изюма, 4
кг кураги, 5 кг сушёных яблок, 3 кг сушёных груш. Сколько процентов всего
компота составляют груши? (Ответ: 20%)

6.    Масса
ящика с товаром 11,5 кг. Масса товара 9,2
кг. Сколько процентов масса пустого ящика составляет от массы ящика с товаром?
(Ответ: 20%)

V. Решите задачу (сложные задачи на проценты).

1.    Имеется
2 раствора соли массой 80 г и 120 г. В первом растворе содержится 12
г соли, а во втором – 15 г соли. Какова будет концентрация, если оба раствора
смешать? (Ответ: 13,5%)

2.    В 200
г воды растворили 50 г соли. Какова концентрация полученного раствора? (Ответ:
20%)

3.    Сколько
соли надо растворить в воде, чтобы получить 400
г 5% раствора соли? (Ответ: 20 г)

4.    Сколько
надо взять воды, чтобы получить 200 г 10% раствора соли? (Ответ: 180
г)

5.    Сколько
граммов йода содержится в 400 г 3% раствора? (Ответ: 12
г)

6.    Банк
выплачивает доход из расчёта 7% вложенной суммы в год. Сколько денег окажется
на счёте через 2 года, если на него положили 10000 рублей? (Ответ: 11449 р.)

Типы задач на проценты

Раз мы уже договорились, что задачи на проценты – это задачи на
дроби, такой тактики будем придерживаться и дальше.

Тип 1: Находим процент (дробь) от числа.

·        
Задача. За месяц на предприятии
изготовили 500 приборов. 20% изготовленных приборов не смогли пройти контроль
качества. Сколько приборов не прошло контроль качества?

·        
Решение. Нужно найти 20% от общего
количества изготовленных приборов (500). 20% = 0,2. 500 * 0,2 = 100. 100 из
общего количества изготовленных приборов контроль не прошло.

Тип 2: Находим число по его проценту (дроби).

·        
Задача. Готовясь к экзамену, школьник
решил 38 задач из пособия для самоподготовки. Что составляет 23% числа всех
задач в пособии. Сколько всего задач собрано в этом пособии для самоподготовки?

·        
Решение. Мы не знаем, сколько всего
задача в пособии. Но зато нам известно, что 38 задач составляют 25% от общего
их количества. Запишем 23% в виде дроби: 0,23. Далее нам следует известную нам
часть целого разделить на ту долю, которую она составляет от всего целого:
38/0,25 = 38 * 100/25 = 152. Именно 152 задачи включили в этот сборник.

Тип 3: Находим процентное отношение двух чисел (часть от целого
числа).

·        
Задача. В классе 30 учеников. 14 из
них – девочки. Сколько процентов девочек в классе?

·        
Решение. Чтобы узнать, какой процент
составляет одно число от другого, нужно то число, которое требуется найти,
разделить на общее количество и умножить на 100%. Значит, 14/30*100% =
7/15*100% = 7*100%/15 = 47%.

Тип 4: Увеличиваем число на процент.

·        
Задача. На прошлогоднем экзамене по
математике 140 старшеклассников получили пятерки. В этом году число отличников
выросло на 15%. Сколько человек получили пятерки за экзамен по математике в
этом году?

·        
Решение. Если некое число а увеличено
на х%, то оно увеличилось в (1 + х /100) раз.
Откуда а * (1 + х /100). Подставим в эту формулу данные нам по
условию задачи цифры и получим ответ: 140 * (1 + 15/100) = 161.

Тип 5: Уменьшаем число на процент.

·        
Задача. Год назад школу закончили 100
ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году?

·        
Решение. Если число а уменьшено
на х% и при этом 0 ≤ х ≤ 100, то число уменьшено
в (1 – х/100) раз. И нужное нам число находим по формуле а
* (1 – х/100)
. Подставляем цифры из условия задачи и получаем ответ: 100 *
(1 – 25/100) = 75.

Тип 6: Задачи на простые проценты.

·        
Задача. Родители взяли в банке кредит
5000 рублей сроком на год под 15% ежемесячно. Сколько денег они заплатят банку
через год?

·        
Решение. Простые проценты называются
так, потому что они начисляются многократно, но всякий раз к исходной сумме.
Если обозначить исходную сумму как а, сумму, которая наращивается,
как S, процентную ставку как х% и количество периодов
начисления процента как у, то формулу можно записать так: S
= а * (1 + у * х/100)
. Теперь подставим сюда цифры из условия задачи и
узнаем, сколько денег родители заплатят банку: S = 5000 * (1 +
12 * 15/100) = 14000.

Тип 7: Задачи на сложные проценты.

·        
Задача. На этот раз сумма кредита
25000 рублей, взятых под те же 15% сроком на 3 месяца. Снова надо узнать,
сколько денег придется заплатить банку по истечении срока кредита.

·        
Решение. Сложные проценты отличаются от
простых тем, что процент много раз начисляется не к исходной сумме, а к сумме с
уже начисленными раньше процентами. Пускай снова 
наращиваемая сумма, а – исходная, х% — процентная
ставка, у – количество периодов начисления процента. В этом
случае формула принимает вид: S = а * (1 + х/100)
у.
Подставляем цифры из условия: = 25000 * (1 + 15/100)
3 =
38021,875 – искомая сумма.

Кстати, простые задачи на проценты можно очень легко решать с
помощью пропорции. Этот метод наглядный и дает такой же результат, так что
выбирать можно каждому тот способ решения, который кажется проще. Давайте решим
задачу №3 про класс и процент девочек в нем, составив пропорцию.

·        
Решение. Обозначим искомый процент
девочек в классе как х, общее количество учеников примем за 100%.
Пропорция выглядит так:

30 – 100%
14 – х%

Перемножим крест накрест левую и правую части пропорции и получим,
что 30* х = 14 * 100 («30 относится к х также,
как 14 относится к 100»). Откуда найти х уже совсем
несложно: х = 14 * 100/30 = 47%.

Задачи на проценты с решением

Давайте решим несколько задач для подготовки к ЕГЭ. Как вы сами
видите, решать их совсем несложно. Сейчас просто закрепим материал.

Задача 1. После открытия торгов на
бирже в понедельник акции некой компании выросли в цене на неизвестное
количество процентов. А во вторник на то же самое количество процентов упали в
цене. В итоге они подешевели на 4% по отношению к своей первоначальной
стоимости в понедельник. На какой процент акции этой компании поднимались в
цене в понедельник?

Решение. Пускай первоначальная
стоимость акций это 1. В понедельник акции дорожают на х * 100%. Их стоимость в
это время: 1 + х * 1. Во вторник акции дешевеют на х * 100%. Их стоимость после
этого: 1 + х – х * (1 + х). После чего они стали дешевле на 4%, т.е. стали
стоить 0,96.

Отсюда 1 + х – х * (1 + х) = 0,96 ↔1 – х2 =
0,96 ↔ х
2 = 0,04 ↔ х = 0,2. Т.е. в понедельник
акции компании дорожали на 20%.

Задача 2. Четыре пары брюк дешевле
одного пальто на 8%. Подсчитайте, на сколько процентов пять пар брюк стоят
дороже, чем одно пальто.

Решение. Исходя из условия задачи,
стоимость четырех пар брюк – это 92% от стоимости пальто. Легко подсчитать, что
стоимость одной пары брюк – это 23% стоимости пальто (92/4 = 23). Теперь
умножим стоимость одной пары брюк на пять и узнаем, что пять пар брюк обойдутся
в 115% стоимости пальто (23 * 5 = 115). Т.е. пять пар брюк на 15% дороже, чем
одно пальто.

Задача 3. Семья состоит из трех
человек: муж, жена и дочь-студентка. Если зарплата мужа вырастет в два раза,
общий доход семьи возрастет на 67%. Если дочери в три раза урежут стипендию,
общий доход этой семьи уменьшится на 4%. Надо вычислить, какой процент в общий
доход семьи приносит заработок жены.

Решение. Из условия следует, что общий
доход семьи находится в прямой зависимости от доходов мужа. Не так важно,
насколько ему поднимут зарплату. В любом случае общий доход семьи вырастет на
67%. Значит, зарплата мужа составляет как раз эти 67% от общего дохода. Если
стипендия дочери уменьшится в три раза (т.е. на 1/3), останется 2/3 – это и
есть 4%, на которые уменьшился бы семейных доход. Можно составить простую
пропорцию и выяснить, что раз 2/3 стипендии – это 4% дохода, то вся стипендия –
это 6%. А теперь отнимем от всего дохода вклад мужа и дочери и узнаем, какой
процент составляет заработок жены в общем доходе семьи: 100% – 67%  – 6% =
27%.

Задача 4. В емкости находится 5
литров водного раствора с концентраций вещества, равной 12%. В емкость
добавили еще 7 литров воды. Раствор какой концентрации (с каким процентным
содержанием вещества) получился после этого?

Решение. Опишем концентрацию вещества
в растворе такой формулой: С = Vвещества/ Vраствора * 100%. Изначально в
растворе содержится 0,12 * 5 = 0,6 литра вещества. Когда были добавлены 7
литров воды, объем раствора в емкости увеличился. Но концентрация вещества
понизилась (его объем остался неизменным). Подставим все известные нам цифры в
формулу и получим ответ: 0,6/5 + 7 *100% = 0,6 /12 * 100% = 5%.

Задача 5. В свежих абрикосах 90% влаги,
а в кураге, которая из них получается, только 5%. Сколько килограммов абрикосов
нужно, чтобы получить 20 килограммов кураги?

Решение. Исходя из условия, в
абрикосах 10% питательного вещества, а в кураге оно содержится в
концентрированном виде – 95%. Поэтому в 20 килограммах кураги 20 * 0,95 = 19
кг питательного вещества. На вопрос задачи мы ответим, если разделим
одинаковое количество питательного вещества, которое содержится в разных
объемах свежих абрикосов и кураги, на его процентное содержание в абрикосах.
Чтобы получить 20 килограммов кураги, нужно взять 19/0,1 = 190
килограммов свежих абрикосов.

Как решать задачи на проценты? Есть 3 способа, выбирай тот, который для тебя проще и понятнее.

Умение быстро и правильно решать задачи на проценты важно, как для успешной сдачи ЕГЭ, так и для повседневной жизни. И если в ЕГЭ вы можете встретить такую задачу в задании 11, то в повседневной жизни такие задачи повсюду.

Зарплату повысили на 15%, а потом оштрафовали на 10%, после этого из зарплаты удержали налог 13% — сколько же мы получим в конце месяца? Коммунальные услуги повысили на 15%, сколько они теперь будут стоить? При возврате ж/д билета вернут только 20% стоимости, какую сумму мы получим? Все это задачи на проценты, которые нам  приходится решать каждый день.

Поэтому умение быстро и правильно решать задачи на проценты – это полезно.

  1. Задачи на проценты: вся суть
  2. Решение задач на проценты: формула простого процента
  3. Решение задач на проценты: метод пропорции
  4. Решение задач на проценты: метод коэффициентов

Задачи на проценты: вся суть

Задачи на проценты, как правило, описывают жизненную ситуацию. В ней присутствует  какая-то величина, которая увеличивается или уменьшается на сколько-то процентов. Таким образом, в задаче на проценты упоминается такие данные, как первоначальная величина, конечная величина и процент, на который эта величина изменилась. Чаще всего в задаче требуется найти либо первоначальную величину, либо конечную величину, реже – процент, на который эта величина изменилась.

Решение задач на проценты с помощью формулы простого процента

Формула, которой мы пользуемся при решении задач на проценты, называется формула простого процента:

Kak reshat zadachi na procenty

Хконечное – конечная величина

Хпервоначальное – первоначальная величина

k – процент, на который первоначальная величина изменилась

Из этой формулы всегда можно найти первоначальную величину или процент, на который происходит изменение.

Знак стоящий перед k зависит от того, увеличивается первоначальная величина или уменьшается. Так, если величина увеличивается на сколько-то процентов, то ставим знак плюс. Если уменьшается – минус.

Для наглядности приведем несколько простых примеров.

 Задача 1

В городе проживало 30 000 человек. В результате строительства нового микрорайона количество жителей увеличилось на 6%. Сколько человек стало проживать в городе?

Решение: Очевидно, что в этой задаче нам известна первоначальная величина – 30 000 человек и процент, на который она увеличилась +6% Нужно найти конечную величину.

30 000 * ((100 + 6)/100) = х

30 000 * 1,06 = х

х = 31 800 человек

Ответ: 31 800 человек

Задача 2

Сколько килограмм яблок нужно собрать, чтобы получить из них 5 килограмм сушеных яблок, если известно, что в свежих яблоках содержится 90% воды?

Решение: В этой задаче нам известна конечная величина – 5 килограмм и процент, на который происходит изменение -90%. Нужно найти первоначальную величину:

5 = х * ((100 – 90) / 100)

5 = 0,1х

х = 50 кг

Ответ: 50 кг

Задача 3

Холодильник стоимостью 20 000 рублей был продан спустя месяц за 22 000 рублей. На сколько процентов увеличилась стоимость холодильника?

Решение: В данной задаче нам известна первоначальная  (20 000 рублей) и конечная величина (22 000 рублей), а найти нужно процент, на который данная величина изменилась.

22 000 = 20 000 * ((100 + х) / 100)

22 000 / 20 000 = 1 + х/100

1,1 = 1 + х/100

0,1 = х/100

х = 10%

Ответ: 10%

Решение задач на проценты: метод пропорции

Еще один способ решения задач на проценты – это метод пропорции. Это наиболее простой способ решения таких задач.

Напомним, что пропорция – это равенство двух отношений:

Kak reshat zadachi na procenty proporcyya

Для нас важно основное свойство пропорции, которое заключается в том, что произведение крайних членов пропорции равно произведению средних членов. Проще запомнить, что мы можем перемножить члены пропорции крест-накрест:

Kak reshat zadachi na procenty osnovnoe svoystvo proporcii

При решении задач на проценты с помощью метода пропорции необходимо руководствоваться следующим правилом:

всё – 100%

часть – часть в %

Далее записываем пропорцию: Kak reshat zadachi na procenty svoystvo proporcii

Давайте решим приведенные выше примеры задач на проценты с помощью метода пропорции.

Задача 4

В городе проживало 30 000 человек. В результате строительства нового микрорайона количество жителей увеличилось на 6%. Сколько человек стало проживать в городе?

Решение: Итак, в городе проживало 30 000 человек и это всё его население, т.е. 100%. Так и запишем:

30 000 – 100%

Далее население выросло на 6%, т.е. всё его население стало составлять 100% + 6% = 106% и нам неизвестно, сколько это человек, т.е. Х человек. Запишем:

Х – 106%

Таким образом, получаем:

30 000 – 100%

Х – 106%

Составим пропорцию: Kak reshat zadachi na procenty proporciya 1Правую дробь пропорции можно сократить на 2, получим: Kak reshat zadachi na procenty proporciya 2Теперь воспользуемся основным свойством пропорции и перемножим ее члены крест-накрест:

30 000 * 53 = 50х

Далее обе части полученного уравнения мы можем разделить на 50, получим:

600 * 53 = Х

Х = 31 800

Ответ: 31 800 человек

 Задача 5

Сколько килограмм яблок нужно собрать, чтобы получить из них 5 килограмм сушеных яблок, если известно, что в свежих яблоках содержится 90% воды?

Решение: Нам неизвестно первоначальное количество всех яблок (всё количество), т.е. это Х, которое составляет 100%. Количество сушеных яблок (часть от первоначального количества яблок) составляет 5 кг. Причем известно, что количество сушеных яблок на 90% меньше от первоначального количества яблок (т.к. 90% — это вода, которая из них испарилась). Следовательно, количество сушеных яблок составит 100% — 90% = 10%. Запишем наши рассуждения:

Х – 100%

5 – 10%

Запишем наши рассуждения: Kak reshat zadachi na procenty proporciya 3Сократим правую дробь на 10, получим:Kak reshat zadachi na procenty proporciya 4Воспользуемся основным свойством пропорции и перемножим ее члены крест-накрест:

Х = 10 * 5

Х = 50

Ответ: 50 кг

Задача 6

Холодильник стоимостью 20 000 рублей был продан спустя месяц за 22 000 рублей. На сколько процентов увеличилась стоимость холодильника?

Решение: Нам известно, что исходная цена – 20 000 рублей, следовательно, 20 000 рублей – это 100%. Тогда конечная цена 22 000 рублей – это неизвестное количество процентов, т.е. Х%. Так и запишем:

20 000 – 100%

22 000 – Х%

Теперь запишем пропорцию: Kak reshat zadachi na procenty proporciya 5Сократим левую дробь на 2 000, получим: Kak reshat zadachi na procenty proporciya 6Воспользуемся основным свойством пропорции, то есть перемножим ее члены крест-накрест:

10Х = 1 100

Х = 110

В результате решения мы получили результат 110%, но он не является ответом! Ведь нам нужно найти, на сколько процентов изменилась стоимость холодильника. Чтобы это узнать, нужно из полученного числа процентов отнять 100%:

110% — 100% = 10%

Ответ: 10%

Решение задач на проценты методом коэффициентов

Можно назвать еще один метод решения задач на проценты, который является следствием из формулы простого процента. Так, формулу простого процента можно переписать следующим образом:

Kak reshat zadachi na procenty metod koefficientov

Таким образом, мы получили формулу для решения задач на проценты методом коэффициентов. Полученная формула удобна тем, что при достаточной практике простые  задачи на проценты можно решать в уме, даже не задумываясь.

Например, яблоки стоили 150 рублей, затем они подорожали на 20%. Найдите новую стоимость яблок.

Применим полученную формулу и получим:

150 * 1,2 = 180 рублей

То есть мы интуитивно 20% превращаем в 0,2 прибавляем единицу, так как происходит увеличение на данное количество процентов, и умножаем на первоначальную стоимость.

Или другой пример. Зарплата работника составляла 25 000 рублей в месяц, в результате применения штрафа за опоздания зарплата сократилась на 10%. Найти сумму зарплаты, которую получит оштрафованный работник.

25 000 * 0,9 = 22 500 рублей

Опять же мы сразу понимаем, что 10% — это 0,1. Т.к. происходит уменьшение первоначальной величины на это количество процентов, то мы вычитаем из единицы этот процент и получаем 0,9. Затем умножаем полученное значение на первоначальную величину. Готово!

Давайте решим этим методом задачу про зарплату и налоги.

Задача 7

В России налог на доходы физических лиц составляет 13%. Зарплата Марии Ивановны после удержания налога на доходы составила 60 900 рублей. Найти сумму зарплаты Марии Ивановны до удержания налога.

Решение: Итак, 13% — это 0,13. Первоначальная зарплата уменьшилась на этот процент, значит, вычитаем из единицы и получаем 1 – 0,13 = 0,87. Подставляем в формулу:

0,87х = 60 900

х = 70 000

Ответ: 70 000 рублей

Задача 8

В школе 1000 учеников, из них 20% — ученики начальной школы. Среди учеников средней и старшей школы 30% изучают французский язык. Сколько учеников в школе изучают французский язык, если в начальной школе французский язык не изучают?

Решение: Для начала из общего количества учеников исключим тех, кто французский язык точно не изучает, т.е. учеников начальной школы. Ученики начальной школы – это 20%, т.е. 0,2, мы уменьшаем на этот процент, следовательно, вычитаем из единицы и получаем 1 – 0,2 = 0,8.

1000 * 0,8 = 800

Из 800 полученных учеников французский язык изучают только 30%.

Обратите внимание, что здесь идет речь о проценте от числа. Т.е. мы не уменьшаем на 30% (в этом случае мы вычитаем значение процента в долях из единицы) и не увеличиваем на 30% (в этом случае мы прибавляем к значению процента в долях к единице), а берем 30% от заданного числа (в этом случае мы умножаем заданное число на значение процента в долях). Всегда внимательно читайте условия задачи!

В нашем случае нам нужно найти 30% от 800:

800 * 0,3 = 240

Это и есть ответ. 240 учеников изучают французский язык в школе.

Ответ: 240 учеников.

Задача 9

Разберем еще одну задачу на проценты, которая часто встречается на ЕГЭ и в которой легко можно допустить ошибку.

Задача: Зарплата рабочего составляла 30 000 рублей, затем зарплату повысили на 30%, а потом понизили на 30%. Какую зарплату стал получать рабочий?

Решение: быстро прочитав условие задачи, сходу хочется дать ответ – зарплата останется прежней, ее размер не изменился. Но это не так! Давайте разбираться.

Будем решать по формуле простого процента.

Первое событие – зарплату повысили на 30%. Следовательно, первоначальную сумму мы увеличиваем на 30%:Kak reshat zadachi na procenty metod koefficientov 1Второе событие – зарплату понизили на 30%. Следовательно, нашу увеличенную зарплату мы теперь уменьшаем на 30%:Kak reshat zadachi na procenty metod koefficientov 2Таким образом, рабочий теперь будет получать зарплату 27 300 рублей.

Данную задачу мы могли бы решить в одно действие, применяя формулу для вычисления сложного процента. Напомним ее:

S = P (1 + i)n, где

S – это конечная сумма;

P – это первоначальная сумма;

i – это процент/100;

n – количество периодов.

Т.к. 30% — это 0,3, то, применяя формулу для вычисления сложного процента к нашей задаче, мы получим:

30 000 * (1 + 0,3)1 (1 – 0,3)1 = 27 300 рублей

Результат получился тот же.

Ответ: 27 300 рублей

В этой статье были разобраны достаточно простые примеры задач на проценты, чтобы максимально доступно продемонстрировать методы решения задач на проценты. В профильном ЕГЭ с процентами вы можете столкнуться в задаче с экономическим содержанием по вкладам и кредитам. Такие задачи гораздо сложнее и подробное их решение вы можете посмотреть на нашем сайте.

Итак, надеюсь, что данная статья помогла вам понять, как решать задачи на проценты. Мы увидели, что задачи на проценты можно решать тремя способами – с помощью формулы простого процента, методом пропорции и методом коэффициентов. Выбирайте тот, который вам наиболее понятен, и которым вам решать такие задачи проще.

Продолжаем изучать элементарные задачи по математике. Данный урок посвящен задачам на проценты. Мы рассмотрим несколько задач, а также затронем те моменты, которые не упоминали ранее при изучении процентов, посчитав что на первых порах они создают трудности для обучения.

Большинство задач на проценты сводятся к тому, чтобы найти процент от числá, найти число по проценту, выразить в процентах какую-либо часть, либо выразить в процентном соотношении взаимосвязь между несколькими объектами, числами, величинами.

Способы нахождения процента

Процент можно находить различными способами. Самый популярный способ — разделить число на 100 и умножить полученный результат на искомое количество процентов.

Например, чтобы найти 60% от 200 рублей, нужно сначала эти 200 рублей разделить на сто равных частей:

200 руб : 100 = 2 руб.

Когда мы делим число на 100, мы тем самым находим один процент от этого числа. Так, разделив 200 рублей на 100 частей, мы автоматически нашли 1% от двухсот рублей, то есть узнали сколько рублей прихóдится на одну часть. Как видно из примера, на одну часть (на один процент) приходится 2 рубля.

1% от 200 рублей — 2 рубля

Зная сколько рублей приходится на одну часть (на 1%), можно узнать сколько рублей приходится на две части, на три, на четыре, на пять и т.д. То есть можно найти любое количество процентов. Для этого достаточно умножить эти 2 рубля на искомое количество частей (процентов). Давайте найдём шестьдесят частей (60%)

2 руб × 60 = 120 руб.

Найдём 5%

2 руб × 5 = 10 руб.

Найдем 90%

2 руб × 90 = 180 руб.

Найдем 100%

2 руб × 100 = 200 руб.

100% это все сто частей и они составляют все 200 рублей.

Второй способ заключается в том, чтобы представить проценты в виде обыкновенной дроби и найти эту дробь от того числа, откуда требуется найти процент.

Например, найдем те же 60% от 200 рублей. Сначала предстáвим 60% в виде обыкновенной дроби. 60% это шестьдесят частей из ста, то есть шестьдесят сотых:

шестьдесят сотых

Теперь задание можно понимать как «найти шестьдесят сотых от 200 рублей«. Это нахождение дроби от числа, которое мы изучали ранее. Напомним, что для нахождения дроби от числа, нужно это число разделить на знаменатель дроби и полученный результат умножить на числитель дроби

200 : 100 = 2

2 × 60 = 120

Либо умножить число на дробь (быстрый способ нахождения дроби от числа):

60 процентов от 200 руб

Третий способ заключается в том, чтобы представить процент в виде десятичной дроби и умножить число на эту десятичную дробь.

Например, найдем те же 60% от 200 рублей. Для начала представляем 60% в виде дроби. 60% процентов это шестьдесят частей из ста

шестьдесят сотых

Выполним деление в этой дроби. Перенесем запятую в числе 60 на две цифры влево:

деление 60 на 100

Теперь находим 0,60 от 200 рублей. Для нахождения десятичной дроби от числа, нужно это число умножить на десятичную дробь:

200 × 0,60 = 120 руб.

Приведенный способ нахождения процента является наиболее удобным, особенно если человек привык пользоваться калькулятором. Этот способ позволяет найти процент в одно действие.

Как правило выразить процент в десятичной дроби не составляет особого труда. Достаточно приписать «ноль целых» перед процентной долей, если процентная доля представляет собой двузначное число, или приписать «ноль целых» и еще один ноль, если процентная доля представляет собой однозначное число. Примеры:

60% = 0,60 — приписали ноль целых перед числом 60, поскольку число 60 является двузначным

6% = 0,06 — приписали ноль целых и еще один ноль перед числом 6, поскольку число 6 является однозначным.

При делении на 100 мы воспользовались методом передвижения запятой на две цифры влево. В ответе 0,60 ноль, стоящий после цифры 6, сохранился. Но если выполнить это деление уголком, ноль исчезает — получается ответ 0,6

60разделитьна100встолбик

Надо помнить, что десятичные дроби 0,60 и 0,6 равны одному и тому же значению:

0,60 = 0,6

В том же «уголке» можно продолжать деление бесконечно, каждый раз приписывая к остатку ноль, но это будет бессмысленным действием:

Выражать проценты в виде десятичной дроби можно не только делением на 100, но и умножением. Значок процента (%) сам по себе заменяет собой множитель 0,01. А если учитывать, что число процентов и значок процента записаны слитно, то между ними располагается «невидимый» знак умножения (×).

Так, запись 45% на самом деле выглядит следующим образом:

45 процентов виде рисунка

Заменим знак процента на множитель 0,01

45 умножить на одну сотую

Данное умножение на 0,01 выполнятся путем перемещения запятой на две цифры влево:

45 умножить на одну сотую равно сорок пять сотых


Задача 1. Бюджет семьи составляет 75 тыс. рублей в месяц. Из них 70% — деньги, заработанные папой. Какую часть заработала мама?

Решение

Всего процентов 100. Если папа заработал 70% денег, то остальные 30% денег заработала мама.


Задача 2. Бюджет семьи составляет 75 тыс. рублей в месяц. Из них 70% — деньги, заработанные папой, а 30% — деньги, заработанные мамой. Сколько денег заработал каждый?

Решение

Найдем 70 и 30 процентов от 75 тыс. рублей. Так мы определим сколько денег заработал каждый. Для удобства 70% и 30% запишем в виде десятичных дробей:

75 × 0,70 = 52,5 (тыс. руб. заработал папа)

75 × 0,30 = 22,5 (тыс. руб. заработала мама)

Проверка

52,5 + 22,5 = 75

75 = 75

Ответ: 52,5 тыс. руб. заработал папа, 22,5 руб. заработала мама.


Задача 3. При остывании хлеб теряет до 4% своей массы в результате испарения воды. Сколько килограммов испарится при остывании 12 тонн хлеба.

Решение

Переведем 12 тонн в килограммы. В одной тонне тысяча килограмм, а в 12 тоннах в 12 раз больше:

1000 × 12 = 12 000 кг

Теперь найдем 4% от 12000. Полученный результат и будет ответом к задаче:

12 000 × 0,04 = 480 кг

Ответ: при остывании 12 тонн хлеба испарится 480 килограмм.


Задача 4. Яблоки при сушке теряют 84% своей массы. Сколько получится сушенных яблок из 300 кг свежих?

Найдем 84% от 300 кг

300 : 100 × 84 = 252 кг

300 кг свежих яблок в результате сушки потеряют 252 кг своей массы. Чтобы ответить на вопрос сколько получится сушенных яблок, нужно из 300 вычесть 252

300 − 252 = 48 кг

Ответ: из 300 кг свежих яблок получится 48 кг сушенных.


Задача 5. В семенах сои содержится 20% масла. Сколько масла содержится в 700 кг сои?

Решение

Найдем 20% от 700 кг

700 × 0,20 = 140 кг

Ответ: в 700 кг сои содержится 140 кг масла


Задача 6. Гречневая крупа содержит 10% белков, 2,5% жиров и 60% углеводов. Сколько этих продуктов содержится в 14,4 ц гречневой крупы?

Решение

Переведем 14,4 центнера в килограммы. В одном центнере 100 килограмм, в 14,4 центнерах в 14,4 раз больше

100 × 14,4 = 1440 кг

Найдем 10%, 2,5% и 60% от 1440 кг

1440 × 0,10 = 144 (кг белков)

1440 × 0,025 = 36 (кг жиров)

1440 × 0,60 = 864 (кг углеводов)

Ответ: в 14,4 ц гречневой крупы содержится 144 кг белков, 36 кг жиров, 864 кг углеводов.


Задача 7. Для лесопитомника школьники собрали 60 кг семян дуба, акации, липы и клена. Желуди составляли 60%, семена клена 15%, семена липы 20% всех семян, а остальное составляли семена акации. Сколько килограммов семян акации было собрано школьниками?

Решение

Примем за 100% семена дуба, акации, липы и клена. Вычтем из этих 100% проценты, выражающие семена дуба, липы и клена. Так мы узнаем сколько процентов составляют семена акации:

100% − (60% + 15% + 20%) = 100% − 95% = 5%

Теперь находим семена акации:

60 × 0,05 = 3 кг

Ответ: школьниками было собрано 3 кг семян акации.

Проверка:

60 × 0,60 = 36

60 × 0,15 = 9

60 × 0,20 = 12

60 × 0,05 = 3

36 + 9 + 12 + 3 = 60

60 = 60


Задача 8. Купил человек продукты. Молоко стоит 60 рублей, что составляет 48% от стоимости всех покупок. Определить общую сумму денег, потраченных на продукты.

Решение

Это задача на нахождение числа по его проценту, то есть по его известной части. Такую задачу можно решать двумя способами. Первый заключается в том, чтобы выразить известное число процентов в виде десятичной дроби и найти неизвестное число по этой дроби

Выразим 48% в виде десятичной дроби

48% : 100 = 0,48

Зная, что 0,48 составляет 60 рублей, мы можем определить сумму всех покупок. Для этого нужно найти неизвестное число по десятичной дроби:

60 : 0,48 = 125 рублей

Значит, общая сумма денег, затраченных на продукты составляет 125 рублей.

Второй способ заключается в том, чтобы сначала узнать сколько денег приходится на один процент, затем полученный результат умножить на 100

48% это 60 рублей. Если мы разделим 60 рублей на 48, то узнаем сколько рублей приходится на 1%

60 : 48% = 1,25 рублей

На 1% приходится 1,25 рублей. Всего процентов 100. Если мы умножим 1,25 рублей на 100, получим общую сумму денег, затраченных на продукты

1,25 × 100 = 125 рублей


Задача 9. Из свежих слив выходит 35% сушенных. Сколько надо взять свежих слив, чтобы получить 140 кг сушенных? Сколько получится сушенных слив из 600 кг свежих?

Решение

Выразим 35% в виде десятичной дроби и найдем неизвестное число по этой дроби:

35% = 0,35

140 : 0,35 = 400 кг

Чтобы получить 140 кг сушенных слив, нужно взять 400 кг свежих.

Ответим на второй вопрос задачи — сколько получится сушенных слив из 600 кг свежих? Если из свежих слив выходит 35% сушенных, то достаточно найти эти 35% от 600 кг свежих слив

600 × 0,35 = 210 кг

Ответ: чтобы получить 140 кг сушенных слив, нужно взять 400 кг свежих. Из 600 кг свежих слив получится 210 кг сушенных.


Задача 10. Усвоение жиров организмом человека составляет 95%. За месяц ученик употребил 1,2 кг жиров. Сколько жиров может быть усвоено его организмом?

Решение

Переведем 1,2 кг в граммы

1,2 × 1000 = 1200 г

Найдем 95% от 1200 г

1200 × 0,95 = 1140 г

Ответ: 1140 г жиров может быть усвоено организмом ученика.


Выражение чисел в процентах

Процент, как было сказано ранее, можно представить в виде десятичной дроби. Для этого достаточно разделить число этих процентов на 100. Например, представим 12% в виде десятичной дроби:

12 процентов в виде десятичной дроби

Замечание. Мы сейчас не находим процент от чего-то, а просто записываем его в виде десятичной дроби.

Но возможен и обратный процесс. Десятичная дробь может быть представлена в виде процента. Для этого нужно умножить эту дробь на 100 и поставить знак процента (%)

Представим десятичную дробь 0,12 в виде процентов

0,12 × 100 = 12%

Это действие называют выражением числа в процентах или выражением чисел в сотых долях.

Умножение и деление являются обратными операциями. К примеру, если 2 × 5 = 10, то 10 : 5 = 2

взаимно обратные операции умножение и деление

Точно так же деление можно записать в обратном порядке. Если 10 : 5 = 2, то 2 × 5 = 10:

взаимно обратные операции деление и умножение

Тоже самое происходит, когда мы выражаем десятичную дробь в виде процентов. Так, 12% были выражены в виде десятичной дроби следующим образом: 12 : 100 = 0,12 но потом эти же 12% были «возвращены» с помощью умножения, записав выражение 0,12 × 100 = 12%.

Аналогично можно выразить в процентах любые другие числа, в том числе и целые. Например, выразим в процентах число 3. Умножим данное число на 100 и к полученному результату добавим знак процента:

3 × 100 = 300%

Большие проценты вида 300% поначалу могут сбивать с толку, поскольку человек привык считать 100% максимальной долей. Из дополнительных сведений о дробях мы знаем, что один целый объект можно обозначать через единицу. К примеру, если имеется целый не разрезанный торт, то его можно обозначить через 1

один торт единица

Этот же торт можно обозначить как 100% торта. В этом случае и единица и 100% будут обозначать один и тот же целый торт:

один торт единица сто процентов

Разрежем торт пополам. В этом случае единица обратится в десятичное число 0,5 (поскольку это половина единицы), а 100% обратятся в 50% (поскольку 50 это половина от сотни)

половина торта пять десятых и пятьдесят процентов

Вернем обратно целый торт, единицу и 100%

один торт единица сто процентов

Изобразим ещё два таких торта с такими же обозначениями:

три торта три единицы и 300%

Если один торт является единицей, то три торта являются тремя единицами. Каждый торт является целым стопроцентным. Если сложить эти три сотни получится 300%.

Поэтому при переводе целых чисел в проценты, мы умножаем эти числа на 100.

Задача 2. Выразить в процентах число 5

5 × 100 = 500%


Задача 3. Выразить в процентах число 7

7 × 100 = 700%


Задача 4. Выразить в процентах число 7,5

7,5 × 100 = 750%


Задача 5. Выразить в процентах число 0,5

0,5 × 100 = 50%


Задача 6. Выразить в процентах число 0,9

0,9 × 100 = 90%


Пример 7. Выразить в процентах число 1,5

1,5 × 100 = 150%


Пример 8. Выразить в процентах число 2,8

2,8 × 100 = 280%


Задача 9. Джордж идет со школы домой. Первые пятнадцать минут он прошел 0,75 пути. В остальное время он прошел оставшиеся 0,25 пути. Выразите в процентах части пути, пройденные Джорджом.

Решение

0,75 × 100 = 75%

0,25 × 100 = 25%


Задача 10. Джона угостили половиной яблока. Выразите эту половину в процентах.

Решение

Половина яблока записывается в виде дроби 0,5. Чтобы выразить эту дробь в процентах, умножим её на 100 и к полученному результату добавим знак процента

0,5 × 100 = 50%


Аналоги в виде дробей

Величина, выраженная в процентах, имеет свой аналог в виде обычной дроби. Так, аналогом для 50% является дробь одна вторая. Пятьдесят процентов также можно назвать словом «половина».

Аналогом для 25% является дробь одна четвертая. Двадцать пять процентов также можно назвать словом «четверть».

Аналогом для 20% является дробь одна пятая. Двадцать процентов также можно назвать словами «пятая часть».

Аналогом для 40% является дробь две пятых.

Аналогом для 60% является дробь Три пятых

Пример 1. Пять сантиметров это 50% от дециметра или одна вторая или же просто половина. Во всех случаях речь идет об одной и той же величине — пяти сантиметрах из десяти

аналог 50 процентов в виде дроби


Пример 2. Два с половиной сантиметра это 25% от дециметра или одна четвертая или же просто четверть

аналог 25 процентов в виде дроби


Пример 3. Два сантиметра это 20% от дециметра или  одна пятая

аналог 20 процентов в виде дроби


Пример 4. Четыре сантиметра это 40% от дециметра или  две пятых

аналог 40 процентов в виде дроби


Пример 5. Шесть сантиметров это 60% от дециметра или Три пятых

аналог 60 процентов в виде дроби


Уменьшение и увеличение процентов

При увеличении или уменьшении величины, выраженной в процентах употребляется предлог «на».

Примеры:

  • Увеличить на 50% — означает увеличить величину в 1,5 раза;
  • Увеличить на 100% — означает увеличить величину в 2 раза;
  • Увеличить на 200% — означает увеличить в 3 раза;
  • Уменьшить на 50% — означает уменьшить величину в 2 раза;
  • Уменьшить на 80% — означает уменьшить в 5 раз.

Пример 1. Десять сантиметров увеличили на 50%. Сколько сантиметров получилось?

Чтобы решать подобные задачи, нужно исходную величину принимать за 100%. Исходная величина это 10 см. 50% от них составляют 5 см

Изначальные 10 см увеличили на 50% (на 5 см), значит получилось 10+5 см, то есть 15 см

10 см 5 см 100 и 50 процентов

Аналогом же увеличения десяти сантиметров на 50% является множитель 1,5. Если умножить на него 10 см получится 15 см

10 × 1,5 = 15 см

10 см 5 см 1 и 05

Поэтому выражения «увеличить на 50%» и «увеличить в 1,5 раза» говорят об одном и том же.


Пример 2. Пять сантиметров увеличили на 100%. Сколько сантиметров получилось?

Примем исходные пять сантиметров за 100%. Сто процентов от этих пяти сантиметров будут сами 5 см. Если увеличить 5 см на эти же 5 см, то получится 10 см

5см и 5 см 100 и 100

Аналогом же увеличения пяти сантиметров на 100% является множитель 2. Если умножить на него 5 см получится 10 см

5 × 2 = 10 см

5см и 5 см 1 и 1

Поэтому выражения «увеличить на 100%» и «увеличить в 2 раза» говорят об одном и том же.


Пример 3. Пять сантиметров увеличили на 200%. Сколько сантиметров получилось?

Примем исходные пять сантиметров за 100%. Двести процентов это два раза по сто процентов. То есть 200% от 5 см будут составлять 10 см (по 5 см на каждые 100%). Если увеличить 5 см на эти 10 см, то получится 15 см

5 см 5 см 5 см 100 и 100 и 100 процентов

Аналогом же увеличения пяти сантиметров на 200% является множитель 3. Если умножить на него 5 см получится 15 см

5 × 3 = 15 см

5 см 5 см 5 см 1 и 1 и 1 процентов

Поэтому выражения «увеличить на 200%» и «увеличить в 3 раза» говорят об одном и том же.


Пример 4. Десять сантиметров уменьшили на 50%. Сколько сантиметров осталось?

Примем исходные 10 см за 100%. Пятьдесят процентов от 10 см составляют 5 см. Если уменьшить 10 см на эти 5 см, останется 5 см

10 см и 5 см уменьшили на 50 процентов

Аналогом же уменьшения десяти сантиметров на 50% является делитель 2. Если разделить на него 10 см, то получится 5 см

10 : 2 = 5 см

10 см и 5 см уменьшили в 2 раза

Поэтому выражения «уменьшить на 50%» и «уменьшить в 2 раза» говорят об одном и том же.


Пример 5. Десять сантиметров уменьшили на 80%. Сколько сантиметров осталось?

Примем исходные 10 см за 100%. Восемьдесят процентов от 10 см составляют 8 см. Если уменьшить 10 см на эти 8 см, останется 2 см

10 см и 5 см уменьшили на 80 процентов

Аналогом же уменьшения десяти сантиметров на 80% является делитель 5. Если разделить на него 10 см, то получится 2 см

10 : 5 = 2 см

10 см и 5 см уменьшили в 5 раз

Поэтому выражения «уменьшить на 80%» и «уменьшить в 5 раз» говорят об одном и том же.

При решении задач на уменьшение и увеличение процентов, можно умножать/делить величину на указанный в задаче множитель.

Задача 1. Насколько процентов изменилась величина, если она увеличилась в 1,5 раза?

Величину о которой говорится в задаче можно обозначить как 100%. Далее умножить эти 100% на множитель 1,5

100% × 1,5 = 150%

Теперь из полученных 150% вычтем изначальные 100% и получим ответ к задаче:

150% − 100% = 50%


Задача 2. Насколько процентов изменилась величина, если она уменьшилась в 4 раза?

В этот раз будет происходить уменьшение величины, поэтому будем выполнять деление. Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 4

100% : 4 = 25%

Из изначальных 100% вычтем полученные 25% и получим ответ к задаче:

100% − 25% = 75%

Значит, при уменьшении величины в 4 раза она уменьшилась на 75%.


Задача 3. Насколько процентов изменилась величина, если она уменьшилась в 5 раз?

Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 5

100% : 5 = 20%

Из изначальных 100% вычтем полученные 20% и получим ответ к задаче:

100% − 20% = 80%

Значит, при уменьшении величины в 5 раз она уменьшилась на 80%.


Задача 4. Насколько процентов изменилась величина, если она уменьшилась в 10 раз?

Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 10

100% : 10 = 10%

Из изначальных 100% вычтем полученные 10% и получим ответ к задаче:

100% − 10% = 90%

Значит, при уменьшении величины в 10 раз она уменьшилась на 90%.


Задача на нахождение процентного соотношения

Чтобы выразить что-либо в процентном соотношении, сначала нужно записать дробь, показывающую какую часть первое число составляет от второго, затем выполнить деление в этой дроби и полученный результат выразить в процентах.

Например, пусть имеется пять яблок. При этом два яблока являются красными, три — зелеными. Выразим красные и зеленые яблоки в процентном соотношении.

Сначала нужно узнать какую часть составляют красные яблоки. Всего яблок пять, а красных два. Значит, два из пяти или две пятых составляют красные яблоки:

два яблока из пяти

Зеленых же яблок три. Значит, три из пяти или три пятых составляют зеленые яблоки:

три яблока из пяти

Имеем две дроби  две пятых  и  Три пятых . Выполним деление в этих дробях

деление уголком две пятых и три пятых

Получили десятичные дроби 0,4 и 0,6. Теперь выразим в процентах эти десятичные дроби:

0,4 × 100 = 40%

0,6 × 100 = 60%

Значит, 40% составляют красные яблоки, 60% — зеленые.

два и пять яблок в процентном соотношении

А все пять яблок составляют 40%+60%, то есть 100%

два и пять яблок сто процентов


Задача 2. Двум сыновьям мама дала 200 рублей. Младшему брату мама дала 80 рублей, а старшему 120 рублей. Выразите в процентном соотношении деньги, данные каждому брату.

Решение

Младший брат получил 80 рублей из 200 рублей. Записываем дробь восемьдесят двухсотых:

восемьдесят двухсотых

Старший брат получил 120 рублей из 200 рублей. Записываем дробь сто двадцать двухсотых:

сто двадцать двухсотых

Имеем дроби  восемьдесят двухсотых  и  сто двадцать двухсотых. Выполним деление в этих дробях

деление уголком 80 и 120 на 200

Выразим в процентах полученные результаты:

0,4 × 100 = 40%

0,6 × 100 = 60%

Значит, 40% денег получил младший брат, а 60% — старший.

Некоторые дроби, показывающие какую часть первое число составляет от второго, можно сокращать.

Так дроби  восемьдесят двухсотых  и  сто двадцать двухсотых  можно было бы сократить. От этого ответ к задаче не изменился бы:

деление 80 и 120 с предварительным сокращением


Задача 3. Бюджет семьи составляет 75 тыс. рублей в месяц. Из них 52,5 тыс. руб. — деньги, заработанные папой. 22,5 тыс. руб. — деньги, заработанные мамой. Выразите в процентах деньги, заработанные папой и мамой.

Решение

Данная задача, как и предыдущая, является задачей на нахождение процентного соотношения.

Выразим в процентах деньги, заработанные папой. Он заработал 52,5 тыс. рублей из 75 тыс. рублей

525 к 75

Выполним деление в этой дроби:

525 к 75 есть 07

Выразим полученный результат в процентах:

0,7 × 100 = 70%

Значит, папа заработал 70% денег. Далее нетрудно догадаться, что остальные 30% денег заработала мама. Ведь 75 тыс. рублей это все 100% денег. Для уверенности сделаем проверку. Мама заработала 22,5 тыс. руб. из 75 тыс. руб. Записываем дробь, выполняем деление и выражаем в процентах полученный результат:

225 к 75 и перевод результат в проценты


Задача 4. Школьник тренируется делать подтягивания на перекладине. В прошлом месяце он мог делать 8 подтягиваний за подход. В этом месяце он может делать 10 подтягиваний за подход. На сколько процентов он увеличил количество подтягиваний?

Решение

Узнаем на сколько больше подтягиваний школьник делает в текущем месяце, чем в прошлом

10 − 8 = 2

Узнаем какую часть два подтягивания составляют от восьми подтягиваний. Для этого найдем отношение 2 к 8

две восьмых

Выполним деление в этой дроби

Выразим полученный результат в процентах:

0,25 × 100 = 25%

Значит, школьник увеличил количество подтягиваний на 25%.

Эту задачу можно решить и вторым, более быстрым методом — узнать во сколько раз 10 подтягиваний больше, чем 8 подтягиваний и полученный результат выразить в процентах.

Чтобы узнать во сколько раз десять подтягиваний больше восьми подтягиваний, нужно найти отношение 10 к 8

десять восымых

Выполним деление в получившейся дроби

10 к 8 деление уголком

Выразим полученный результат в процентах:

1,25 × 100 = 125%

Показатель подтягиваний в текущем месяце составляет 125%. Данное высказывание нужно понимать именно как «составляет 125%», а не как «показатель увеличился на 125%». Это два разных высказывания, выражающих различные количества.

Высказывание «составляет 125%» нужно понимать как «восемь подтягиваний, которые составляют 100% плюс два подтягивания, которые составляют 25% от восьми подтягиваний». Графически это выглядит следующим образом:

8 подтягиваний и 2 подтягивания рисунок

А высказывание «увеличился на 125%» нужно понимать как «к текущим восьми подтягиваниях, которые составляли 100% добавились еще 100% (еще 8 подтягиваний) плюс еще 25% (2 подтягивания)». Итого получается 18 подтягиваний

100% + 100% + 25% = 8 + 8 + 2 = 18 подтягиваний

Графически это высказывание выглядит следующим образом:

8+8 подтягиваний и 2 подтягивания

Всего же получается 225%. Если найти 225% от восьми подтягиваний, мы получим 18 подтягиваний

8 × 2,25 = 18


Задача 5. В прошлом месяце зарплата составляла 19,2 тыс. руб. В текущем месяце она составила 20,16 тыс. руб. На сколько процентов повысилась зарплата?

Эту задачу как и предыдущую можно решать двумя способами. Первый заключается в том, чтобы сначала узнать на сколько рублей увеличилась зарплата. Далее узнать какую часть эта прибавка составляет от зарплаты прошлого месяца

Узнаем на сколько рублей повысилась зарплата:

20,16 − 19,2 = 0,96 тыс. руб.

Узнаем какую часть 0,96 тыс. руб. составляет от 19,2. Для этого найдем отношение 0,96 к 19,2

096 к 192

Выполним деление в получившейся дроби. По пути вспомним, как выполняется деление десятичных дробей:

96 к 192 деление 005

Выразим полученный результат в процентах:

0,05 × 100 = 5%

Значит, зарплата повысилась на 5%.

Решим задачу вторым способом. Узнаем во сколько раз 20,16 тыс. руб. больше, чем 19,2 тыс. руб. Для этого найдем отношение 20,16 к 19,2

2016 к 192

Выполним деление в получившейся дроби:

2016 192 есть 105

Выразим полученный результат в процентах:

1,05 × 100 = 105%

Зарплата составляет 105%. То есть сюда входят 100%, которые составляли 19,2 тыс. руб., плюс 5% которые составляют 0,96 тыс. руб.

100% + 5% = 19,2 + 0,96


Задача 6. Цена ноутбука в этом месяце повысилась на 5%. Какова его цена, если в прошлом месяце он стоил 18,3 тыс. рублей?

Решение

Найдем 5% от 18,3:

18,3 × 0,05 = 0,915

Прибавим эти 5% к 18,3:

18,3 + 0,915 = 19,215 тыс. руб.

Ответ: цена ноутбука составляет 19,215 тыс. руб.


Задача 7. Цена ноутбука в этом месяце снизилась на 10%. Какова его цена, если в прошлом месяце он стоил 16,3 тыс. рублей?

Решение

Найдем 10% от 16,3:

16,3 × 0,10 = 1,63

Вычтем эти 10% из 16,3:

16,3 − 1,63 = 14,67 (тыс. рублей)

Подобные задачи можно записывать кратко:

16,3 − (16,3 × 0,10) = 14,67 (тыс. рублей)

Ответ: цена ноутбука составляет 14,67 тыс. рублей.


Задача 8. В прошлом месяце цена ноутбука составляла 21 тыс. рублей. В этом месяце цена повысилась до 22,05 тыс. рублей. На сколько процентов повысилась цена?

Решение

Определим насколько рублей повысилась цена

22,05 − 21 = 1,05 (тыс. руб)

Узнаем какую часть 1,05 тыс. руб. составляет от 21 тыс. руб.

105 к 21 есть 005

Выразим полученный результат в процентах

0,05 × 100 = 5%

Ответ: цена ноутбука повысилась на 5%


Задача 8. Рабочий должен был изготовить по плану 600 деталей, а он изготовил 900 деталей. На сколько процентов он выполнил план?

Решение

Узнаем во сколько раз 900 деталей больше, чем 600 деталей. Для этого найдем отношение 900 к 600

отношение 900 к 600

Значение данной дроби равно 1,5. Выразим это значение в процентах:

1,5 × 100 = 150%

Значит, рабочий выполнил план на 150%. То есть выполнил его на все 100%, изготовив 600 деталей. Затем изготовил еще 300 деталей, что составляет 50% от изначального плана.

Ответ: рабочий выполнил план на 150%.


Сравнение величин в процентах

Мы уже много раз сравнивали величины различными способами. Первым нашим инструментом была разность. Так, к примеру чтобы сравнить 5 рублей и 3 рубля, мы записывали разность 5−3. Получив ответ 2, можно было сказать, что «пять рублей больше трех рублей на два рубля».

Получаемый в результате вычитания ответ в повседневной жизни называют не «разностью», а «разницей».

Так, разница между пятью и тремя рубля составляет два рубля.

Следующим инструментом, которым мы воспользовались для сравнения величин, было отношение. Отношение позволяло нам узнать во сколько раз первое число больше второго (или сколько раз первое число содержит второе).

Так, к примеру десять яблок больше двух яблок в пять раз. Или по другому, десять яблок содержит два яблока пять раз. Данное сравнение можно записать с помощью отношения

десять вторых это пять

Но величины можно сравнить и в процентах. Например, цену двух товаров сравнивать не в рублях, а оценивать, насколько цена одного товара больше или меньше цены другого в процентах.

Для сравнения величин в процентах, одну из них нужно обозначить как 100%, а вторую исходя из условий задачи.

Например, узнаем на сколько процентов десять яблок больше, чем восемь яблок.

За 100% нужно обозначить ту величину с которой мы что-либо сравниваем. Мы сравниваем 10 яблок с 8 яблоками. Значит, за 100% обозначаем 8 яблок:

восемь яблок 100 процентов

Теперь наша задача сравнить на сколько процентов 10 яблок больше, чем эти 8 яблок. 10 яблок это 8+2 яблока. Значит, добавив к восьми яблокам ещё два яблока, мы увеличим 100% еще на какое-то число процентов. Чтобы узнать на какое именно, определим сколько процентов от восьми яблок составляют два яблока

отношение 2 к 8 в процентах

Добавив эти 25% к восьми яблокам, мы получим 10 яблок. А 10 яблок это 8+2, то есть 100% и еще 25%. Итого получаем 125%

восемь и десять яблок

Значит, десять яблок больше восьми яблок на 25%.

Теперь решим обратную задачу. Узнаем насколько процентов восемь яблок меньше, чем десять яблок. Сразу напрашивается ответ, что восемь яблок меньше на 25%. Однако это не так.

Мы сравниваем восемь яблок с десятью яблоками. Мы договорились, что за 100% будем брать то, с чем сравниваем. Поэтому в этот раз за 100% берем 10 яблок:

десять и восемь яблок рисунок 1

Восемь яблок это 10−2, то есть уменьшив 10 яблок на 2 яблока, мы уменьшим их на какое-то число процентов. Чтобы узнать на какое именно, определим сколько процентов от десяти яблок составляют два яблока

2 к 10 в процентах

Отняв эти 20% от десяти яблок, мы получим 8 яблок. А 8 яблок это 10−2, то есть 100% и минус 20%. Итого получаем 80%

десять и восемь яблок рисунок 2

Значит, восемь яблок меньше десяти яблок на 20%.


Задача 2. На сколько процентов 5000 рублей больше, чем 4000 рублей?

Решение

Примем 4000 рублей за 100%. 5 тысяч больше 4 тысяч на 1 тысячу. Значит, увеличив четыре тысячи на одну тысячу, мы увеличим четыре тысячи на какое-то количество процентов. Узнаем на какое именно. Для этого определим какую часть одна тысяча составляет от четырех тысяч:

1000 к 4000 есть 25 процентов

Выразим полученный результат в процентах:

0,25 × 100 = 25%

1000 рублей от 4000 рублей составляют 25%. Если прибавить эти 25% к 4000, то получится 5000 рублей. Значит, 5000 рублей на 25% больше, чем 4000 рублей

рисунок к задаче 5 тыс больше 4 тыс


Задача 3. На сколько процентов 4000 рублей меньше, чем 5000 рублей?

В этот раз сравниваем 4000 с 5000. Примем 5000 за 100%. Пять тысяч больше четырех тысяч на одну тысячу рублей. Узнаем какую часть одна тысяча составляет от пяти тысяч

1 к 5 в процентах

Тысяча от пяти тысяч составляет 20%. Если вычесть эти 20% от 5000 рублей, то получим 4000 рублей.

Значит, 4000 рублей меньше 5000 рублей на 20%

рисунок к задаче 4 тыс меньше 5 тыс


Задачи на концентрацию, сплавы и смеси

Допустим, возникло желание приготовить какой-нибудь сок. У нас в распоряжении имеется вода и малиновый сироп

вода питьевая и сироп малиновый

Нальем 200 мл воды в стакан:

200 мл воды стакан рисунок

Добавим 50 мл малинового сиропа и размешаем полученную жидкость. В результате у нас получится 250 мл малинового сока (200 мл воды + 50 мл сиропа = 250 мл сока)

250 мл сока рисунок

Какую часть от получившегося сока составляет малиновый сироп?

Малиновый сироп составляет 50 на 250 сока. Вычислим это отношение, получим число 0,20. Это число показывает количество растворённого сиропа в получившемся соке. Назовём это число концентрацией сиропа.

Концентрацией растворённого вещества называют отношение количества растворённого вещества или его массы к объему раствора.

Концентрация обычно выражается в процентах. Давайте выразим концентрацию сиропа в процентах:

0,20 × 100 = 20%

Таким образом, концентрация сиропа в малиновом соке составляет 20%.

Вещества в растворе могут быть неоднородными. Например, смешаем 3 л воды и 200 г соли.

Масса 1 л воды составляет 1 кг. Тогда масса 3 л воды будет составлять 3 кг. Переведем 3 кг в граммы, получим 3 кг = 3000 г.

Теперь в 3000 г воды опустим 200 г соли и смешаем полученную жидкость. В результате получится соленный раствор, общая масса которого будет составлять 3000+200, то есть 3200 г. Найдем концентрацию соли в полученном растворе. Для этого найдём отношение массы растворенной соли к массе раствора

200 на 3200 в процентах

Значит, при смешивании 3 л воды и 200 г соли получится 6,25%-й раствор соли.

Аналогично может быть определено количество вещества в сплаве или в смеси. Например, сплав содержит олово массой 210 г, и серебро массой 90 г. Тогда масса сплава будет составлять 210+90, то есть 300 г. Олова в сплаве будет содержаться , а серебра 90 на 300. В процентном соотношении олова будет 70%, а серебра 30%

210 на 300 и 90 на 300 в процентах

При смешивании двух растворов получается новый раствор, состоящий из первого и второго растворов. У нового раствора концентрация вещества может быть другой. Полезным навыком является умение решать задачи на концентрацию, сплавы и смеси. В общем итоге смысл таких задач заключается в отслеживании изменений, которые происходят при смешивании растворов различной концентрации.

Смешаем два малиновых сока. Первый сок объемом 250 мл содержит 12,8% малинового сиропа. А второй сок объемом 300 мл содержит 15% малинового сиропа. Сольем эти два сока в большой стакан и смешаем. В результате получим новый сок объемом 550 мл.

3 сока 250 300 и 550 мл

Теперь определим концентрацию сиропа в полученном соке. Первый слитый сок объемом 250 мл содержал 12,8% сиропа. А 12,8% от 250 мл это 32 мл. Значит, первый сок содержал 32 мл сиропа.

Второй слитый сок объемом 300 мл содержал 15% сиропа. А 15% от 300 мл это 45 мл. Значит, второй сок содержал 45 мл сиропа.

Сложим количества сиропов:

32 мл + 45 мл = 77 мл

Эти 77 мл сиропа содержатся в новом соке, объем которого составляет 550 мл. Определим концентрацию сиропа в этом соке. Для этого найдём отношение 77 мл растворённого сиропа к объему сока 550 мл:

77 на 550 в процентах

Значит, при смешивании 12,8%-го малинового сока объемом 250 мл и 15%‍-го малинового сока объемом 300 мл, получается 14%-й малиновый сок объемом 550 мл.


Задача 1. Имеются 3 раствора морской соли в воде: первый раствор содержит 10% соли, второй содержит 15% соли и третий — 20% соли. Смешали 130 мл первого раствора, 200 мл второго раствора и 170 мл третьего раствора. Определите сколько процентов составляет морская соль в полученном растворе.

Решение

Определим объем полученного раствора:

130 мл + 200 мл + 170 мл = 500 мл

Поскольку в первом растворе было 130 × 0,10 = 13 мл морской соли, во втором растворе 200 × 0,15 = 30 мл морской соли, а в третьем — 170 × 0,20 = 34 мл морской соли, то в полученном растворе будет содержаться 13 + 30 + 34 = 77 мл морской соли.

Определим концентрацию морской соли в полученном растворе. Для этого найдём отношение 77 мл морской соли к объему раствора 500 мл

77 на 500 в процентах

Значит, в полученном растворе содержится 15,4% морской соли.


Задача 2. Сколько граммов воды надо добавить к 50 г раствора, содержащего 8% соли, чтобы получить 5%-й раствор?

Решение

Заметим, что если к имеющемуся раствору добавить воды, то количество соли в нём не изменится. Изменится только её процентное содержание, поскольку добавление воды в раствор приведёт к изменению его массы.

Нам нужно добавить такое количество воды при котором восемь процентов соли стали бы пятью процентами.

Определим сколько граммов соли содержится в 50 г раствора. Для этого найдем 8% от 50

50 г × 0,08 = 4 г

8% от 50 г составляют 4 г. Другими словами, на восемь частей из ста приходятся 4 грамма соли. Давайте сделаем так, чтобы эти 4 грамма приходились не на восемь частей, а на пять частей, то есть на 5%

4 грамма — 5%

Теперь зная, что на 5% раствора приходятся 4 грамма, мы можем найти массу всего раствора. Для этого нужно найти число по его проценту:

4 г : 5 = 0,8 г
0,8 г × 100 = 80 г

80 граммов раствора это масса при которой 4 грамма соли будут приходиться на 5% раствора. А для получения этих 80 граммов, нужно к изначальным 50 граммам добавить 30 граммов воды.

Значит, для получения 5%-го раствора соли, нужно к имеющемуся раствору добавить 30 г воды.


Задача 2. Виноград содержит 91% влаги, а изюм – 7%. Сколько килограммов винограда требуется для получения 21 килограмма изюма?

Решение

Виноград состоит из влаги и чистого вещества. Если в свежем винограде содержится 91% влаги, то на остальные 9% будет приходиться чистое вещество этого винограда:

рисунок виноград схема влага и чистое вещество

Изюм же содержит 93% чистого вещества и 7% влаги:

рисунок юзюм схема влага и чистое вещество

Заметим, что в процессе превращения винограда в изюм, исчезает только влага этого винограда. Чистое вещество остаётся без изменения. После того, как виноград превратится в изюм, в получившемся изюме будет 7% влаги и 93% чистого вещества.

Определим сколько чистого вещества содержится в 21 кг изюма. Для этого найдем 93% от 21 кг

21 кг × 0,93 = 19,53 кг

Теперь вернемся к первому рисунку. Наша задача состояла в том, чтобы определить сколько винограда нужно взять для получения 21 кг изюма. Чистое вещество массой 19,53 кг будет приходиться на 9% винограда:

рисунок виноград схема влага и чистое вещество в 19.53 кг

Теперь зная, что 9% чистого вещества составляют 19,53 кг, мы можем определить сколько винограда требуется для получения 21 кг изюма. Для этого нужно найти число по его проценту:

19,53 кг : 9 = 2,17 кг
2,17 кг × 100 = 217 кг

Значит, для получения 21 кг изюма нужно взять 217 кг винограда.


Задача 3. В сплаве олова и меди медь составляет 85%. Сколько надо взять сплава, чтобы в нём содержалось 4,5 кг олова?

Решение

Если в сплаве медь составляет 85%, то на остальные 15% будет приходиться олово:

рисунок 85пр меди и 15пр олова

Спрашивается сколько надо взять сплава, чтобы в нем содержалось 4,5 олова. Поскольку олова в сплаве содержится 15%, то 4,5 кг олова и будут приходиться на эти 15%.

А зная, что 4,5 кг сплава составляют 15% мы можем определить массу всего сплава. Для этого нужно найти число по его проценту:

4,5 кг : 15 = 0,3 кг
0,3 кг × 100 = 30 кг

Значит, сплава нужно взять 30 кг, чтобы в нём содержалось 4,5 кг олова.


Задача 4. Смешали некоторое количество 12%-го раствора соляной кислоты с таким же количеством 20%-го раствора этой же кислоты. Найти концентрацию получившейся соляной кислоты.

Решение

Изобразим на рисунке первый раствор в виде прямой линии и выделим на нём 12%

рисунок 1 к задаче сложение 12пр и 20пр кислоты

Поскольку количество растворов одинаково, рядом можно изобразить такой же рисунок, иллюстрирующий второй раствор с содержанием соляной кислоты 20%

рисунок 2 к задаче сложение 12пр и 20пр кислоты итог

У нас получилось двести частей раствора (100% + 100%), тридцать две части из которых составляют соляную кислоту (12% + 20%)

рисунок к задаче сложение 12пр и 20пр кислоты итог

Определим какую часть 32 части составляют от 200 частей

32 на 200 в процентах

Значит, при смешивании 12%-го раствора соляной кислоты с таким же количеством 20%-го раствора этой же кислоты получится 16%-й раствор соляной кислоты.

Для проверки представим, что масса первого раствора была 2 кг. Масса второго раствора так же будет составлять 2 кг. Тогда при смешивании этих растворов получится 4 кг раствора. В первом растворе соляной кислоты было 2 × 0,12 = 0,24 кг, а во втором — 2 × 0,20 = 0,40 кг. Тогда в новом растворе соляной кислоты будет 0,24 + 0,40 = 0,64 кг. Концентрация соляной кислоты составит 16%

064 на 4 в процентах


Задачи для самостоятельного решения

Задание 1. Выразите в виде обыкновенной дроби следующие части:

Задание 2. Выразите в виде обыкновенной дроби следующие части:

Задание 3. Выразите в виде десятичной дроби следующие части:

Задание 4. Изобразите графически следующие части:

Задание 5. Опишите следующий рисунок в виде процентов:

Задание 6. Опишите следующий рисунок в виде процентов:

Задание 7. Опишите следующий рисунок в виде процентов:

Задание 8. Опишите следующий рисунок в виде процентов:

Задание 9. Опишите следующий рисунок в виде процентов:

Задача 10. Число 50 увеличили на 20%. Найти новое значение числа.

Решение

Найдем 20% от 50

50 × 0,20 = 10

Прибавим полученное число 10 к числу 50, получим новое значение 60

50 + 10 = 60

Ответ: новое значение равно 60.

Задача 11. Число увеличили на 60%. Найти новое значение числа.

Решение

Найдем 60% от и прибавим их к . Так мы определим новое значение числа.

Для удобства нахождения шестидесяти процентов от , заменим 60% на его аналог в виде обыкновенной дроби . Умножив на , мы найдем 60% от числа

Теперь увеличим число на найденные 60%, т.е. на число

Ответ: новое значение равно

Задача 12. Ответьте на следующие вопросы:

1) Потратили 80 % суммы. Сколько процентов этой суммы осталось?
2) Мужчины составляют 75 % всех работников завода. Сколько процентов работников завода составляют женщины?
3) Девочки составляют 40 % класса. Сколько процентов класса составляют мальчики?

Ответы

1) 20%

2) 25%

3) 60%

Задача 13. Ответьте на следующие вопросы:

1) В магазин привезли 2500 кг помидоров. В первый день продали 30% всех помидоров. Сколько килограммов помидоров осталось продать?
2) В школе 400 учащихся, 52 % этого числа составляют девочки. Сколько мальчиков в школе?

Задача 14. Число увеличили на 25%. На сколько процентов надо уменьшить новое число, чтобы получилось исходное?

Решение

Воспользуемся переменной. Пусть A это исходное число о котором говорится в задаче. Примем это исходное число А за 100%

Увеличим это исходное число A на 25%

Теперь новое число составляет 125%. Узнаем какую часть от 125% составляет 25%. Для этого найдем отношение 25% к 125%

Выразим полученный результат в процентах:

0,2 × 100 = 20%

Ответ: чтобы получить исходное число, новое число надо уменьшить на 20%.

Задача 15. Число уменьшили на 50%. На сколько надо увеличить новое число, чтобы получилось исходное?

Решение

Воспользуемся переменной. Пусть P это исходное число о котором говорится в задаче. Примем это исходное число P за 100%

Уменьшим это исходное число P на 50%

Теперь новое число составляет 50% от исходного числа. Узнаем во сколько раз исходное число P больше нового числа. Для этого найдем отношение 100% к 50%

Исходное число в два раза больше нового. Это видно даже по рисунку. А чтобы сделать новое число равным исходному, его нужно увеличить в два раза. А увеличить число в два раза означает увеличить его на 100%.

Значит, новое число, которое составляет половину от исходного числа, нужно увеличить на 100%.

Рассматривая новое число, его также принимают за 100%. Так, на приведенном рисунке новое число является половиной от исходного числа и подписано как 50%. По отношению к исходному числу новое число является половиной. Но если рассматривать его отдельно от исходного, его нужно принимать за 100%.

Поэтому на рисунке, новое число которое изображается линией, сначала было обозначено как 50%. Но затем это число мы обозначили как 100%.

Ответ: чтобы получить исходное число, новое число надо увеличить на 100%.

Задача 16. В прошлом месяце в городе произошло 15 ДТП.
В этом месяце этот показатель снизился до 6. На сколько процентов снизилось количество ДТП?

Решение

В прошлом месяце было 15 ДТП. В этом месяце 6. Значит, количество ДТП снизилось на 9.
Примем 15 ДТП за 100%. Снизив 15 ДТП на 9, мы снизим их на какое-то число процентов. Чтобы узнать на какое именно, узнаем какую часть 9 ДТП составляет от 15 ДТП

9 ДТП от 15 составляет 60%. Значит, количество ДТП снизилось на 60%.

Ответ: количество ДТП снизилось на 60%.

Задача 17. Смешали 8 кг 18%-го раствора некоторого вещества с 12 кг 8%-го раствора этого же вещества. Найдите концентрацию получившегося раствора.

Решение

Сложим массы исходных растворов:

8 кг + 12 кг = 20 кг

В первом растворе было 8 × 0,18 = 1,44 кг вещества, а во втором растворе 12 × 0,08 = 0,96 кг этого же вещества. Тогда в получившемся растворе будет 1,44 + 0,96 = 2,40 кг.

Определим концентрацию вещества в получившемся растворе:

Ответ: концентрация получившегося раствора составляет 12%.

Задача 18. Смешали некоторое количество 11%-го раствора некоторого вещества с таким же количеством 19% раствора этого же вещества. Найдите концентрацию получившегося раствора.

Решение

Масса обоих растворов одинакова. Каждый раствор можно принять за 100%. После сложения растворов получится 200% раствора. В первом растворе было 11% вещества, а во втором 19% вещества. Тогда в получившемся 200%-м растворе будет 11% + 19% = 30% вещества.

Определим концентрацию получившегося растворе. Для этого узнаем какую часть тридцать частей вещества составляют от двухсот частей вещества:

Ответ: концентрация получившегося раствора составляет 15%.

Задача 19. За последние 3 месяца цены на продукты питания росли в среднем на 10% за каждый месяц. На сколько процентов выросли цены за 3 месяца?

Решение

Примем первоначальную цену на продукты питания за 100%. Для удобства решения задачи, проценты будем выражать в десятичных дробях. Тогда 100% в виде десятичной дроби будут записаны как 1.

За первый месяц цена повысилась на 10%. Прибавим к имеющейся цене 1 десять процентов от этой цены, получим 1 + 0,10 × 1. Эта сумма равна выражению 1,10. Значит, цена за первый месяц станет 1,10.

За второй месяц цена также повысилась на 10%. Прибавим к нынешней цене 1,10 десять процентов от этой цены, получим 1,10 + 0,10 × 1,10. Эта сумма равна выражению 1,21Значит, цена за второй месяц станет 1,21.

За третий месяц цена также повысилась на 10%. Прибавим к нынешней цене 1,21 десять процентов от этой цены, получим 1,21 + 0,10 × 1,21. Эта сумма равна выражению 1,331Тогда цена за третий месяц станет 1,331.

Вычислим разницу между новой и старой ценой. Если изначальная цена была равна 1, то повысилась она на 1,331 − 1 = 0,331. Выразим этот результат в процентах, получим 0,331 × 100 = 33,1%

Ответ: за 3 месяца цены на продукты питания повысились на 33,1%.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Понравилась статья? Поделить с друзьями:
  • Как найти центр точки сопряжения
  • Как найти похожие фотографии в папке
  • Hdd не распределен как исправить
  • Как найти каналы на спутнике триколор
  • Mount and blade как найти своего персонажа