Как найти 2а2 арифметическая прогрессия

Арифметическая прогрессия

  1. Понятие арифметической прогрессии
  2. Формула n-го члена арифметической прогрессии
  3. Свойства арифметической прогрессии
  4. Сумма первых n членов арифметической прогрессии
  5. Примеры

п.1. Понятие арифметической прогрессии

Арифметической прогрессией называют числовую последовательность, каждый член которой an, начиная со второго, равен сумме предыдущего члена an-1 и некоторого постоянного числа d: $$ mathrm{ a_n=a_{n-1}+d, ninmathbb{N}, nleq 2 } $$ Число d называют разностью арифметической прогрессии.

Например:
1. Последовательность 2, 5, 8, 11, 14, … является арифметической прогрессией с разностью d = 3.

2. Последовательность 12, 9, 6, 3, 0, –3, –6, … является арифметической прогрессией с разностью d = –3.

п.2. Формула n-го члена арифметической прогрессии

По определению арифметической прогрессии мы получаем рекуррентную формулу для n-го члена: an = an-1 + d. Из неё можно вывести аналитическую формулу:

a2 = a1 + d, $qquad$ a3 = a2 + d = (a1 + d) + d = a1 + 2d
a4 = a3 + d = (a1 + 2d) + d = a1 + 3d,…

Получаем:

an = a1 + (n – 1)d

Например:
Найдём a7, если известно, что a1 = 5, d = 3.
По формуле n-го члена получаем: a7 = a1 + 6d = 5 + 6 · 3 = 23

п.3. Свойства арифметической прогрессии

Свойство 1. Линейность

Арифметическая прогрессия является линейной функцией f(n) = kn + b:

an = dn + (a1 – d)

с угловым коэффициентом k = d и свободным членом b = a1 – d.

Свойство 1

Свойство 1

При d > 0 прогрессия линейно возрастает

При d < 0 прогрессия линейно убывает

Следствие: любую арифметическую прогрессию можно задать формулой: $$ mathrm{ a_n=dn+b, ninmathbb{N}, binmathbb{R}, dinmathbb{R}} $$ где d, b – некоторые числа.

Свойство 2. Признак арифметической прогрессии

Для того чтобы числовая последовательность была арифметической прогрессией необходимо и достаточно, чтобы каждый её член, начиная со второго, был средним арифметическим предыдущего и последующего членов: $$ mathrm{ left{a_nright} — text{арифметическая прогрессия} Leftrightarrow a_n=frac{a_{n-1}+a_{n+1}}{2}, ninmathbb{N}, n geq 2 } $$ Следствие: каждый член прогрессии является средним арифметическим двух равноудалённых от него членов: $$ mathrm{ a_n=frac{a_{n-k}+a_{n+k}}{2}, ninmathbb{N}, ninmathbb{N}, n geq k+1 } $$

Например:
Найдём a9, если известно, что a7 = 10, a11 = 15
По следствию из признака арифметической прогрессии: (mathrm{a_9=frac{a_7+a_{11}}{2}=frac{10+15}{2}=12,5})

Свойство 3. Равенство сумм индексов

Если {an} – арифметическая прогрессия, то из равенства сумм индексов следует равенство сумм членов: $$ mathrm{ m+k=p+q Rightarrow a_m+a_k=a_p+a_q } $$ Следствие: сумма членов, равноудалённых от концов прогрессии, является постоянной величиной: $$ mathrm{ a_1 + a_n=a_2+a_{n-1}=a_3+a_{n-2}=… } $$

Например:
Найдём a6, если известно, что a2 = 5, a4 = 10, a8 = 20
По равенству сумм индексов a2 + a8 = a4 + a6
Откуда a6 = a2 + a8 – a4 = 5 + 20 – 10 = 15

п.4. Сумма первых n членов арифметической прогрессии

Сумма первых n членов арифметической прогрессии равна произведению среднего арифметического её крайних членов и количества членов: $$mathrm{ S_n=frac{a_1+a_n}{2}n} $$

Если учесть, что an = a1 + d(n – 1), получаем ещё одну формулу для суммы: $$mathrm{ S_n=frac{2a_1+d(n-1)}{2}n} $$

Например:
Найдём сумму первых 100 натуральных чисел: 1 + 2 +…+ 100
В этом случае a1 = 1, a100 = 100, n = 100
(mathrm{ S_{100}=frac{1+100}{2}cdot 100=5050})

п.5. Примеры

Пример 1. Найдите первый член и разность арифметической прогрессии, если:
а) a7 = 10, a15 = 42
Найдем разность данных членов: a15 – a7 = (a1 + 14d) – (a1 + 6d) = 8d
Получаем разность прогрессии: 42 – 10 = 8d ⇒ d = 32 : 8 = 4
7-й член: a7 = a1 + 6d = a1 + 6 · 4 = 10 ⇒ a1 = 10 – 24 = –14
Ответ: a1 = –14, d = 4

б) a10 = 95, S10 = 500
Сумма прогрессии: (mathrm{S_{10}=frac{a_1+a_{10}}{2}cdot 10Rightarrow 500=(a_1+95)cdot 5Rightarrow a_1+95=100Rightarrow a_1=5})
10-й член: (mathrm{a_{10}=a_1+9dRightarrow95=5+9dRightarrow 9d=90Rightarrow d=10})
Ответ: a1 = 5, d = 10

Пример 2. Найдите сумму первых 100 нечётных натуральных чисел.
Чему равно последнее слагаемое этой суммы?
Ищем сумму (mathrm{underbrace{1+3+5+…}_{100 text{слагаемых}}})
По условию a1 = 1, d = 2, n = 100. Получаем:
(mathrm{S_{100}=frac{2a_1+d(n-1)}{2}n=frac{2cdot 1+2cdot 99}{2}cdot 100=10000})
Формула n-го члена данной прогрессии: (mathrm{a_n=a_1+d(n-1)=dn+(a_1-d)=2n-1})
100-й член (mathrm{a_{100}=2cdot 100-1=199})
Ответ: S100 = 10000, a100 = 199

Пример 3*. Сколько членов арифметической прогрессии 10, 16, 22, … находится между числами 110 и 345?
По условию a1 = 10, d = 16 – 10 = 6
Формула n-го члена данной прогрессии an = a1 + d(n – 1) = dn + (a1 – d) = 6n + 4
Заданные числа могут быть членами данной прогрессии или находиться по «соседству» с ними. Подставим их в формулу для n-го члена: begin{gather*} mathrm{ 6k+4=110Rightarrow 6k=106Rightarrow k=17frac23Rightarrow 17lt klt 18 }\ mathrm{ 6m+4=345Rightarrow 6m=341Rightarrow m=56frac56Rightarrow 56lt mlt 57 } end{gather*} Ближайший сосед справа к 100 – это a18 = 6 · 18 + 4 = 112, k = 18
Ближайший сосед слева к 345 – это a56 = 6 · 56 + 4 = 340, m = 56
Свойство 1
Количество членов прогрессии в заданном интервале:

n = m – k + 1 = 56 – 18 + 1 = 39

Ответ: 39

Пример 4. Одиннадцатый член арифметической прогрессии равен 7.
Найдите сумму её первых 21 членов.
По свойству суммы индексов: a11 + a11 = a1 + a21
Откуда a1 + a21 = 2a11 = 14
Искомая сумма: (mathrm{S_{21}=frac{a_1+a_{21}}{2}cdot 21=frac{14}{2}cdot 21=147})
Ответ: 147

Пример 5. Величины углов выпуклого пятиугольника образуют арифметическую прогрессию. Найдите третий член этой прогрессии.
Сумма углов выпуклого пятиугольника S5 = 180° · (5 – 2) = 540°
Если углы образуют арифметическую прогрессию, то: $$ mathrm{ S_5=frac{a_1+a_5}{2}cdot 5=540^circRightarrow a_1+a_5=216^circ } $$ По свойству суммы индексов: a3 + a3 = a1 + a5
Откуда: (mathrm{a_3=frac{a_1+a_5}{2}=108^circ})
Ответ: 108°

Пример 6. При каких значениях x числа x2 – 11, 2x2 + 29, x4 – 139 в заданной последовательности являются членами арифметической прогрессии?
Для последовательных членов получаем уравнение:

a2 – a1 = a3 – a2
(2x2 + 29) – (x2 – 11) = (x4 – 139) – (2x2 + 29)
x4 – 3x2 – 208 = 0 ⇒ (x2 + 13)(x2 – 16) = 0 ⇒ x2 = 16 ⇒ x = ±4

Ответ: x = ±4

Пример 7. Сумма первых трёх членов убывающей арифметической прогрессии равна 9, а сумма их квадратов равна 99. Найдите седьмой член прогрессии.
По условию d < 0 и: $$ left{ begin{array}{ l } mathrm{a_1+a_2+a_3=9} & \ mathrm{a_1^2+a_2^2+a_3^2=99} & end{array}right. $$ Используем свойство прогрессии: (mathrm{a_2=frac{a_1+a_3}{2}}). Получаем из первого уравнения:

3a2 = 9 ⇒ a_2 = 3

Тогда a1 = a2 – d = 3 – d, a3 = a2 + d = 3 + d. Подставляем во второе уравнение:

(3 – d)2 + 32 + (3 + d)2 = 99
9 – 6d + d2 + 9 + 9 + 6d + d2 = 99
2d2 = 72 ⇒ d2 = 36 ⇒ d = ±6

Выбираем отрицательное значение d = –6
1-й член прогрессии: a1 = a2 – d = 3 + 6 = 9
7-й член прогрессии: a7 = a1 + 6d = 9 + 6(–6) = –27
Ответ: x = –27

Определение

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.

Другими словами, последовательность (аn) – арифметическая прогрессия, если для любого натурального числа n выполняется условие аn+1n+d, где d – некоторое число. Из данного равенства следует, что можно найти это число d, если вычесть из последующего члена предыдущий, то есть d = аn+1–аn. Число d называют разностью арифметической прогрессии.

Арифметической прогрессией, например, является ряд чисел 3; 8; 13; 18….., так как разница между числами равна 5, мы видим, что каждое последующее на 5 больше предыдущего.

Если известен первый член арифметической прогрессии a1 и разность d, то можно вычислить любой член арифметической прогрессии:

a2 = a1 + d;

a3 = a2 + d = a1+2d;

a4 = a3 + d = a1+3d.

Этот ряд можно продолжать до бесконечности, поэтому надо запомнить, что n-ый член арифметической прогрессии можем получить быстрее, если к первому члену прогрессии добавить (n−1) разностей, то есть:

Формула n-ого члена арифметической прогрессии

an = a1 + d(n−1)

где n – порядковый номер члена арифметической прогрессии, a1 – первый член прогрессии, d – разность арифметической прогрессии

Формулу используют, чтобы вычислить заданный член арифметической прогрессии (например, пятнадцатый, двухсотый и т.д.), если известны первый член последовательности и ее разность. Рассмотрим на примерах применение данной формулы.

Пример №1. Найти а20 арифметической прогрессии (аn), если а1=14, d=5. Составляем формулу для а20 и подставляем в нее данные: а20= a1 + d(20−1)=14+5(20−1)=109. Таким образом, мы вычислили, что на 20-ом месте в данной арифметической прогрессии стоит число 109.

Найти а7 арифметической прогрессии (аn), если а1=−8, d=−3. Аналогично работаем, составляя формулу и подставляя в нее данные значения (обращаем внимание на знаки чисел, чтобы не допустить ошибок): а7= a1 + d(7−1)= −8−3(7−1)= −26.

Дана арифметическая прогрессия 10; 12; 14;…… Найти а12. Здесь для нахождения а12 надо сначала найти разность d: d=12−10=2, то есть из последующего вычтем предыдущее. Можно было 14−12, порядок здесь не имеет значения, главное берем два соседних члена прогрессии. Теперь можем составлять формулу и находить а12: а12= a1 + d(12−1)=10+2(12−1)=32.

Утверждение

Любая арифметическая прогрессия может быть задана формулой вида an=kn+b, где k и b некоторые числа. Верно и обратное утверждение: если последовательность чисел задана формулой вида an=kn+b, где k и b некоторые числа, то она является арифметической.

Так, например, формула an=5n+1 задает арифметическую прогрессию, в которой разность d равна 1; по данной формуле можно найти любой член последовательности, например, найдем 20-ый член, подставляя в формулу число 20: a20=5×20+1=101.

Свойство арифметической прогрессии

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Формула:

аn=(аn-1+ аn+1):2

Другими словами, используя данное свойство, мы можем найти член арифметической прогрессии, стоящий между двумя известными членами, без использования разности d. Рассмотрим это на примерах.

Пример №2. Найти а10 арифметической прогрессии (аn), если а9=24; а11=38. Здесь используем свойство, так как видим, что у а10 известны соседние члены. Значит, а10=(а911):2=(24+38):2=31. Таким образом, десятый член равен 31.

Дана арифметическая прогрессия …..23; х; 35. Найти х. Применяем свойство для нахождения х: х=(23+35):2=29. Для наглядности запишем, что ряд чисел выглядит так: …23; 29; 35.

Формулы суммы n первых членов арифметической прогрессии

Для нахождения суммы (обозначим ее буквой S) большого количества членов арифметической прогрессии существует формула, позволяющая это сделать быстро.

Формула суммы членов арифметической прогрессии с известными членами

Sn=
(a1+an
)n
2

В данной формуле мы видим, что для нахождения суммы нужны первый и последний член прогрессии. Но встречаются случаи, когда аn не известно, но известна разность. Тогда для нахождения суммы применяют вторую формулу.

Формула суммы членов арифметической прогрессии с первым членом и разностью

Sn=2a1+d(n1)2n

Рассмотрим на примерах применение данных формул.

Пример №3. Найти сумму первых пятидесяти членов арифметической прогрессии (аn), если а1=11, а50=39.

Для решения лучше использовать первую формулу, так как здесь есть первый и последний члены: а1=11, а50=39. Поэтому составляем формулу, подставляем в нее данные значения и вычисляем:

S50=(a1+a50
)50
2
=(11+39)502=25002=1250

Найти сумму первых десяти членов арифметической последовательности 3; 18; …. В данном случае задание можно выполнить двумя способами, как по первой формуле, так и по второй, а затем выяснить, какой способ короче, а значит, рациональнее.

Способ №1 (по первой формуле): надо найти разность d, затем десятый член прогрессии, а затем сумму:

d=18-3=15; а10=3+15(10-1)=138

S10=(a1+a10
)10
2
=(3+138)102=705

Способ №2 (по второй формуле): надо знать разность d, d=18-3=15. Теперь подставим значения во вторую формулу и сосчитаем результат:

S10=2a1+d(101)210=2×3+15(101)210=705

Результаты в обоих случаях получились у нас одинаковые. А если сравнить два способа, то видно, что второй способ быстрее, тем более что в большинстве случаев разность арифметической прогрессии можно вычислить устно.

Таким образом, выбор формулы для нахождения суммы n первых членов арифметической прогрессии зависит от заданного условия.

Задание OM1420223

Миша решил заказать себе такси. Подача машины и первые пять минут поездки в совокупности стоят 159 рублей, а стоимость каждой последующей минуты поездки фиксирована. Стоимость поездки с 6 по 15 минуту (включительно) составила 80 рублей, а с 6 по 25 минуту – 160 рублей. Найти итоговую стоимость поездки, если она длилась 1 час.


Выпишем, что мы имеем по условию задачи в левый столбец, а в правый запишем то, что из этого следует

Известно Решение
Подача и первые 5 минут – 159 руб
Стоимость с 6 по 15 минуту – 80 рублей

Стоимость с 6 по 25 минуту – 160 рублей.

Разница во времени 10 минут стоит 80 руб
Значит, 1 минута стоит 8 руб (80:10=8)
1 час – ? руб 1 час=60 мин; убираем 5 минут, которые включены в подачу машины, значит, надо найти стоимость 55 минут: 558=440 руб

Прибавляем стоимость подачи: 440+159=599 рублей

Ответ: 599

pазбирался: Даниил Романович | обсудить разбор

Задание OM1420221

В амфитеатре 12 рядов. В первом ряду 18 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько всего мест в амфитеатре?


Из условия задачи видно, что имеем дело с арифметической прогрессией, так как сказано, что в каждом следующем на 2 места больше, чем в предыдущем.

Выписываем, что нам известно и определяем, что нужно найти: всего 12 рядов, значит n=12; в первом ряду 18 мест, значит, а1=18; так как в каждом последующем ряду мест на 2 больше, то разность арифметической прогрессии d=2. Надо найти, сколько всего мест в амфитеатре, т.е. найти сумму арифметической прогрессии S12.

Для нахождения суммы имеем формулу Sn=a1+an2×n, то есть для нашей задачи S12=a1+a122×12. У нас нет а12, найдем его по формуле n-ого члена арифметической прогрессии: a12=a1+d(n-1)=18+2(12-1)=18+22=40. Подставим данные в формулу суммы:

S12=18+402×12=348

Следовательно, 348 мест всего в амфитеатре.

Проверка: можно проверить решение следующим способом, просто прибавляя по 2 места в каждый ряд до 12-ого, а затем сложить количество мест. Записать можно так: 18+20+22+24+26+28+30+32+34+36+38+40=348. Этим же способом, кстати, можно решить задачу, если от волнения забыли про арифметическую прогрессию.

Ответ: 348

pазбирался: Даниил Романович | обсудить разбор

Задание 14OM21R

При проведении опыта вещество равномерно охлаждали в течение 10 минут. При этом каждую минуту температура вещества уменьшалась на 80С. Найдите температуру вещества (в градусах Цельсия) через 6 минут после начала проведения опыта, если его начальная температура составляла -60С.


Можно решить данную задачу логическим путем, т.е. без формулы. Так как начальная температура была -6, а потом уменьшалась на 8 градусов в течение 6 минут, то можно сделать следующее:

-6-8=-14 через 1 минуту

-14-8=-22 через 2 минуты

-22-8=-30 через 3 минуты

-30-8=-38 через 4 минуты

-38-8=-46 через 5 минут

-46-8=-54 через 6 минут

Значит, наш ответ -540С

Вторым способом является решение по формуле n-ого члена арифметической прогрессии, которая есть также и в справочном материале, т.е. an=a1+d(n – 1). В данном случае a1=-6; d=-8, n=7 (так как ЧЕРЕЗ 6 минут). Подставим значения в формулу: a7=-61-8(7 – 1). Вычислим: a6=-6-85=-6-48=-54.

Ответ: -54

pазбирался: Даниил Романович | обсудить разбор

Задание OM1407

К концу 2008 года в городе проживало 38100 человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце 2016 года в городе проживало 43620 человек. Какова была численность населения этого города к концу 2012 года?


Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину.

Рассмотрим данные:

2008 г – 38100 человек

2012 г – ? человек

2016 г. – 43620 человек

Удобно решить данную задачу способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn , где k>n. Число d (разность прогрессии) будет являться ежегодным приростом населения.

Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:

(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.

Теперь можно найти, сколько человек проживало в конце 2012 года.

38100+690(2016 – 2012)= 40860 человек

Ответ: 40860

pазбирался: Даниил Романович | обсудить разбор

Задание OM1406

Митя играет в компьютерную игру. Он начинает с 0 очков, а для перехода на следующий уровень ему нужно набрать не менее 30000 очков. После первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8 очков и так далее. Таким образом, после каждой следующей минуты игры количество добавляемых очков удваивается. Через сколько минут Митя перейдет на следующий уровень?


Анализируя содержание задачи, можно сказать, что мы имеем дело с геометрической прогрессией, так как после первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8, а это значит, что с каждой последующей минутой количество очков удваивается. То есть знаменатель геометрической прогрессии q равен 2, b1=2 по условию (после 1 минуты 2 очка). Так как очки суммируются, то будем использовать формулу суммы n первых членов геометрической прогрессии Sn=b1(qn1)q1, где Sn>30000, так как для перехода на следующий уровень ему нужно набрать не менее 30000 очков.

Подставляем наши данные в формулу: 2(2n1)21>30000

Упрощаем выражение: так как в знаменателе дроби получается 1, то получим 2(2n-1)>30000; делим обе части на 2: 2n-1>15000; переносим 1 в правую часть и получим: 2n>15001. Теперь надо подобрать число n, при котором будет верно наше неравенство. Делать это можно постепенно, возводя 2 в степени, а можно запомнить, что 210=1024. Тогда легко будет добраться до числа, которое меньше 15001, а это 214=16384, где 16384<15001. Следовательно, наш ответ 14 минут.

Ответ: 14

pазбирался: Даниил Романович | обсудить разбор

Задание OM1405

В течение 25 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 7-й день акция стоила 777 рублей, а в 12-й день – 852 рубля?


В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7=777; в 12-й день – 852 рубля, это а12=852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25.

1 способ:

В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn=ak+d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а127+d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.

Теперь, зная число d, мы можем найти а25 через, например, а12, используя всё ту же формулу. Получаем: а2512+d(25-12); а25=852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.

2 способ:

Можно решить данную задачу другим способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn , где k>n. Составим формулу для наших а12 и а7, а затем подставим в нее данные: d=a12a7127; d=852777127=15. Теперь по этой же формуле найдем а25, связывая его с а12: d=a25a122512; 15=a2585213; найдем отсюда а25, а25=15∙13+852=1047.

Ответ: 1047

pазбирался: Даниил Романович | обсудить разбор

Задание OM1404

Грузовик перевозит партию щебня массой 176 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что в первый день было перевезено 6 тонн щебня. Определите, сколько тонн щебня было перевезено в последний день, если вся работа была выполнена за 11 дней.


В условии задачи встречаются слова, что норма увеличивалась на одно и то же число. И это значит, что мы имеем арифметическую прогрессию, в которой а1=6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11=176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11.

Итак, если нам встретилась сумма арифметической прогрессии, значит, нам надо воспользоваться формулой суммы n первых членов арифметической прогрессии Sn=а1+аn2n, куда мы и подставим все данные: 176=6+а11211.

Разделим обе части на 11, получим 16= 6+а112 ; умножим 16 на 2 (правило пропорции): 32=6+а11. Отсюда найдем а11=32–6=26. Итак, мы нашли, что 26 тонн щебня было перевезено в последний день.

Ответ: 26

pазбирался: Даниил Романович | обсудить разбор

Задание OM1403

Для получения витамина D могут быть рекомендованы солнечные ванны. Загорать лучше утром до 10 часов или вечером после 17 часов. Михаилу назначили курс солнечных ванн. Михаил начинает курс с 15 минут в первый день и увеличивает время этой процедуры в каждый следующий день на 15 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 15 минут?


Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1=15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.

Теперь берем формулу n члена арифметической прогрессии аn=a1+d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.

Ответ: 5

pазбирался: Даниил Романович | обсудить разбор

Задание OM1402

Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в сумме 7,5 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 60 метрам.


Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше, чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1n=7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn=60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.

Зная формулу суммы n первых членов арифметической прогрессии

Sn=а1+аn2n, имеем 60=7,5  n2. Отсюда находим n, умножая сначала 60 на 2 (по определению пропорции), затем 120 делим на 7,5 и получаем, что n=16. Таким образом, улитка потратила на весь путь 16 дней.

Ответ: 16

pазбирался: Даниил Романович | обсудить разбор

Задание OM1401

При проведении химической реакции в растворе образуется нерастворимый осадок. Наблюдения показали, что каждую минуту образуется 0,2 г осадка. Найдите массу осадка (в граммах) в растворе спустя семь минут после начала реакции.


При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число, на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.

Итак, имеем а1=0,2; d=0,2. Ищем а7. По определению n-ого члена арифметической прогрессии имеем формулу аn=a1+d(n – 1). Подставим в нее наши данные: а7=a1+d(7 – 1)=0,2+0,2·6=1,4

Ответ: 1,4

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 8.2k

Представим, что подряд выписаны все четные натуральные числа: 2, 4, 6, 8, 10, 12, 14, 18, 18, 20, 22… Это — последовательность четных натуральных чисел. Число 2 — ее первый член, 4 — второй, 6 — третий, 20 — десятый и т. д.

Приведем еще несколько примеров числовых прогрессий:

  • 1, 2, 3, 4, 5… — последовательность натуральных чисел,   
  • 1, 3, 5, 7, 9… — последовательность нечетных натуральных чисел,
  • 1, 1/2, 1/3, 1/4, 1/5… – последовательность чисел, обратных к натуральным.

Последовательности бывают конечные и бесконечные. Конечной, например, есть последовательность однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Последовательность всех натуральных чисел — бесконечная. Записывая бесконечную последовательность, после нескольких ее первых членов ставят многоточие. Первый, второй, третий члены последовательности четных натуральных чисел равны соответственно 2, 4, 6. Пишут: a1 = 2, а2 = 4, а3 = 6

А чему равен ее n-й член An? Поскольку каждый член последовательности парных натуральных чисел вдвое больше от своего порядкового номера, то ее n-й член равен 2n, т. е.

An = 2n.

Это формула n-го члена последовательности парных натуральных чисел.

An = 2n − 1

Формула n-го члена последовательности нечетных натуральных чисел.

Если известна формула n-го члена последовательности, то нетрудно вычислить любой ее член. Напишем несколько первых членов последовательности, n-й член которой:

An = n2 + 2

Предоставляя переменной п значения 1, 2, 3, 4, 5… получим первые члены последовательности: 6, 11, 18, 27, 38, 51… Тысячный член этой последовательности а1000 = 10002 + 2 = 1000002.

Гораздо труднее решать обратную задачу — для данной последовательности найти ее n-й член. Например, формула n-го члена последовательности простых чисел: 2, 3, 5, 7, 11, 13… — неизвестна до сих пор, хотя математики искали ее более 2000 лет.

Несколько первых членов последовательности не задают ее однозначно.

Например, существует множество различных последовательностей, первые члены которых 2, 4, 6, 8. В частности, такие первые члены имеют последовательности, n-е члены которых:

  • An = 2n
  • Cn = 2 n + (n − 1) (n − 2) (n − 3) (n − 4)

Из двух соседних членов a1 и a2 последовательности член a2 называют следующим за а1, а а1 — предыдущим по отношению к а2. Последовательность называют растущей, если каждый ее член, начиная со второго, больше предыдущего. Последовательность называется убывающей, если каждый ее член, начиная со второго, меньше предыдущего.

Замечания

Иногда рассматривают также прогрессивности, членами, которых являются различные выражения, функции, фигуры то ​ что. Можно говорить и о последовательности месяцев в году, дней в неделе, букв в слове, фамилий в списке, вагонов в поезде, станций на железной дороге и т. д. Мы дальше будем говорить только о числовых последовательностях, хотя и зовем их коротко последовательностями.

Понятие арифметической прогрессии

Арифметической прогрессией называется прогрессивность, каждый член которой, начиная со второго, равен предыдущему члену, к которому добавляют одно и то же число. Это постоянное для данной последовательности число d называется разницей арифметической прогрессии.

Первый член и разность арифметической прогрессии могут быть какими угодно числами. Арифметическая прогрессия растущая, если ее разница положительная, или нисходящая, если ее разница отрицательная.

Пример нисходящей арифметической прогрессии: 11, 9, 7, 5, 3, 1, −1, −3…

Чтобы получить любой член арифметической прогрессии, начиная со второго, надо к предыдущему члена добавить разницу d. Поэтому если первый член и разность арифметической прогрессии равны соответственно а и d, то первые члены этой арифметической прогрессии:

a1, a1 + d, a1 + 2d, a1 + 3d, a1 + 4d…

Обратите внимание: коэффициент при d на 1 меньше порядкового номера члена прогрессии. Так же находим а6 = а1 + 5d, а7 = а1 + 6d и вообще:

An = a1 + (n − 1)d

Это формула n-го члена арифметической прогрессии. Сумма членов конечной арифметической прогрессии равна полусумме крайних ее членов, умноженной на число членов.

Sn = [(a1 + an) / 2] × n

Примеры задач

Пример 1

В арифметической прогрессии a1 = 4, d = 3. Найдите a20.

В калькуляторе задаем:

  • Первое число: 3
  • Последнее число: 20
  • Разница (шаг): 3

Получаем:

  • Арифметическая прогрессия: 61
  • Сумма членов прогрессии: 650
  • Последовательность: 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61

Проверяем самостоятельно по формулам с теории:

  • a20 = а1 + 19d = 4 + 19 × 3 = 61

Пример 2

Найдите сумму первых двадцати членов арифметической прогрессии 5, 7, 9…

В калькуляторе задаем:

  • Первое число: 5
  • Последнее число: 20
  • Разница (шаг): 2

Результаты рассчета:

  • Арифметическая прогрессия: 43
  • Сумма членов прогрессии: 480
  • Последовательность: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43

Проверяем:

  • Здесь а1 = 5, d = 2. Поэтому а20 = 5 + 19 × 2 = 43
  • S = [(5 + 43) / 2] × 20 = 480

Онлайн-калькулятор делает вычисления намного проще: он экономит время, избавляя от необходимости делать вычисления вручную по формулам.

Арифметическая прогрессия — это некая последовательность чисел, каждый следующий член которой отличается от предыдущего на одно и то же число d, называемое шаг прогрессии или разность прогрессии. Калькулятор арифметической прогрессии, используя следующие формулы, может найти первый член арифметической прогрессии , n-ный член прогрессии, найти сумму первых членов или разность.

Арифметическая прогрессия как последовательность, составленная из действительных чисел, связывает их между собой заданной закономерностью ряда. Как правило, числовой ряд начинается с того, что дан первый член арифметической прогрессии, как отправная точка. Далее каждый следующий член прогрессии получается путем прибавления к предыдущему одного и того же параметра, называемого разность арифметической прогрессии или шаг арифметической прогрессии. Если разность является положительным числом, то вся последовательность будет стремиться к плюс бесконечности, так как значения членов будут увеличиваться по мере возрастания их порядковых номеров.

Если разность арифметической прогрессии представлена отрицательным числом, каждый следующий член будет меньше предыдущего и вся последовательность будет стремиться к минус бесконечности. В некоторых случаях предел арифметической прогрессии будет конкретным числом. Это происходит, если шаг прогрессии (разность) равен нулю, тогда первый член арифметической прогрессии совпадает со всеми остальными.

Формулы арифметической прогрессии включают в себя следующие равенства:

формула первого члена арифметической прогрессии;

формула n-ного члена прогрессии;

формула разности арифметической прогрессии;

формула суммы первых членов арифметической прогрессии или суммы определенной выборки членов.

По всем формулам онлайн калькулятор рассчитывает необходимые значения, используя условия, по которым дана арифметическая прогрессия. Числа, выстроенные в симметричной последовательности, дают возможность вычислить любой член или сумму прогрессии, опираясь всего на два или три параметра в зависимости от уровня сложности задания.

Вопрос, как решать арифметическую прогрессию, ставит поначалу в тупик многих учеников. Быть может, это происходит от того, что кажется сложным само название, а может, оттого, что формулы арифметической прогрессии выглядят устрашающе.

На самом деле, арифметическую прогрессию решать совсем несложно, если хорошо понять, что это такое.

А суть арифметической прогрессии состоит в том, что каждый последующий член прогрессии равен сумме предыдущего с неким постоянным числом. Математически это можно выразить формулой:

текст при наведении

Эта формула позволяет найти любой член арифметической прогрессии.

Давайте проверим. Допустим, число d, которое называется разностью арифметической прогрессии, равно 3.

А первое число прогрессии равно 1. Тогда 4-й член арифметической прогрессии равен:

a4= 1 + 3(4-1)= 10

Давайте проверим, просто суммируя каждый член прогрессии:

а2=1+3=4

а3=4+3=7

а4=7+3=10

Все сошлось.

Как видите, решать арифметическую прогрессиию несложно, если понять ее смысл.

автор вопроса выбрал этот ответ лучшим

Элени­я
[445K]

3 года назад 

Сначала вспомним, что есть арифметическая прогрессия. Это определенная, закономерная последовательность чисел, которая поддается описанию формулой. К каждому из членов прогрессии, кроме самого первого, добавляется определенное число, одинаковое каждый раз, поэтому каждый шаг прогрессии закономерен. Каждый шаг — это добавление числа «d» к предыдущему члену прогрессии, данное число так и называют «шагом» прогрессии или еще говорят «разность» арифметической прогрессии.

Всю последовательность членов прогрессии можно обозначить следующим математическим выражением:

Арифметическая прогрессия

в этой формуле каждый последующий член представлен латинской буквой «a». Кроме первого члена прогрессии, к каждому последующему суммируется шаг с определенным значением «d». Таким образом, третий член прогрессии — это число «a», к которому добавили два значения «d» или «2d», третий шаг — «3d» и т. д.

Любое n-нное по счету число «a» можно представить следующей формулой:

Арифметическая прогрессия

Или:

Арифметическая прогрессия как решать?

Сумму всех первых членов прогрессии можно представить, как формулу:

Арифметическая прогрессия

Все сказанное можно представить:

Арифметическая прогрессия как решать?

Существует возрастающая или убывающая арифметическая прогрессия, смотря выше или ниже нуля значение шага «d».

Посчитаем убывающую арифметическую прогрессию, если известно значение первых двух членов прогрессии. Сначала найдем «шаг» прогрессии, затем все остальные члены прогрессии, схема расчета ниже.

Арифметическая прогрессия как решать?

Карел­я Топин
[182K]

9 лет назад 

Арифметическая прогрессия — это ряд чисел, последующее число которого получается в результате сложения предыдущего числа и коэффициента арифметической прогрессии. Например, 2, 6, 10, 14, и т. д. Коэффициент арифметической прогрессии в данном случае равняется 4.

Галин­а Скулк­ина
[64K]

9 лет назад 

Чтобы решать задачи по арифметической прогрессии, надо хорошо понять, что же это такое.

Последовательность, у которой каждый её член, начиная со второго, равен предшествующему члену, сложенному с одним и тем же числом, называется арифметической прогрессией (далее — АП).

Чаще всего в задачах подобного рода ставятся такие вопросы: нахождение первого члена АП, n-го члена, разности АП, суммы всех членов АП.

Из определения АП можно определить связь соседних членов АП

An+1=An+d, например, A5=6, а d=2, то A6=A5+d=6+2=8

При известном первом члене и разности АП находится любой её член по формуле

(An): An=A1+d(n-1)

Используя эту же формулу, можно найти первый член АП

A1=An-d(n-1)

Формула разности (при известных первом и n-ом члене АП)

d=(An-A1)/(n-1)

Сумма членов АП

Sn=(A1+An)n/2

Или, если не известен n-ый член АП, но знаем шаг d и номер n-ого члена АП

Sn=(2A1+(n-1)dn)/2

Лучше разобраться в этом вопросе поможет видеоурок

Galin­a7v7
[120K]

7 лет назад 

Основные формулы арифметической прогрессии:1)для n-го члена прогрессии:an=a1+d(n-1),где an и a1 -1-й и n-й члены прогрессии,d-разность прогрессии,2)Сумма n членов прогрессии:Sn=(a1+an)*n2.Все остальные формулы -это следствие этих 2-х формул.В каждой задаче по известным параметрам из формул находится какой-то неизвестный параметр.Известна самая знаменитая задача с использованием арифметической прогрессии:Учитель задал задачу ученикам:Просуммировать все числа от 1 до 100.И пока все ученики старательно считали,один из учеников за минуту высчитал сумму:5050!И это был маленький Гаусс!Он догадался-как быстро сосчитать эту непростую сумму:S100=(1+100)*1002=5050!

Знаете ответ?

Понравилась статья? Поделить с друзьями:
  • Как правильно составить договор на закупку
  • Сложный план конспект как составить
  • Как составить бизнес план для интернет магазина пример
  • Нашел айфон как его восстановить
  • Как исправить время скачивания