Как найти a чтобы увеличить скорость тела


[18.06.2014 21:27]

Решение 8375:

Номер задачи на нашем сайте: 8375

ГДЗ из решебника:

Тема:

Глава 1. Физические основы механики
§ 2. Динамика


Нашли ошибку? Сообщите в комментариях (внизу страницы)

Раздел: Физика

Полное условие:

2.44 Найти работу A, которую надо совершить, чтобы увеличить скорость движения тела массой m=1 т от v1 = 2 м/с до v2 = 6 м/с на пути s = 10 м. На всем пути действует сила трения Fтр = 2 Н.

Решение, ответ задачи 8375 из ГДЗ и решебников:

Этот учебный материал представлен 1 способом:

Для просмотра в натуральную величину нажмите на картинку

Найти работу A, которую надо совершить, чтобы увеличить скорость движения тела массой m=1 т от v1 = 2 м/с до v2 = 6 м..., Задача 8375, Физика

Идея нашего сайта — развиваться в направлении помощи ученикам школ и студентам.
Мы размещаем задачи и решения к ним. Новые задачи, которые недавно добавляются на наш сайт,
временно могут не содержать решения, но очень скоро решение появится, т.к. администраторы следят
за этим. И если сегодня вы попали на наш сайт и не нашли решения, то
завтра уже к этой задаче может появится решение, а также и ко многим другим задачам. основной поток посетителей к нам — это
из поисковых систем при наборе запроса, содержащего условие задачи

Счетчики: 8429
| Добавил: Admin

Добавить комментарий

Добавлять комментарии могут только зарегистрированные пользователи.

[

Регистрация

|

Вход

]

Равноускоренное прямолинейное движение. Ускорение

  1. Равноускоренное движение
  2. Ускорение
  3. Уравнение скорости и график скорости при равноускоренном прямолинейном движении
  4. Определение пути и перемещения по графику скорости
  5. Задачи

п.1. Равноускоренное движение

Если тело начинает двигаться из состояния покоя, оно набирает скорость не мгновенно, а в течение некоторого времени. Аналогично происходит при торможении: тело останавливается не сразу, а теряя скорость постепенно.

Движение, во время которого скорость тела за любые равные промежутки времени увеличивается на одну и ту же величину, называют равноускоренным.

Примеры равноускоренного движения:

  • скатывание велосипеда с горки, скатывание санок с горки;
  • старт и торможение автомобиля, автобуса, трамвая, поезда;
  • падение на землю камня, ракеты, метеорита.

Это интересно
Время разгона от 0 до 100 км/ч – одна из основных характеристик современных автомобилей.

п.2. Ускорение

Ускорение – это векторная величина, которая равна отношению изменения скорости тела к интервалу времени, за которое это изменение произошло: $$ overrightarrow{a}=frac{overrightarrow{v}-overrightarrow{v_0}} {t} $$ где (overrightarrow{v_0}) — начальная скорость тела, (overrightarrow{v}) — скорость тела в момент времени (t).

В системе СИ (см. §2 данного справочника) скорость измеряется в метрах в секунду, а время – в секундах. Поэтому:

Единицей ускорения в системе СИ является метр на секунду в квадрате (1 м/с2) – ускорение равноускоренного прямолинейного движения, при котором тело за 1 с увеличивает скорость на 1 м/с.

При описании прямолинейного движения мы переходим от векторов к проекциям на ось ОХ (см. §8 данного справочника).

Назовем проекцией вектора ускорения (overrightarrow{a}) на параллельную ему ось координат OX величину (a_x=pm|overrightarrow{a}|=pm a).
Знак проекции определяется следующим правилом:

  • если направление вектора (overrightarrow{a}) совпадает с направлением оси OX, то (a_x=agt 0)
  • если направление вектора (overrightarrow{a}) противоположно направлению оси OX, то (a_x=-alt 0)

При равноускоренном прямолинейном движении проекция ускорения равна: $$ a_x=frac{v_x-v_{0x}}{t} $$ где (v_{0x}) — проекция начальной скорости, (v_x) — проекция скорости в момент времени (t).

п.3. Уравнение скорости и график скорости при равноускоренном прямолинейном движении

Для проекции скорости на ось ОХ в произвольный момент времени можем записать: $$ v_x(t)=v_{0x}+a_x t $$ Сравним полученное уравнение с уравнением прямой (y(x)=kx+b ) (см. §38 справочника по алгебре для 7 класса).
В уравнении скорости роль углового коэффициента (k) играет проекция ускорения (a_x), а роль свободного члена (b) – начальная скорость (v_{0x}).

В осях (t) и (v) график (v_x(t)=v_{0x}+a_x t) является прямой.
Эта прямая:

  • возрастает, если (a_xgt 0)
  • убывает, если (a_xlt 0)
  • постоянна (параллельна оси (t)), если (a_x=0)

Пример построения графика скорости
1-й участок пути. Пусть автомобиль начал движение из состояния покоя с ускорением 4 м/с2. Направим ось ОХ в направлении ускорения и получим уравнение скорости: $$ v_{0x}=0, a_x=4frac{text{м}}{c^2}, v_x(t)=0+4t=4t $$ Через 5 с скорость автомобиля станет равной (v_x(5)=4cdot 5=20) м/с.
2-й участок пути. Пусть автомобиль, набрав эту скорость, проехал с ней без ускорения в течение 10 с. На этом участке уравнение скорости: $$ a_{x}=0, v_x(t)=20frac{text{м}}{c}, 5 cleq tlt 15 c $$ Скорость не меняется, автомобиль движется прямолинейно равномерно.
3-й участок пути. Наконец, на последнем участке пути, автомобиль тормозил с ускорением 5 м/с2 до полной остановки. Тогда уравнение скорости на этом участке: $$ v_{0x}=20frac{text{м}}{c}, a_x=5frac{text{м}}{c^2}, v_x(t)=20-5t $$ Проекция ускорения при торможении отрицательна. Скорость станет равна 0 через 4 с после начала торможения, автомобиль остановится.

Опишем полностью движение на всех участках: $$ v_x(t)= begin{cases} 4t, 0leq tlt 5\ 20, 5leq tlt 15\ 20-5t, 15leq tleq 19 end{cases} $$ И построим график:
Уравнение скорости и график скорости при равноускоренном прямолинейном движении
Участок AB соответствует разгону автомобиля от 0 до 20 м/с, участок BC — равномерному движению со скоростью 20 м/с, участок CD — торможению от 20 м/с до 0.

п.4. Определение пути и перемещения по графику скорости

В §10 данного справочника мы рассматривали неравномерное прямолинейное движение, которое можно разбить на отдельные равномерные участки. Для такого движения путь равен сумме модулей площадей участков, определенных по графику скорости. А перемещение также равно сумме площадей, но уже с учетом знака.
Этот подход можно расширить на любое прямолинейное движение.

Пусть график скорости при прямолинейном движении разбит на (n) участков, площади которых легко определить (треугольники, прямоугольники, трапеции). Тогда:
Весь пройденный путь равен сумме модулей площадей всех участков: $$ s=|s_1|+|s_2|+…+|s_n| $$ Величина перемещения по оси ОХ равна сумме площадей всех участков с учетом знака: $$ triangle x=s_1+s_2+…s_n $$ Конечная координата равна: (x_к=x_0+triangle x)

Пример определения пути и перемещения по графику скорости
Для построенного выше графика скорости автомобиля получаем следующие участки:
1) ΔABE, его площадь равна $$ s_1=frac12 AEcdot BE=frac12cdot 5cdot 20=50 (м) $$ 2) прямоугольник EBCF, его площадь равна $$ s_2=EFcdot BE=10 cdot 20=200 (м) $$ 3) ΔCFD, его площадь равна $$ s_2=frac12 FDcdot GF=frac12cdot 4cdot20=40 (м) $$ Весь пройденный путь: $$ s=s_1+s_2+s_3=50+200+40=290 (м) $$ Скорость автомобиля все время оставалась положительной (направление движения не менялось), поэтому величина перемещения равна пройденному пути: $$ triangle x=s=290 (м) $$

п.5. Задачи

Задача 1. За 1 мин автобус увеличил скорость с 28,8 км/ч до 72 км/ч. Найдите его ускорение, постройте график зависимости скорости от времени.

Дано:
(t=1 мин=60 с)
(v_0=28,8 км/ч=8 м/с)
(v=72 км/ч=20 м/с)
__________________
(a-?)
Как перевести км/ч в м/с – см. §7 данного справочника.

Направим ось ОХ по направлению движения автобуса. Автобус направления движения не меняет, и проекции ускорения и скорости все время положительны и по величине равны значениям величин: $$ a_x=a, v_x=v $$ Поэтому ускорение равно: $$ a=frac{v-v_0}{t} $$ Получаем: $$ a=frac{20-8}{60}=0,2 left(frac{м}{c^2}right) $$ Уравнение зависимости скорости от времени: begin{gather*} v(t)=v_0+at\ v(t)=8+0,2t end{gather*} График:
Задача 1
Ответ: 0,2 м/с2

Задача 2. Поезд двигался прямолинейно равномерно со скоростью 18 км/ч, а в процессе торможения – равноускоренно и остановился через 10 с. Найдите модуль ускорения. Постройте график зависимости скорости от ускорения, найдите пройденный поездом путь за все время торможения.

Дано:
(v_0=18 км/ч=5 м/с)
(v=0)
(t=10 с)
__________________
(a, s-?)
Направим ось ОХ по направлению скорости (v_0). Тогда проекция ускорения: $$ a_x=frac{v-v_0}{t}, a_x=frac{0-5}{10}=-0,5 (м/с^2) $$ Проекция при торможении отрицательна.
Величина (модуль) ускорения: $$ a=|a_x|=0,5 м/c^2 $$ Зависимость скорости от времени: begin{gather*} v(t)=v_0+a_x t\ v(t)=5-0,5t end{gather*} График:
Задача 2
Пройденный путь равен площади треугольника ΔABC: $$ s=frac12 ACcdot BC=frac12cdot 5cdot 10=25 (м) $$ Ответ: 0,5 м/с2; 25 м

Задача 3*. С каким ускорением двигался автомобиль, если его скорость выросла с 36 км/ч до 72 км/ч на пути длиной 600 м? Постройте график зависимости скорости от времени, найдите время движения и путь с помощью графика, проверьте полученное значение пути.

Дано:
(v_0=36 км/ч=10 м/с)
(v=72 км/ч=20 м/с)
(s=600 м)
__________________
(a-?, t-?)
Ускорение равно: (a=frac{v-v_0}{t}). Откуда время равно: (t=frac{v-v_0}{a})
Средняя скорость на всем пути: (v_{cp}=frac{v_0+v}{2})
Весь путь: $$ s=v_{cp}t=frac{v_0+v}{2}cdotfrac{v-v_0}{a}=frac{v^2-v_0^2}{2a} $$ Значит, ускорение равно: $$ a=frac{v^2-v_0^2}{2s} $$ Подставляем: $$ a=frac{20^2-10^2}{2cdot 600}=0,25 left(frac{м}{c^2}right) $$ Уравнение зависимости скорости от времени: begin{gather*} v(t)=v_0+at\ v(t)=10+0,25t end{gather*} График:
Задача 3
Скорость достигает значения (v=20 м/с) в момент времени (t=40 с).
Значит, время движения 40 с.

Путь по графику скорости равен площади четырехугольника ABCD. begin{gather*} S_{ABCD}=S_{ABE}+S_{AECD}=frac12 AEcdot EB+AEcdot AD=frac12cdot 40cdot 10+40cdot 10=200+400=600 (м)\ s=600 м end{gather*} Найденное значение пути совпадает с условием задачи. Все параметры движения найдены верно.
Ответ: 0,25 м/с2; 40 c

Существует формула, с помощью которой можно посчитать путь, пройденный телом, когда нам известны его начальная скорость, ускорение и конечная скорость.

Сокращенно эту формулу называют «путь без времени». Так ее называют потому, что в правой ее части время t движения отсутствует (рис. 1).

Формула, по которой можно вычислить путь тела без учета времени движения

Рис.1. Так выглядит формула, по которой можно вычислить путь тела, не зная, сколько времени занимало движение

Формула пути без времени помогает упростить решение некоторых задач кинематики. Особенно, задач, части C.

Однако, не торопитесь на ЕГЭ записывать эту формулу в готовом виде. Сначала в решении задачи нужно записать вывод этой формулы. И только потом ее можно использовать.

Формулу выводят из выражений для равнопеременного движения. Сейчас я помогу вам вывести эту формулу с помощью нескольких простых шагов.

Выводим формулу пути без времени

Для определенности будем считать, что тело движется по прямой все быстрее и быстрее. То есть, скорость тела увеличивается, так как появляется ускорение.

В таком случае векторы ускорения и скорости тела будут сонаправленными (параллельными и направленными в одну и ту же сторону).

Сонаправленные или противоположно направленные векторы называют коллинеарными векторами. Прочитайте подробнее о коллинеарных векторах.

Чтобы вычислить путь тела, когда скорость его увеличивается, нужно использовать две формулы:

[ large begin{cases} S  = v_{0} cdot t + displaystylefrac{a}{2} cdot t^{2} \ v  = v_{0} + a cdot t end{cases} ]

( large v_{0} left( frac{text{м}}{c} right)) – начальная скорость тела;

( large v left( frac{text{м}}{c} right)) – конечная скорость;

( large a left( frac{text{м}}{c^{2}} right)) – ускорение тела;

( large S left( text{м} right)) – путь, пройденный телом;

(large t left( c right)) – время, за которое тело прошло этот путь.

В формуле для пути S присутствует время t. Получим из нее формулу для пути, в которой время будет отсутствовать.

Что сделать, чтобы получить формулу пути, в которой отсутствует время:

  • сначала получить выражение для времени t из уравнения для скорости;
  •  затем в формулу пути подставить полученное выражение вместо времени t.

Выражаем время из формулы для скорости

Выпишем формулу, связывающую начальную и конечную скорость тела:

[ large v  = v_{0} + a cdot t ]

Избавимся в правой части от начальной скорости, обозначенной символом ( v_{0}). Для этого из обеих частей уравнения вычтем число ( v_{0}). Получим такую запись:

[ large v — v_{0} = a cdot t ]

Теперь, чтобы справа в формуле оставалось только время «t», избавимся от ускорения «a». Для этого разделим обе части уравнения на «a»:

[ large frac{ v — v_{0}}{a} = t ]

Это выражение нам пригодится для дальнейшего вывода формулы «путь без времени».

В формулу пути подставим выражение для времени

Запишем теперь формулу для пути S и полученную формулу для времени t, объединив их в систему:

[ large begin{cases} S  = v_{0}cdot t + displaystyle frac{a}{2}cdot t^{2}\ displaystyle frac{v — v_{0}}{a} = t end{cases} ]

В первом уравнении системы будем заменять символ t дробью из второго уравнения. Тогда система из двух уравнений превратится в единственное уравнение. И в этом уравнении не будет символа t времени:

[large S = v_{0} cdot frac{ v — v_{0}}{a} + frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Осталось теперь упростить полученное выражение. Будем производить упрощение по частям.

Упрощаем выражение, расположенное до знака «плюс» в правой части

Выпишем отдельно все, что располагается до знака «плюс» в правой части уравнения:

[large v_{0} cdot frac{ v — v_{0}}{a} ]

Умножим числитель дроби на число (v_{0}).

Для этого:

  • сначала числитель обособим скобками;
  • затем запишем число (v_{0}) перед скобками;
  • а потом внесем это число внутрь скобок.

В числитель дроби, обособленный с помощью скобок помещаем число (v_{0}):

[large v_{0} cdot frac{ (v — v_{0})}{a} = frac{ v_{0} cdot (v — v_{0})}{a} ]

Теперь необходимо умножить скобку на число (v_{0}).  На рисунке 2 указано, как правильно выражение в скобках умножить на число, стоящее за скобками.

Правильно умножить скобку на число можно так

Рис. 2. Чтобы умножить скобку на число, нужно умножить каждое слагаемое в скобке на это число

Нужно к каждой скорости в скобках дописать число (v_{0}), умножая его на эти скорости. Получим такое выражение:

[large frac{ v_{0} cdot (v — v_{0})}{a} = frac{ (v_{0} cdot v — v_{0} cdot v_{0})}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} ]

То есть, вместо первоначальной записи, мы получили такую запись:

[large v_{0} cdot frac{ (v — v_{0})}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} ]

Возводим в квадрат дробь

После знака «плюс» в правой части уравнения располагается дробь, которую нужно возвести в квадрат. Обратим внимание на эту дробь:

[large left( frac{ v — v_{0}}{a} right)^{2}]

Правильно возвести дробь в степень поможет рисунок 3.

Чтобы дробь возвести в степень, нужно отдельно возвести в эту степень ее числитель и знаменатель отдельно

Рис. 3. Дробь возводим в степень, отдельно возводя в эту степень ее числитель и знаменатель

В результате возведения в квадрат дробь приобретет такой вид:

[large left( frac{ v — v_{0}}{a} right)^{2} = frac{ (v — v_{0})^{2}}{a^{2}}]

В числителе этой дроби находится выражение в скобках, которое нужно возвести в квадрат. И нам придется применить одну из формул сокращенного умножения. Запоминать формулы сокращенного умножения удобно в виде, приведенном на рисунке 4.

Вид формул сокращенного умножения, удобный для запоминания

Рис. 4. Удобный для запоминания вид формул сокращенного умножения

Используем для этого формулу сокращенного умножения, которая содержит знак «минус». Она называется «Квадрат разности». Тогда числитель дроби превратится в такую запись:

[large ( v — v_{0})^{2} = (v^{2} + v^{2}_{0} — 2vv_{0})]

Теперь можем записать полученную дробь:

[large frac{ (v — v_{0})^{2}}{a^{2}} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}} ]

Упрощаем правую часть, записанную после знака «плюс»

Обратим внимание на все, что располагается в правой части уравнения после знака «плюс»:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Мы уже провели некоторые преобразования и можем теперь заменить дробь, возводимую в квадрат более подробной записью:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2} = frac{a}{2} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}}]

Примечание: Когда мы умножаем одну дробь на другую, то можем менять местами знаменатели этих дробей.

Итак, поменяем местами знаменатели дробей:

[large frac{a}{2} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}} = frac{a}{a^{2}} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2}]

Теперь видно, что мы можем сократить ускорение и еще немного упростить выражение:

[large frac{a}{a^{2}} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2} = frac{1}{a} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2}]

А перемножив числители и знаменатели двух дробей, получим такую запись:

[large frac{1}{a} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Теперь, первоначальную дробь можно заменить дробью, полученной в ходе преобразований:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Мы закончили преобразовывать выражения, содержащиеся в правой части уравнения после знака «плюс».

Теперь, осталось сложить две дроби в правой части – дробь, записанную до знака «плюс» с дробью, записанной после знака «плюс». А чтобы эти дроби можно было сложить, нужно будет привести их к общему знаменателю.

Приводим к общему знаменателю дроби в правой части уравнения

Вернемся еще раз к первоначальному уравнению:

[large S = v_{0} cdot frac{ v — v_{0}}{a} + frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Заменим правую часть этого уравнения выражениями, которые мы получили:

[large S = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} + frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Сравним знаменатели дробей.

Первая дробь обладает знаменателем «a», а вторая – «2a». Выберем число «2a» в качестве общего знаменателя обеих дробей.

Чтобы первую дробь привести к общему знаменателю «2a», умножим ее на единицу:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot 1]

Примечания:

  1. Нам известно, что если какое-либо число умножить на единицу, то после умножения это число не изменится. Значит, если какое-либо выражение умножить на единицу, то полученное выражение останется равным самому себе. На единицу можно умножать все, что угодно – дроби, выражения в скобках и т. п.
  2. Математики часто применяют прием умножения на единицу. А после этого единицу записывают в виде некоторой дроби. При этом используют правило: Единица – это дробь, у которой числитель и знаменатель равны (одинаковые).

Так как снизу в первой дроби не хватает числа 2, то единицу представим в виде дроби 2/2:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot 1 = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot frac{2}{2}]

Получим такую дробь:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot frac{2}{2} = frac{ 2(v_{0} cdot v – v^{2}_{0} )}{2a} ]

Поместим ее в выражение для пути:

[large S = frac{ 2(v_{0} cdot v – v^{2}_{0} )}{2a} + frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Дроби с одинаковыми знаменателями складываем

Теперь знаменатели дробей равны. И мы можем записать эти дроби под общим знаменателем:

[large S = frac{ 2(v_{0} cdot v – v^{2}_{0} ) + (v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Раскроем скобки в числителе полученного выражения:

[large S = frac{ 2v_{0} v – 2v^{2}_{0} + v^{2} + v^{2}_{0} — 2vv_{0}}{2a}]

Примечание: Обратим внимание на то, что в числителе дважды встречается член (2v_{0} v), обладающий различными знаками. В начале числителя – знаком «плюс», а в конце числителя – знаком «минус». Это означает, что из числа (2v_{0}v) вычитается такое же число (2vv_{0}). В конце концов, это число покидает нашу запись и, она упрощается:

[large S = frac{ – 2v^{2}_{0} + v^{2} + v^{2}_{0}}{2a}]

Перепишем выражение, записав все, что содержит знак «плюс» в начало числителя:

[large S = frac{ v^{2} + v^{2}_{0} – 2v^{2}_{0}}{2a}]

Вычтем подобные члены, содержащие ( v^{2}_{0}):

[large v^{2}_{0} – 2v^{2}_{0} = – v^{2}_{0} ]

В результате получим короткую запись. Именно о ней говорят, когда имеется ввиду формула пути без времени:

[large boxed{ S = frac{ v^{2} — v^{2}_{0}}{2a} }]

Примечания:

  1. Это формула, с помощью которой можно рассчитать путь тела, когда известны его начальная и конечная скорость, а, так же, ускорение.
  2. Видно, что время t в правой части этого выражения отсутствует.
  3. Мы выводили эту формулу для случая, когда тело увеличивало скорость.

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

[large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

[ large begin{cases} S  = v_{0} cdot t — displaystyle frac{a}{2} cdot t^{2} \ v  = v_{0} — a cdot t end{cases} ]

Выводы

Пусть нам известны начальная и конечная скорость тела и его ускорение. Тогда путь, пройденный телом, можно рассчитать так:

  1. Когда движение равноускоренное и скорость тела увеличивается: [large boxed{ S = frac{ v^{2} — v^{2}_{0}}{2a} }]
  2. А когда движение равнозамедленное и скорость уменьшается: [large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

В физике существует несколько видов ускорения, которые используются для описания того или иного типа механического перемещения тел в пространстве. Все эти виды являются векторными величинами. В данной статье не будем рассматривать вопрос, куда направлено ускорение, а сосредоточим свое внимание на формулах модуля ускорения.

Что такое ускорение?

Максимально полное определение этой кинематической характеристики можно привести следующее: ускорение — это величина, показывающая быстроту изменения скорости во времени. Речь идет об изменении как модуля, так и направления. Математически ускорение вычисляют так:

Смоленский государственный институт искусств: факультеты, специальности, сроки обучения, документы для поступленияВам будет интересно:Смоленский государственный институт искусств: факультеты, специальности, сроки обучения, документы для поступления

a = dv/dt.

Оно называется мгновенным, то есть справедливым для конкретного момента времени t. Чтобы найти среднее значение модуля ускорения, формулу такую необходимо использовать:

a = (v2 — v1)/(t2 — t1).

Где v2 и v1 — скорости в моменты времени t2 и t1 соответственно.

Единицами измерения изучаемой физической величины являются метры в квадратную секунду (м/с2). Многих может смутить возведение во вторую степень единиц времени, тем не менее, понять смысл единицы м/с2 несложно, если ее представить в виде [м/с]/с. Последняя запись означает изменение скорости на одну единицу за одну единицу времени.

Скорость и ускорение

Движение по прямой и ускорение

Самой простой траекторией для перемещения тел в пространстве является прямая линия. Если скорость при движении по такой траектории не изменяется, то говорить об ускорении не приходится, поскольку оно будет равно нулю.

В технике широко распространено прямолинейное равноускоренное (равнозамедленное) движение. Например, при старте автомобиля или при его торможении мы имеем именно этот вид движения. Для его математического описания пользуются следующими равенствами:

v = v0±a*t;

l = v0*t±a*t2/2.

Здесь v0 — некоторая начальная скорость тела, которая может быть также равна нулю, l — пройденный телом путь к моменту времени t. Знак + говорит об ускорении тела, знак — — о его торможении. Важно запомнить, что время t при использовании записанных формул начинает отсчитываться от момента появления у тела постоянного ускорения a. С учетом записанных равенств, формулы модуля ускорения тела принимают вид:

±a = (v — v0)/t;

±a = 2*(l — v0*t)/t2.

Знак ускорения

Как правило, если тело ускоряется, то говорят о положительном ускорении, если же оно замедляет свое движение, то говорят об отрицательной величине a. Нетрудно проверить, что обе формулы приводят к одной и той же единице измерения ускорения (м/с2).

Полное ускорение и его компоненты при движении тела по кривой

Компоненты полного ускорения

В случае перемещения тела по криволинейной траектории, величину a удобно представить в виде двух взаимно перпендикулярных составляющих. Они называются тангенциальным at и нормальным an ускорениями. Для такого случая формула модуля ускорения точки принимает вид:

a = √(at2 + an2).

Тангенциальную компоненту следует рассчитывать через производную функции v(t) по времени. Нормальная же компонента определяется не изменением модуля скорости, а самой ее величиной. Для ее расчета пользуются таким выражением:

an = v2/r.

Здесь r — радиус кривизны траектории, который в случае вращения по окружности совпадает с радиусом последней.

Для полноты информации отметим, что криволинейность траектории перемещения тела является достаточным признаком присутствия ненулевой нормальной составляющей ускорения. При этом величина at может быть равна нулю, что является справедливым для равномерного вращения тел.

Угловое ускорение

Как было отмечено во введении, существуют несколько видов ускорения. Одним из них является угловая кинематическая величина. Обозначим ее α. По аналогии с линейным ускорением, формула модуля ускорения углового имеет вид:

α = dω/dt.

Где греческой буквой ω (омега) обозначена скорость угловая, единицами измерения которой являются радианы в секунду. Величина α показывает, как быстро тело увеличивает или замедляет скорость своего вращения.

Ускорение угловое можно связать с линейной величиной. Делается это с помощью такой формулы:

α = at/r.

Важно понимать, что угловое ускорение является удобным способом представления тангенциальной составляющей полного ускорения в случае вращательного движения. Удобство здесь заключается в независимости величины α от расстояния до оси вращения r. В свою очередь, компонента at линейно возрастает при увеличении радиуса кривизны r.

Пример решения задачи

Вращение по окружности

Известно, что тело вращается по окружности, радиус которой составляет 0,2 метра. Вращение является ускоренным, при этом скорость изменяется во времени по следующему закону:

v = 2 + 3*t2 + 2*t3.

Необходимо определить тангенциальное, нормальное, полное и угловое ускорения в момент времени 3 секунды.

Начнем решать эту задачу по порядку. Тангенциальная компонента определяется через производную скорости. Имеем:

at = dv/dt = 6*t + 6*t2 = 6*3 + 6*9 = 76 м/с2.

Отметим, что это очень большое ускорение по сравнению с ускорением свободного падения (9,81 м/с2).

Нормальная компонента вычисляется так:

an = v2/r = 1/r*(2 + 3*t2 + 2*t3)2 = 1/0,2*(2+27+54)2 = 34445 м/c2.

Теперь можно рассчитать полное ускорение. Оно будет равно:

a = √(at2 + an2) = √(76 2 + 34445 2) = 34445,1 м/с2.

То есть, полное ускорение практически полностью образовано нормальной компонентой.

Наконец, ускорение угловое определяется по формуле:

α = at/r = 76/0,2 = 380 рад/с2.

Полученное значение соответствует увеличению скорости угловой приблизительно на 60 оборотов за каждую секунду.

В физике существует несколько видов ускорения, которые используются для описания того или иного типа механического перемещения тел в пространстве. Все эти виды являются векторными величинами. В данной статье не будем рассматривать вопрос, куда направлено ускорение, а сосредоточим свое внимание на формулах модуля ускорения.

Что такое ускорение?

Максимально полное определение этой кинематической характеристики можно привести следующее: ускорение — это величина, показывающая быстроту изменения скорости во времени. Речь идет об изменении как модуля, так и направления. Математически ускорение вычисляют так:

a = dv/dt.

Оно называется мгновенным, то есть справедливым для конкретного момента времени t. Чтобы найти среднее значение модуля ускорения, формулу такую необходимо использовать:

a = (v2 — v1)/(t2 — t1).

Где v2 и v1 — скорости в моменты времени t2 и t1 соответственно.

Единицами измерения изучаемой физической величины являются метры в квадратную секунду (м/с2). Многих может смутить возведение во вторую степень единиц времени, тем не менее, понять смысл единицы м/с2 несложно, если ее представить в виде [м/с]/с. Последняя запись означает изменение скорости на одну единицу за одну единицу времени.

Скорость и ускорение

Движение по прямой и ускорение

Самой простой траекторией для перемещения тел в пространстве является прямая линия. Если скорость при движении по такой траектории не изменяется, то говорить об ускорении не приходится, поскольку оно будет равно нулю.

В технике широко распространено прямолинейное равноускоренное (равнозамедленное) движение. Например, при старте автомобиля или при его торможении мы имеем именно этот вид движения. Для его математического описания пользуются следующими равенствами:

v = v0±a*t;

l = v0*t±a*t2/2.

Здесь v0 — некоторая начальная скорость тела, которая может быть также равна нулю, l — пройденный телом путь к моменту времени t. Знак + говорит об ускорении тела, знак — — о его торможении. Важно запомнить, что время t при использовании записанных формул начинает отсчитываться от момента появления у тела постоянного ускорения a. С учетом записанных равенств, формулы модуля ускорения тела принимают вид:

±a = (v — v0)/t;

±a = 2*(l — v0*t)/t2.

Знак ускорения

Как правило, если тело ускоряется, то говорят о положительном ускорении, если же оно замедляет свое движение, то говорят об отрицательной величине a. Нетрудно проверить, что обе формулы приводят к одной и той же единице измерения ускорения (м/с2).

Полное ускорение и его компоненты при движении тела по кривой

Компоненты полного ускорения

В случае перемещения тела по криволинейной траектории, величину a удобно представить в виде двух взаимно перпендикулярных составляющих. Они называются тангенциальным at и нормальным an ускорениями. Для такого случая формула модуля ускорения точки принимает вид:

a = √(at2 + an2).

Тангенциальную компоненту следует рассчитывать через производную функции v(t) по времени. Нормальная же компонента определяется не изменением модуля скорости, а самой ее величиной. Для ее расчета пользуются таким выражением:

an = v2/r.

Здесь r — радиус кривизны траектории, который в случае вращения по окружности совпадает с радиусом последней.

Для полноты информации отметим, что криволинейность траектории перемещения тела является достаточным признаком присутствия ненулевой нормальной составляющей ускорения. При этом величина at может быть равна нулю, что является справедливым для равномерного вращения тел.

Угловое ускорение

Как было отмечено во введении, существуют несколько видов ускорения. Одним из них является угловая кинематическая величина. Обозначим ее α. По аналогии с линейным ускорением, формула модуля ускорения углового имеет вид:

α = dω/dt.

Где греческой буквой ω (омега) обозначена скорость угловая, единицами измерения которой являются радианы в секунду. Величина α показывает, как быстро тело увеличивает или замедляет скорость своего вращения.

Ускорение угловое можно связать с линейной величиной. Делается это с помощью такой формулы:

α = at/r.

Важно понимать, что угловое ускорение является удобным способом представления тангенциальной составляющей полного ускорения в случае вращательного движения. Удобство здесь заключается в независимости величины α от расстояния до оси вращения r. В свою очередь, компонента at линейно возрастает при увеличении радиуса кривизны r.

Пример решения задачи

Вращение по окружности

Известно, что тело вращается по окружности, радиус которой составляет 0,2 метра. Вращение является ускоренным, при этом скорость изменяется во времени по следующему закону:

v = 2 + 3*t2 + 2*t3.

Необходимо определить тангенциальное, нормальное, полное и угловое ускорения в момент времени 3 секунды.

Начнем решать эту задачу по порядку. Тангенциальная компонента определяется через производную скорости. Имеем:

at = dv/dt = 6*t + 6*t2 = 6*3 + 6*9 = 76 м/с2.

Отметим, что это очень большое ускорение по сравнению с ускорением свободного падения (9,81 м/с2).

Нормальная компонента вычисляется так:

an = v2/r = 1/r*(2 + 3*t2 + 2*t3)2 = 1/0,2*(2+27+54)2 = 34445 м/c2.

Теперь можно рассчитать полное ускорение. Оно будет равно:

a = √(at2 + an2) = √(76 2 + 34445 2) = 34445,1 м/с2.

То есть, полное ускорение практически полностью образовано нормальной компонентой.

Наконец, ускорение угловое определяется по формуле:

α = at/r = 76/0,2 = 380 рад/с2.

Полученное значение соответствует увеличению скорости угловой приблизительно на 60 оборотов за каждую секунду.

Понравилась статья? Поделить с друзьями:
  • Как найти жениха для моей дочери
  • Как найти длину записи
  • Как найти кадмий в no mans sky
  • Как найти пароли в яндексе на андроиде
  • Акт инвентаризации как правильно составить образец