Как найти абсцисы точек

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Как найти координаты точки

Поддержать сайтспасибо

Каждой точке координатной плоскости соответствуют две координаты.

Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором
ордината точки.

Найти координаты точки

Рассмотрим как в системе координат (на координатной плоскости):

  • находить координаты точки;
  • найти положение точки.

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.

Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».

Координаты точки плоскости

Обозначают координаты точки, как указано выше (·) A (2; 3).

Пример (·) A (2; 3) и (·) B (3; 2).

Точки с разными координатами

Запомните!
!

На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.

Особые случаи расположения точек

  1. Если точка лежит на оси «Oy»,
    то её абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси «Ox», то её ордината равна 0.
    Например,
    точка F (3, 0).
  3. Начало координат — точка O имеет координаты, равные нулю O (0,0).
    Точки на координатный осях
  4. Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
    Точки на прямой перпендикулярной оси абсцисс
  5. Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
    Точка на оси абсцисс
  6. Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
    Точка на оси абсцисс
  7. Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
    Точка на оси ординат

Как найти положение точки по её координатам

Найти точку в системе координат можно двумя способами.

Первый способ

Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:

  1. Отметить на оси «Ox», точку с координатой
    «−4», и провести через неё прямую перпендикулярную оси «Ox».
  2. Отметить на оси «Oy»,
    точку с координатой 2, и провести через неё прямую перпендикулярную
    оси «Oy».
  3. Точка пересечения перпендикуляров (·) D — искомая точка.
    У неё абсцисса равна «−4», а ордината равна 2.

    Как найти точку в системе координат

Второй способ

Чтобы найти точку D (−4 , 2) надо:

  1. Сместиться по оси «x» влево на
    4 единицы, так как у нас
    перед 4
    стоит «».
  2. Подняться из этой точки параллельно оси y вверх на 2 единицы, так
    как у нас перед 2 стоит «+».
    Как найти точку на координатной плоскости

Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


From Wikipedia, the free encyclopedia

Illustration of a Cartesian coordinate plane, showing the absolute values (unsigned dotted line lengths) of the coordinates of the points (2, 3), (0, 0), (–3, 1), and (–1.5, –2.5). The first value in each of these signed ordered pairs is the abscissa of the corresponding point, and the second value is its ordinate.

In common usage, the abscissa refers to the (x) coordinate and the ordinate refers to the (y) coordinate of a standard two-dimensional graph.

The distance of a point from the y-axis, scaled with the x-axis, is called the abscissa or x coordinate of the point. The distance of a point from the x-axis scaled with the y-axis is called the ordinate or y coordinate of the point.

For example, if (x, y) is an ordered pair in the Cartesian plane, then the first coordinate in the plane (x) is called the abscissa and the second coordinate (y) is the ordinate.

In mathematics, the abscissa (; plural abscissae or abscissas) and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system:

abscissa {displaystyle equiv x}-axis (horizontal) coordinate
ordinate {displaystyle equiv y}-axis (vertical) coordinate

Usually these are the horizontal and vertical coordinates of a point in plane, the rectangular coordinate system. An ordered pair consists of two terms—the abscissa (horizontal, usually x) and the ordinate (vertical, usually y)—which define the location of a point in two-dimensional rectangular space:

{displaystyle (overbrace {x} ^{displaystyle {text{abscissa}}},overbrace {y} ^{displaystyle {text{ordinate}}})}

The abscissa of a point is the signed measure of its projection on the primary axis, whose absolute value is the distance between the projection and the origin of the axis, and whose sign is given by the location on the projection relative to the origin (before: negative; after: positive).

The ordinate of a point is the signed measure of its projection on the secondary axis, whose absolute value is the distance between the projection and the origin of the axis, and whose sign is given by the location on the projection relative to the origin (before: negative; after: positive).

Etymology[edit]

Though the word «abscissa» (from Latin linea abscissa ‘a line cut off’) has been used at least since De Practica Geometrie published in 1220 by Fibonacci (Leonardo of Pisa), its use in its modern sense may be due to Venetian mathematician Stefano degli Angeli in his work Miscellaneum Hyperbolicum, et Parabolicum of 1659.[1]

In his 1892 work Vorlesungen über die Geschichte der MathematikLectures on history of mathematics«), volume 2, German historian of mathematics Moritz Cantor writes:

Gleichwohl ist durch [Stefano degli Angeli] vermuthlich ein Wort in den mathematischen Sprachschatz eingeführt worden, welches gerade in der analytischen Geometrie sich als zukunftsreich bewährt hat. […] Wir kennen keine ältere Benutzung des Wortes Abscisse in lateinischen Originalschriften. Vielleicht kommt das Wort in Uebersetzungen der Apollonischen Kegelschnitte vor, wo Buch I Satz 20 von ἀποτεμνομέναις die Rede ist, wofür es kaum ein entsprechenderes lateinisches Wort als abscissa geben möchte.[2]

At the same time it was presumably by [Stefano degli Angeli] that a word was introduced into the mathematical vocabulary for which especially in analytic geometry the future proved to have much in store. […] We know of no earlier use of the word abscissa in Latin original texts. Maybe the word appears in translations of the Apollonian conics, where [in] Book I, Chapter 20 there is mention of ἀποτεμνομέναις, for which there would hardly be a more appropriate Latin word than abscissa.

The use of the word “ordinate” is related to the Latin phrase “linea ordinata appliicata”, or “line applied parallel”.

In parametric equations[edit]

In a somewhat obsolete variant usage, the abscissa of a point may also refer to any number that describes the point’s location along some path, e.g. the parameter of a parametric equation.[3] Used in this way, the abscissa can be thought of as a coordinate-geometry analog to the independent variable in a mathematical model or experiment (with any ordinates filling a role analogous to dependent variables).

See also[edit]

  • Dependent and independent variables
  • Function (mathematics)
  • Relation (mathematics)
  • Line chart

References[edit]

  1. ^ Dyer, Jason (March 8, 2009). «On the Word «Abscissa»«. numberwarrior.wordpress.com. The number Warrior. Retrieved September 10, 2015.
  2. ^ Cantor, Moritz (1900). Vorlesungen über Geschichte der Mathematik (in German). Vol. 2 (2nd ed.). Leipzig: B.G. Teubner. p. 898. Retrieved 10 September 2015.
  3. ^ Hedegaard, Rasmus; Weisstein, Eric W. «Abscissa». MathWorld. Retrieved 14 July 2013.

External links[edit]

  • The dictionary definition of abscissa and ordinate at Wiktionary

Прямоугольная система координат. Ось абсцисс и ординат

О чем эта статья:

Прямоугольная декартова система координат

Французский математик Рене Декарт предложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.

Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;

Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.

  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Координаты точки в декартовой системе координат

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.

Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.

Число xM — это координата точки М на заданной координатной прямой.

Пусть точка будет проекцией точки Mx на Ох, а My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на ОуyM. Как это выглядит на координатных осях:

Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.

Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.

Запиши знаки абсциссы и ординаты заданной точки P(100) числовой окружности?

Алгебра | 10 — 11 классы

Запиши знаки абсциссы и ординаты заданной точки P(100) числовой окружности.

Угол2четверти, абсцисса отрицательна, ордината положительна.

Найдите на числовой окружности все точки с абсциссой или ординатой, удовлетворяющей заданному неравенству или системе неравенств, и запишите ( с помощью неравенства), каким числам t они соответствуют ?

Найдите на числовой окружности все точки с абсциссой или ординатой, удовлетворяющей заданному неравенству или системе неравенств, и запишите ( с помощью неравенства), каким числам t они соответствуют :

Найти на числовой окружности точки с абсциссой или ординатой, удовлетворяющие заданному неравенству, и записать с помощью двойного неравенства?

Найти на числовой окружности точки с абсциссой или ординатой, удовлетворяющие заданному неравенству, и записать с помощью двойного неравенства.

Задайте на алгеброиеском языке и изобразите на координатной плоскости множество точек, у которых : а)ордината равна утроенной абсциссе ; б)ордината на 3 больше абсциссы ; в)абсцисса на 2 больше ордина?

Задайте на алгеброиеском языке и изобразите на координатной плоскости множество точек, у которых : а)ордината равна утроенной абсциссе ; б)ордината на 3 больше абсциссы ; в)абсцисса на 2 больше ординаты ; г)сумма абсциссы и ординаты равна 4.

Запиши координаты точки, у которой абсцисса равна 4, а ордината противоположна абсциссе?

Запиши координаты точки, у которой абсцисса равна 4, а ордината противоположна абсциссе.

Тригонометрия?

Знаки в какой четверти может находиться точка а если частное от деления ее абсциссы на ординату есть число положительное.

Существует ли на числовой окружности точка, ордината которой равна 0, 9?

Существует ли на числовой окружности точка, ордината которой равна 0, 9?

Найдите на числовой окружности точки с данной ординатой y = 0, 5, и запишите, каким числам t они соответствуют?

Найдите на числовой окружности точки с данной ординатой y = 0, 5, и запишите, каким числам t они соответствуют.

На графике уравнения 16x — 15y = 80 взята точка А найдите : а) ординату точки А, если ее абсцисса 10 ; б) абсциссу точки А, если ее ордината — 4?

На графике уравнения 16x — 15y = 80 взята точка А найдите : а) ординату точки А, если ее абсцисса 10 ; б) абсциссу точки А, если ее ордината — 4.

ПОМОГИТЕ ?

СКОЛЬКО СМОЖИТЕ ХОТЯ БЫ укажите знаки абциссы и ординаты точки числовой окружности найдите на числовой окружности точки с абцисой или ординатой удовлетворяющей заданному неравенству и запишите с помощью двойного неравенства какими числами t они соответствуют 1.

Х меньше 1 / 2 3.

Х меньше√ 2 / 2 4.

Больше минус √2 / 2 5.

Известно, что ордината некоторой точки прямой, заданной уравнением −3x−10y−11 = 0, равна −2?

Известно, что ордината некоторой точки прямой, заданной уравнением −3x−10y−11 = 0, равна −2.

Вычисли абсциссу этой точки.

Ответ : Абсцисса точки равна.

Вы открыли страницу вопроса Запиши знаки абсциссы и ординаты заданной точки P(100) числовой окружности?. Он относится к категории Алгебра. Уровень сложности вопроса – для учащихся 10 — 11 классов. Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие ответы по интересующей теме. Чтобы получить наиболее развернутый ответ, можно просмотреть другие, похожие вопросы в категории Алгебра, воспользовавшись поисковой системой, или ознакомиться с ответами других пользователей. Для расширения границ поиска создайте новый вопрос, используя ключевые слова. Введите его в строку, нажав кнопку вверху.

Урок «Определение синуса и косинуса на единичной окружности»

Краткое описание документа:

Видеоурок «Определение синуса и косинуса на единичной окружности» представляет наглядный материал для урока по соответствующей теме. В ходе урока рассматриваются понятия синуса и косинуса для чисел, соответствующих точкам единичной окружности, описывается множество примеров, формирующих умение решать задания, где используется данная интерпретация понятий. Удобное и понятное иллюстрирований решений, подробно описанный ход рассуждений помогают быстрее достичь целей обучения, повысить эффективность урока.

Видеоурок начинается с представления темы. В начале демонстрации дается определение синуса и косинуса числа. На экране демонстрируется единичная окружность с центром в начале координат, отмечаются точки пересечения единичной окружности с осями координат А, В, С, D. В рамке выделено определение, в котором указано, что если точке М, принадлежащей единичной окружности, соответствует некоторое число t, то абсцисса этой точки является косинусом числа t и обозначается cos t, ордината точки является синусом и обозначается sin t. Озвучивание определения сопровождается изображением на единичной окружности точки М, указанием ее абсциссы и ординаты. Представляется краткая запись с помощью обозначений, что для М(t)=M(x;y), х= cos t, у= sin t. Указываются ограничения, накладываемые на значение косинуса и синуса числа. Согласно рассмотренным данным, -1 2 +у 2 =1. Отмечается, что после подстановки вместо координат соответствующих функций, получим cos 2 t+ sin 2 t=1 – основное тригонометрическое тождество. Пользуясь способом нахождения sin t и cos t с помощью единичной окружности, заполняется таблица основных значений синуса и косинуса для чисел от 0 до 2π с шагом π/4 и для чисел от π/6 до 11π/6 с шагом π/6. На экране демонстрируются эти таблицы. С помощью их и рисунка учитель может проверить, как усвоен материал и насколько ученикам понятно происхождение значений sin t и cos t.

Рассматривается пример, в котором вычисляется sin t и cos t для t=41π/4. Решение иллюстрируется рисунком, на котором изображена единичная окружность с центром в начале координат. На ней отмечается точка 41π/4. Замечено, что данная точка совпадает с положением точки π/4. Это доказывается с помощью представления данной дроби в виде смешанной 41π/4=π/4+2π·5. Пользуясь таблицей значений косинуса, получаем значения cos π/4=√2/2 и sinπ/4=√2/2. Из полученных сведений следует, что cos 41π/4=√2/2 и sin 41π/4=√2/2.

В втором примере необходимо вычислить sin t и cos t для t=-25π/3. На экране изображается единичная окружность с отмеченной на ней точкой t=–25π/3. Сначала для решения задания число –25π/3 представляется в виде смешанной дроби, чтобы обнаружить, какому табличному значению будет соответствовать его sin t и cos t. После преобразования получаем –25π/3=-π/3+2π·(-4). Очевидно, t=-25π/3 совпадет на окружности с точкой –π/3 или 5π/3. Из таблицы выбираем соответствующие значения синуса и косинуса cos 5π/3=1/2 и sin 5π/3=-√3/2. Эти значения будут верными и для рассматриваемого числа cos (-25π/3)=1/2 и sin (-25π/3)=-√3/2. Задача решена.

Аналогично решается и пример 3, в котором необходимо вычислить sin t и cos t для t=37π. Чтобы решить пример, число 37π раскладывается, вычленяя π и 2π. В таком представлении получается 37π=π+2π·18. На единичной окружности, которая изображена рядом с решением, отмечается данная точка на пересечении отрицательной части оси ординат и единичной окружности – точка π. Очевидно, что значения синуса и косинуса числа совпадут с табличными значениями π. Из таблицы находим значения sin π=-1 и cos π=0. Соответственно, эти же значения являются искомыми, то есть sin 37π=-1 и cos 37π=0.

В примере 4 требуется вычислить sin t и cos t при t=-12π. Представляем число в виде -12π=0+2π·(-6). Соответственно, точка -12π совпадает с точкой 0. Значения косинуса и синуса этой точки sin 0=1 и cos 0=0. Эти значения и являются искомыми sin (-12π)=1 и cos (-12π)=0.

В пятом примере нужно решить уравнение sin t=√3/2. В решении уравнения используется понятие синуса числа. Так как он представляет ординату точки М(t), то необходимо отыскать точку с ординатой √3/2. На рисунке, сопровождающем решение, видно, что ординате √3/2 соответствуют две точки – первая π/3 и вторая 2π/3. Учитывая периодичность функции, отмечаем, что t=π/3+2πk и t= 2π/3+2πk для целого k.

В примере 6 решается уравнение с косинусом — cos t=-1/2. В поиске решений уравнения находим на единичной окружности точки с абсциссой 2π/3. На экране демонстрируется рисунок, на котором отмечается абсцисса -1/2. Ей соответствуют две точки на окружности — 2π/3 и -2π/3. Учитывая периодичность функций, найденное решение записывается в виде t=2π/3+2πk и t=-2π/3+2πk, где k- целое число.

В примере 7 решается уравнение sin t-1=0. Чтобы найти решение, уравнение преобразуется к виду sin t=1. Синусу 1 соответствует число π/2. Учитывая периодичность функции, найденное решение записывается в виде t=π/2+2πk, где k – целое. Аналогично в примере 8 решается уравнение cos t+1=0. Преобразуем уравнение к виду cos t=-1. Точка, абсцисса которой равна -1, соответствует числу π. Эта точка отмечена на единичной окружности, изображенной рядом с текстовым решением. Соответственно, решением данного уравнения является число t=π+2πk, где k – целое число. Не более сложным является решение уравнения cos t+1=1 в примере 9. Преобразовав уравнение, получаем cos t=0. На единичной окружности, изображенной рядом с решением, отмечаем точки –π/2 и -3π/2, в которых косинус принимает значение 0. Очевидно, решением данного уравнение будет ряд значений t=π/2+πk, где k – целое число.

В примере 10 сравниваются значения sin 2 и cos 3. Чтобы решение было наглядным, демонстрируется рисунок, где отмечены точки 2 и 3. Зная, что π/2≈1,57, оцениваем удаленность точек от нее. На рисунке отмечается, что точка 2 удалена от π/2 на 0,43, в то время как 3 удалена на 1,43, поэтому точка 2 имеет большую абсциссу, чем точка 3. Это значит, что sin 2>cos 3.

Пример 11 описывает вычисление выражения sin 5π/4. Так как 5π/4 – это π/4+π, то, используя формулы приведения, выражение можно преобразовать в вид — sin π/4. Из таблицы выбираем его значение — sin π/4=-√2/2. Аналогично в примере 12 находится значение выражения cos7π/6. Преобразуя его к виду cos(π/6+π), получаем выражение – cos π/6. Табличное значение – cos π/6=-√3/2. Это значение и будет решением.

Далее предлагается запомнить важные равенства, которые помогают в решении задач – это sin(-t)= -sin t и cos (-t)=cos t. Фактически данное выражение отображает четность косинуса и нечетность синуса. На изображении единичной окружности рядом с равенствами можно увидеть, как на координатной плоскости работают данные равенства. Также представляются два равенства, отображающие периодичность функций, важные для решения задач sin(t+2πk)= sin t и cos (t+2πk)=cos t. Демонстрируются равенства, отображающие симметричное расположение точек на единичной окружности sin(t+π)= -sin t и cos (t+π)=-cos t. Рядом с равенствами строится изоражение, на котором отображается расположение этих точек на единичной окружности. И последние представленные равенства sin(t+π/2)= cos t и cos (t+π/2)=- sin t.

Видеоурок «Определение синуса и косинуса на единичной окружности» рекомендуется применять на традиционном школьном уроке математик для повышения его эффективности, обеспечения наглядности объяснения учителя. С этой же целью материал может использоваться в ходе дистанционного обучения. Пособие также может быть полезно для формирования соответствующих навыков решения заданий у учеников при самостоятельном освоении материала.

«Определение синуса и косинуса на единичной окружности».

Дадим определение синуса и косинуса числа

ОПРЕДЕЛЕНИЕ: если точка М числовой единичной окружности соответствует числу t(тэ), то абсциссу точки М называют косинусом числа t(тэ) и обозначают cost, а ординату точки М называют синусом числа t(тэ) и обозначают sint(рис).

Значит, если М(t) = М (x ,y)(эм от тэ равно эм с координатами икс и игрек), то x = cost, y= sint (икс равен косинус тэ, игрек равен синус тэ).Следовательно, -1≤ cost ≤ 1, -1≤ sint ≤1( косинус тэ больше либо равно минус один, но меньше либо равно один ; синус тэ больше либо равно минус один, но меньше либо равно один).Зная, что каждая точка числовой окружности имеет в системе xOy свои координаты, можно составить таблицу значении синуса и косинуса по четвертям окружности, где значение косинуса положительно в первой и четвертой четвертях и, соответственно, отрицательно во второй и третьей четвертях.

Значение синуса положительно в первой и второй четвертях и, соответственно, отрицательно в третьей и четвертой четвертях. (показать на чертеже)

Так как уравнение числовой окружности имеет вид х 2 + у 2 =1( икс квадрат плюс игрек квадрат равно одному), то получаем равенство:

(косинус квадрат тэ плюс синус квадрат тэ равно единице).

Опираясь на таблицы, которые мы составляли при определении координат точек числовой окружности, составим таблицы для координат точек числовой окружности для значений cost и sint .

ПРИМЕР 1. Вычислить cos t и sin t, если t = (тэ равно сорок один пи на четыре).

Решение. Числу t = соответствует та же точка числовой окружности, что и числу , так как = ∙π = ( 10 + ) ∙π = + 2π ∙ 5( сорок один пи на четыре равно сумме пи на четыре и произведения два пи на пять). А для точки t = по таблице значение косинусов 1 имеем cos = и sin =. Следовательно,

ПРИМЕР 2. Вычислить cos t и sin t, если t = (тэ равно минус двадцать пять пи на три).

РЕШЕНИЕ: Числу t = соответствует та же точка числовой окружности, что и числу , так как = ∙ π = – (8 + )∙π = + 2π ∙ ( – 4 ) ( минус двадцать пять пи на три равно сумме минус пи на три и произведению двух пи на минус четыре). А числу соответствует на числовой окружности та же точка, что и числу . А для точки t = по таблице 2 имеем cos = и sin = .Следовательно, cos () = и sin () =.

ПРИМЕР 3. Вычислить cos t и sin t, если t = 37π; ( тэ равно тридцать семь пи).

РЕШЕНИЕ: 37π = 36π + π = π + 2π ∙ 18.Значит, числу 37π соответствует та же точка числовой окружности, что и числу π. А для точки t = π по таблице 1 имеем cos π = –1, sin π=0.Значит, cos37π = –1, sin37π=0.

ПРИМЕР 4. Вычислить cos t и sin t, если t = –12π (равно минус двенадцать пи).

РЕШЕНИЕ: – 12π = 0 + 2π ∙ ( – 6), то есть числу – 12π соответствует та же точка числовой окружности, что и числу ноль. А для точки t = 0 по таблице 1 имеем cos 0 = 1, sin 0 =0.Значит, cos( –12π) =1, sin( –12π) =0.

ПРИМЕР 5. Решить уравнение sin t = .

Решение. Учитывая, что sin t – это ордината точки М(t) (эм от тэ) числовой окружности, найдем на числовой окружности точки с ординатой и запишем каким числам t они соответствуют. Одна точка соответствует числу , а значит, и любому числу вида + 2πk. Вторая точка соответствует числу , а значит, и любому числу вида + 2πk. Ответ: t = + 2πk,где kϵZ (ка принадлежит зэт),t= + 2πk,где kϵZ (ка принадлежит зэт).

ПРИМЕР 6. Решить уравнение cos t = .

Решение. Учитывая, что cos t – это абсцисса точки М(t) (эм от тэ) числовой окружности, найдем на числовой окружности точки с абсциссой и запишем каким числам t они соответствуют. Одна точка соответствует числу ,а значит и любому числу вида + 2πk. А вторая точка соответствует числу или , а значит, и любому числу вида + 2πk или + 2πk.

Ответ: t = + 2πk, t=+ 2πk ( или ± + 2πk( плюс минус два пи на три плюс два пи ка) , где kϵZ (ка принадлежит зэт).

ПРИМЕР 7.Решить уравнение cos t = .

Решение. Аналогично предыдущему примеру, на числовой окружности нужно найти точки c абсциссой и записать, каким числам t они соответствуют.

По рисунку видно, что абсциссу имеют две точки Е и S, а каким числам они соответствуют мы пока не сможем сказать. К этому вопросу вернемся позже.

ПРИМЕР 8.Решить уравнение sin t = – 0,3.

Решение. На числовой окружности найдем точки с ординатой – 0,3 и запишем , каким числам t они соответствуют.

Ординату – 0,3 имеют две точки P и H, а каким числам они соответствуют мы пока не сможем сказать. К этому вопросу так же вернемся позже.

ПРИМЕР 9.Решить уравнение sin t –1 =0

Решение. Перенесем минус единицу в правую часть уравнения, получим синус тэ равно одному ( sin t =1). На числовой окружности нам нужно найти точку, у которой ордината равна один. Эта точка соответствует числу , а значит всем числам вида + 2πk( пи на два плюс два пи ка).

Ответ: t = + 2πk, kϵZ( ка принадлежит зэт).

ПРИМЕР 10.Решить уравнение cos t + 1 = 0.

Перенесем единицу в правую часть уравнения, получим косинус тэ равно минус один(cos t = – 1).Абсциссу минус один имеет точка числовой окружности, которая соответствует числу π, а это значит, и все числам вида π+2πk. Ответ: t = π+ 2πk, kϵZ.

ПРИМЕР 11. Решить уравнение cos t + 1 = 1.

Перенесем единицу в правую часть уравнения, получим косинус тэ равно нулю(cos t = 0).Абсциссу ноль имеют точки В и D (рис 1), которые соответствуют числам , , , , и т. д. Эти числа можно записать так + πk. Ответ : t = + πk, kϵZ.

ПРИМЕР 12. Какое из двух чисел больше, cos 2 или cos 3? (косинус двух или косинус трех)

Решение. Переформулируем вопрос по-другому: на числовой окружности отмечены точки 2 и 3. У какой из них абсцисса больше?

На числовой окружности отметим точки 2 и 3. Вспомним, что .Значит, точка 2 удалена от по окружности примерно на 0,43( нуль целых сорок три сотых) ( 2 –≈ 2 – 1,57 = 0,43), а точка 3 на 1,43 (одну целую сорок три сотых). Следовательно, точка 2 находится ближе к точке , чем точка 3, поэтому у нее абсцисса больше (мы учли, что абсциссы обе отрицательные).

Ответ: cos 2 > cos 3.

ПРИМЕР 13. Вычислить sin (синус пять пи на четыре)

Решение. sin( + π) = – sin = (синус пять пи на четыре равно сумме пи на четыре и пи равно минус синус пи на четыре равно минус корень из двух на два).

ПРИМЕР 14. Вычислить cos (косинус семь пи на шесть).

cos( + π ) = – cos =. (представили семь пи на шесть как сумму пи на шесть и пи и применили третье равенство).

Для синуса и косинуса получим некоторые важные формулы.

1. Для любого значения t справедливы равенства

Синус от минус тэ равно минус синус тэ

Косинус от мину тэ равно косинусу тэ.

По рисунку видно, что у точек Е и L, симметричных относительно оси абсцисс, одна и та же абсцисса, это значит

cos(–t) = cost, но равны по модулю и противоположные по знаку ординаты (это значит sin(– t) = – sint.

2. Для любого значения t справедливы равенства

sin (t+2πk) = sin t

cos (t+2πk) = cos t

Синус от тэ плюс два пи ка равно синусу тэ

Косинус от тэ плюс два пи ка равно косинусу тэ

Это верно, так как числам t и t+2πk соответствует одна и та же точка.

3. Для любого значения t справедливы равенства

Синус от тэ плюс пи равно минус синусу тэ

косинус от тэ плюс пи равно минус косинусу тэ

Пусть числу t соответствует точка E числовой окружности, тогда числу t+π соответствует точка L, которая симметрична точке E относительно начала координат. По рисунку видно, что у этих точек абсциссы и ординаты равны по модулю и противоположны по знаку. Это значит,

4. Для любого значения t справедливы равенства

Синус тэ плюс пи на два равно косинусу тэ

Косинус тэ плюс пи на два равно минус синусу тэ.

источники:

http://algebra.my-dict.ru/q/3752437_zapisi-znaki-abscissy-i-ordinaty-zadannoj/

http://urokimatematiki.ru/urok-opredelenie-sinusa-i-kosinusa-na-edinichnoy-okruzhnosti-834.html

Математика 5-6 класс

10 баллов

как найти абсциссу и ординату точки на координатной плоскости?

Влад Тихонов

15.07.2019 15:46:22

Чтобы найти абсциссу, нужно по оси x выбрать то число, которое указано в координатах на первом месте. Чтобы найти ординату, нужно по оси y выбрать то число, которое указано в координатах на втором месте.

Все предметы

Рейтинг пользователей

    • Калькуляторы
    • Справочник
    • Словарь

    Координаты на плоскости:

    Возьмем на плоскости две взаимно перпендикулярные прямые, пересекающиеся в точке Координаты на плоскости - определение и вычисление с примерами решения

    Определение: Координатными осями на плоскости называются две взаимно перпендикулярные прямые, на которых установлены: 1) направления, 2) масштаб и 3) общая точка отсчета.

    Координаты на плоскости - определение и вычисление с примерами решения

    Назовем одну из осей осью Координаты на плоскости - определение и вычисление с примерами решения или осью абсцисс, другую—осью Координаты на плоскости - определение и вычисление с примерами решения или осью ординат. Точку их пересечения назовем началом координат.

    Возьмем произвольную точку Координаты на плоскости - определение и вычисление с примерами решения, лежащую на плоскости, и опустим из нее перпендикуляры на оси координат, т. е. найдем ее проекции на оси. Обозначим проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения. Обозначим координату точки Координаты на плоскости - определение и вычисление с примерами решения (по оси Координаты на плоскости - определение и вычисление с примерами решения) через Координаты на плоскости - определение и вычисление с примерами решения, а координату точки Координаты на плоскости - определение и вычисление с примерами решения (по оси Координаты на плоскости - определение и вычисление с примерами решения) через Координаты на плоскости - определение и вычисление с примерами решения. Введем определение:

    Определение. Абсциссой точки называется координата ее проекции на ось Координаты на плоскости - определение и вычисление с примерами решения. Ординатой точки называется координата ее проекции на ось Координаты на плоскости - определение и вычисление с примерами решения.

    Абсциссу точки обычно обозначают буквой Координаты на плоскости - определение и вычисление с примерами решения, ординату— буквой Координаты на плоскости - определение и вычисление с примерами решения. Точку Координаты на плоскости - определение и вычисление с примерами решения, имеющую абсциссу Координаты на плоскости - определение и вычисление с примерами решения и ординату Координаты на плоскости - определение и вычисление с примерами решения, обозначают следующим образом: пишут скобку и в ней на первом месте ставят абсциссу, на втором ординату и разделяют эти два числа запятой или точкой с запятой. Таким образом, запись точки выглядит так: Координаты на плоскости - определение и вычисление с примерами решения.

    Координатные оси разделяют плоскость на четыре части, которые называют четвертями.

    Первой четвертью называется та часть плоскости, в которой абсцисса и ордината положительны.

    Второй четвертью — та часть, в которой абсцисса отрицательна, а ордината положительна.

    Третьей четвертью—та часть, в которой абсцисса и ордината отрицательны, и, наконец, четвертой,—та часть, в которой абсцисса положительна, а ордината отрицательна (рис. 7). На рис. 8 указаны Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения Заметим, что абсцисса Координаты на плоскости - определение и вычисление с примерами решения по абсолютной величине равна расстоянию точки от оси ординат, так как Координаты на плоскости - определение и вычисление с примерами решения (см. рис. 7), а ордината — расстоянию точки Координаты на плоскости - определение и вычисление с примерами решения от оси абсцисс, так как Координаты на плоскости - определение и вычисление с примерами решения.

    Координаты на плоскости - определение и вычисление с примерами решения

    Пример:

    Найти точку Координаты на плоскости - определение и вычисление с примерами решения (рис. 9).

    Решение:

    Возьмем на оси Координаты на плоскости - определение и вычисление с примерами решения точку Координаты на плоскости - определение и вычисление с примерами решения с координатой Координаты на плоскости - определение и вычисление с примерами решения, ее координатный отрезок Координаты на плоскости - определение и вычисление с примерами решения. На оси Координаты на плоскости - определение и вычисление с примерами решения возьмем точку Координаты на плоскости - определение и вычисление с примерами решения с координатным отрезком Координаты на плоскости - определение и вычисление с примерами решения. Восставим перпендикуляры к осям из точек Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, точка их пересечения и даст искомую точку Координаты на плоскости - определение и вычисление с примерами решения.

    Координаты на плоскости - определение и вычисление с примерами решения

    Пример:

    Найти расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Иначе говоря, нужно найти длину отрезка Координаты на плоскости - определение и вычисление с примерами решения (рис. 10).

    Решение:

    Обозначим проекцию точки Координаты на плоскости - определение и вычисление с примерами решения на ось Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а ее проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения— через Координаты на плоскости - определение и вычисление с примерами решения. Проекцию точки Координаты на плоскости - определение и вычисление с примерами решения на ось Координаты на плоскости - определение и вычисление с примерами решения обозначим через Координаты на плоскости - определение и вычисление с примерами решения и через Координаты на плоскости - определение и вычисление с примерами решения — ее проекцию на ось Координаты на плоскости - определение и вычисление с примерами решения. Тогда Координаты на плоскости - определение и вычисление с примерами решения. Из точки Координаты на плоскости - определение и вычисление с примерами решения проведем прямую, параллельную оси Координаты на плоскости - определение и вычисление с примерами решения, до пересечения с прямой Координаты на плоскости - определение и вычисление с примерами решения в точке Координаты на плоскости - определение и вычисление с примерами решения. Рассмотрим треугольник Координаты на плоскости - определение и вычисление с примерами решения По теореме Пифагора имеем Координаты на плоскости - определение и вычисление с примерами решения. to Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решения, как противоположные стороны прямоугольников; кроме того, на основании формулы (3 из § 1) направленные отрезки Координаты на плоскости - определение и вычисление с примерами решения, и Координаты на плоскости - определение и вычисление с примерами решения будут равны Координаты на плоскости - определение и вычисление с примерами решения Подставляя полученные выражения в Координаты на плоскости - определение и вычисление с примерами решения, получим

    Координаты на плоскости - определение и вычисление с примерами решения

    откуда

    Координаты на плоскости - определение и вычисление с примерами решения

    т. е. расстояние между двумя точками равно корню квадратному из суммы квадратов разностей, координат.

    Примечание. Расстояние между двумя точками, так же как длина отрезка, всегда положительно, поэтому в формуле (1) перед квадратным корнем берут только знак плюс.

    Пример:

    Найти расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

    Решение:

    Применяя формулу (1), получим

    Координаты на плоскости - определение и вычисление с примерами решения

    Пример:

    Найти длину отрезка Координаты на плоскости - определение и вычисление с примерами решения, если даны Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

    Решение:

    Применяя формулу (1), получим

    Координаты на плоскости - определение и вычисление с примерами решения

    Пример:

    Найти точку Координаты на плоскости - определение и вычисление с примерами решения, делящую отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении Координаты на плоскости - определение и вычисление с примерами решения, если известны координаты точек Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

    Решение:

    По условию задачи надо найти такую точку Координаты на плоскости - определение и вычисление с примерами решения, чтобы было выполнено равенство

    Координаты на плоскости - определение и вычисление с примерами решения

    Обозначим, как и выше, проекции точки Координаты на плоскости - определение и вычисление с примерами решения на оси через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, а проекции точки Координаты на плоскости - определение и вычисление с примерами решения—через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения; тогда Координаты на плоскости - определение и вычисление с примерами решения (рис. 11).

    Кроме того, обозначим координаты искомой точки Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, а ее проекции на оси — через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, т. е. Координаты на плоскости - определение и вычисление с примерами решения

    Так как прямые Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения параллельны между собой, то на основании теоремы о пропорциональных отрезках можно записать, что

    Координаты на плоскости - определение и вычисление с примерами решения

    Но Координаты на плоскости - определение и вычисление с примерами решения поэтому, подставляя в равенство Координаты на плоскости - определение и вычисление с примерами решения, будем иметь уравнение

    Координаты на плоскости - определение и вычисление с примерами решения

    решая которое найдем абсциссу точки Координаты на плоскости - определение и вычисление с примерами решения:

    Координаты на плоскости - определение и вычисление с примерами решения

    Рассуждая аналогично о проекциях на оси Координаты на плоскости - определение и вычисление с примерами решения, т.е. о точках Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения, по- лучим ординату точки Координаты на плоскости - определение и вычисление с примерами решения, делящей отрезок в отношении Координаты на плоскости - определение и вычисление с примерами решения,

    Координаты на плоскости - определение и вычисление с примерами решения

    Итак, искомая точка Координаты на плоскости - определение и вычисление с примерами решения имеет координаты, определяемые равенствами (2) и (3).

    Координаты на плоскости - определение и вычисление с примерами решения

    Пример:

    Найти точку, делящую в отношении 1:2 отрезок Координаты на плоскости - определение и вычисление с примерами решения, гдеКоординаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения.

    Здесь Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения.

    Решение:

    Применяя формулы (2) и (3), получим:

    Координаты на плоскости - определение и вычисление с примерами решения

    • Заказать решение задач по высшей математике

    Пример:

    Найти точку, делящую расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения в отношении 3:1.

    Здесь Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения.

    Решение:

    По формулам (2) и (3) находим:

    Координаты на плоскости - определение и вычисление с примерами решения

    Следствие (из формул (2) и (3)). Если точка Координаты на плоскости - определение и вычисление с примерами решения делит отрезок Координаты на плоскости - определение и вычисление с примерами решения пополам, то Координаты на плоскости - определение и вычисление с примерами решения, поэтому

    Координаты на плоскости - определение и вычисление с примерами решения

    т. е. абсцисса середины отрезка равна средней арифметической абсцисс его начала и конца; ордината середины отрезка равна средней арифметической ординат его начала и конца.

    Координаты на плоскости - определение и вычисление с примерами решения

    Пример:

    Даны три вершины треугольника: Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Найти длину биссектрисы угла Координаты на плоскости - определение и вычисление с примерами решения (рис. 12).

    Решение:

    Найдем длины сторон Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Для этого применим формулу (1):

    Координаты на плоскости - определение и вычисление с примерами решения

    Обозначим точку пересечения биссектрисы угла Координаты на плоскости - определение и вычисление с примерами решения с противоположной стороной Координаты на плоскости - определение и вычисление с примерами решения через Координаты на плоскости - определение и вычисление с примерами решения, а ее координаты—через Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Помня, что биссектриса внутреннего угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам, можно утверждать, что точка Координаты на плоскости - определение и вычисление с примерами решения делит отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении Координаты на плоскости - определение и вычисление с примерами решения; поэтому, применяя формулы (2) и (3), получим:

    Координаты на плоскости - определение и вычисление с примерами решения

    т.е. Координаты на плоскости - определение и вычисление с примерами решения (5,6).

    Теперь вычисляем длину биссектрисы как расстояние между точками Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения:

    Координаты на плоскости - определение и вычисление с примерами решения

    Пример:

    Найти точку пересечения медиан треугольника, вершинами которого являются точки Координаты на плоскости - определение и вычисление с примерами решения, Координаты на плоскости - определение и вычисление с примерами решенияКоординаты на плоскости - определение и вычисление с примерами решения (рис. 13).

    Координаты на плоскости - определение и вычисление с примерами решения

    Решение:

    Точка пересечения медиан делит каждую из медиан в отношении 2:1, считая от вершины треугольника. Обозначим через Координаты на плоскости - определение и вычисление с примерами решения середину стороны Координаты на плоскости - определение и вычисление с примерами решения; по формулам (4) и (5) можно найти ее координаты:

    Координаты на плоскости - определение и вычисление с примерами решения

    т. е. Координаты на плоскости - определение и вычисление с примерами решения. Точка Координаты на плоскости - определение и вычисление с примерами решения пересечения медиан делит отрезок Координаты на плоскости - определение и вычисление с примерами решения в отношении 2:1, поэтому ее координаты найдутся по формулам (2) и (3):

    Координаты на плоскости - определение и вычисление с примерами решения

    Итак, искомая точка Координаты на плоскости - определение и вычисление с примерами решения Задача 5. Записать условие того, что точка Координаты на плоскости - определение и вычисление с примерами решения находится на расстоянии 5 от точки Координаты на плоскости - определение и вычисление с примерами решения. По формуле (1) имеем

    Координаты на плоскости - определение и вычисление с примерами решения

    или, возводя обе части равенства в квадрат, получим

    Координаты на плоскости - определение и вычисление с примерами решения

    Это равенство есть уравнение с двумя неизвестными Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения. Этому уравнению удовлетворяют координаты любой точки, лежащей на расстоянии 5 от точки Координаты на плоскости - определение и вычисление с примерами решения. Иначе говоря, ему удовлетворяют координаты любой точки, принадлежащей геометрическому месту точек, расстояние которых от точки Координаты на плоскости - определение и вычисление с примерами решения равно 5. Это геометрическое место есть окружность.

    Следовательно, можно сказать, что уравнение Координаты на плоскости - определение и вычисление с примерами решения есть уравнение окружности с центром в точке Координаты на плоскости - определение и вычисление с примерами решения и радиуса 5.

    В следующих главах будут рассмотрены уравнения с двумя неизвестными Координаты на плоскости - определение и вычисление с примерами решения и Координаты на плоскости - определение и вычисление с примерами решения и те линии (геометрические места), точки которых имеют координаты, удовлетворяющие этим уравнениям.

    • Линейная функция
    • Квадратичная функция
    • Тригонометрические функции
    • Производные тригонометрических функции
    • Уравнение линии
    • Функции нескольких переменных
    • Комплексные числ
    • Координаты на прямой

    Понравилась статья? Поделить с друзьями:
  • Блэк десерт анакреон как найти
  • Как найти эксцентриситет орбиты спутника
  • Как найти фото с техосмотра
  • Как найти мобильный телефон по номеру мегафон
  • Как составить шкалу природных рекордов северной америки