Как найти абсолютную погрешность измерения напряжения

Определение погрешности измерения на электроизмерительных приборах. Класс точности прибора

Следует помнить,
что никакое измерение, т.е. сравнение с
эталонной величиной, не может быть
выполнено абсолютно точно. Результат
измерения всегда содержит некоторую
ошибку. Кроме того, надо учесть, что
измерение проводится не путем сравнения
с самим эталоном, а с помощью измерительного
прибора (который при поверке был сравнен
с эталоном). Очевидно, что, измеряя с
помощью этого измерительного прибора,
мы не можем сделать ошибки меньшей, чем
та, которая определяется погрешностью
измерительного устройства.

Разность между
показаниями прибора и действительным
значением измеряемой величины называется
абсолютной погрешностьюА.

А
= АИЗМ
АДЕЙСТ
.

(1)

Отношение
абсолютной погрешности к действительному
значению измеряемой величины, выраженное
в процентах, называется относительной
погрешностью
:

.

(2)

Приведенные
определения относительной и абсолютной
погрешности не дают возможности узнать
их величину, так как действительное
значение измеряемой величины нам
неизвестно. Определить величины
погрешностей при электрических измерениях
становится возможным, если известен
класс
точности

прибора (КЛ
Т
).
Он дает предельную абсолютную погрешность,
выраженную в процентах от номинального
показания прибора (максимального при
данном пределе измерения) АНОМ:

КЛ
Т
=
.

(3)

Класс
точности указан на шкале прибора (рис.
6).

Зная класс точности
прибора, можно легко определить абсолютную
погрешность измерения А:

А
=
.

(4)

Например,
для катушки сопротивления в 1000 Ом класса
точности 0,05 абсолютная погрешность:

А
=

= 0,5 (Ом).

Относительную
погрешность также можно вычислить через
класс точности прибора. По определению
относительная
погрешность
:

.

(5)

Учитывая,
что действительное значение измеряемой
величины АДЕЙСТ
и показания прибора АИЗМ
примерно равны (АДЕЙСТ

АИЗМ),
и, используя формулу (4), получаем:

.

(6)

Видно,
что относительная погрешность измерений
будет тем меньше, чем ближе снимаемые
показания к номинальному значению для
данного прибора, т.е. к концу
шкалы
.
Следовательно, при работе с многопредельными
ЭИП нужно так выбирать предел измерения
прибора, чтобы показания считывались
со второй половины шкалы. Следует
помнить, что номинальное значение
многопредельного ЭИП определяется
положением, в котором стоит переключатель
пределов при данном измерении.

При работе с
многопредельными приборами нужно
внимательно рассчитывать цену одного
деления
шкалы ЦД. Под делением
следует понимать не разность между
штрихами, а разность между ними в
соответствии с оцифровкой
шкалы. Цена
деления
равномерной шкалы равна
отношению номинального значения
показания прибора (предела измерения)
к общему числу делений N
на шкале прибора: ЦД =
.
Численное значение измеряемой величины
АИЗМ равно цене деления ЦД,
умноженной на измеренное число делений
NИЗМ
по шкале:

АИЗМ
= ЦД·NИЗМ.

(7)

Рассмотрим
примеры определения погрешностей для
многопредельных ЭИП.

Пример 1.

Переключатель
пределов

измерения

Шкала
прибора

Класс
точности КЛ
Т
(0,5)

Рис. 6.

На рис. 6 изображен
многопредельный вольтметр. Вычислить
абсолютную и относительную погрешности
определения напряжения. Класс точности
вольтметра 0,5.

Номинальное
значение напряжения 300 В (определяется
положением переключателя пределов
напряжения).

Цена деления
данного предела измерения ЦД ==
2 В/дел.

Измеренное значение
напряжения UИЗМ = 2 В/дел.·75
дел. = 150 В.

Абсолютная
погрешность измерения U
=

= 1,5 (В).

Относительная
погрешность измерения 0
=

= 1,0%.

Пример 2

Рис. 7.

На рис. 7 изображен
тот же многопредельный вольтметр при
другом положении переключателя пределов
измерений. Вычислить абсолютную и
относительную погрешности определения
напряжения.

Номинальное
значение напряжения 150 В.

Цена деления
данного предела измерения ЦД =
150 В / 150 дел. =
1 В/дел.

Измеренное значение
напряжения UИЗМ = 1 В/дел.×150
дел. =
150 В.

Абсолютная
погрешность измерения U
=

= 0,75 (В).

Относительная
погрешность измерения 0
=

= 0,5%.

Таким образом,
выбор наиболее подходящего предела
измерения приводит к уменьшению как
абсолютной, так и относительной
погрешности.

Масштабные
измерительные преобразователи (МИП)

При необходимости
измерения токов и напряжений, превышающих
верхний предел измерения используемого
прибора, используются МИПы.

Для приборов
постоянного тока в качестве МИП
используются шунты и добавочные
сопротивления. Для приборов переменного
тока – добавочные резисторы (для
напряжений до 30 кВ и частот от 10 Гц до
20 кГц) и измерительные трансформаторы
тока и напряжения.

Расчет шунта к
амперметру

При измерении тока
амперметр включается последовательно
с нагрузкой. Если амперметром требуется
измерить ток, превышающий верхний предел
измерения, то параллельно амперметру
включается шунт с сопротивлением RШ
(рис. 8). Шунт представляет собой
толстую константановую или манганиновую
пластину. Применение этих сплавов для
изготовления шунтов связано с тем, что
их сопротивление слабо зависит от
температуры.

Рис. 8.

На рис. 8 показана
схема подключения шунта RШ к
амперметру. RА – внутреннее
сопротивление амперметра, которое мало
по сравнению с сопротивлением нагрузки
RН для того, чтобы включение
амперметра последовательно с нагрузкой
не приводило к существенным изменениям
тока в цепи нагрузки. I – ток через
сопротивление нагрузки RН; IШ
– ток через шунт с сопротивлением RШ;
IА – ток через амперметр с
сопротивлением RА.

По первому правилу
Кирхгофа
алгебраическая сумма токов
в узле равна нулю:

I =
IА
+ IШ

и, следовательно,

IШ = I
IА.

Падение напряжения
между точками а и b:

Uаb
= IА·RА
= IШ·RШ.

Таким образом, для
того, чтобы с помощью данного амперметра
измерить ток I, сопротивление шунта
должно быть

RШ
=
,

(8)

где
I/IA
= n
коэффициент
шунтирования
,
показывающий, во сколько раз расширяется
предел измерения амперметра при
подключении шунта.

Фактический ток
в цепи определяется произведением
показаний прибора и множителя n.

Рис. 9.

Реальный шунт
(рис. 9) должен иметь четыре контакта: к
двум из них подключается прибор, а к
двум другим – соединительные провода
электрической цепи.

Пример 3.

Рассчитать шунт
к миллиамперметру на 10 mА с внутренним
сопротивлением 500 Ом, если надо измерить
ток 10 А.

Воспользуемся
формулой (8):

Соседние файлы в папке Переменный ток

  • #
  • #
  • #
  • #
  • #
  • #

Задача 1

Для
определения мощности в цепи постоянного тока были измерены напряжение сети U вольтметром класса точности NB
с пределом измерений Um, ток I амперметром класса точности Na
с пределом измерений Im. Определить
мощность, потребляемую приёмником, а также относительную и абсолютную
погрешности её определения.

Дано:

Найти:

Решение:

1)  Найдем
мощность, потребляемую приемником

2)  Класс
точности определяет приведенную погрешность

3)  Найдем
абсолютную погрешность измерения тока и напряжения

,

.

4)  Найдем
абсолютную погрешность измерения мощности при косвенном измерении

5)  Найдем
относительную погрешность измерения мощности

6)  Доверительный
интервал результата измерения с вероятностью .

Задача 2

Проведено пять
независимых наблюдений одного и того же напряжения U.
Найти результат измерения и доверительную вероятность того, что абсолютная
погрешность измерения не превышает по модулю DU. Систематической погрешностью можно пренебречь.

Дано:

Найти:

Решение:

1)  Определим
среднее арифметическое результатов измерения

2)  Определяем
среднее квадратичное результатов измерения

3)  Для
определения интервала и вероятности пользуются распределением Стьюдента, где
доверительный интервал равняется     , где

— коэффициент Стьюдента,

 — среднее квадратичное отклонение
результата измерения.

4)  Находим
доверительный интервал

5)  Результат
измерения

Задача 3

Обмотка
магнитоэлектрического измерительного механизма имеет сопротивление RO  и рассчитана на предельный длительный ток IO, при котором подвижная часть получает
наибольшее отклонение. Каким образом на базе указанного измерительного
механизма сделать амперметр с пределом измерений Im
и вольтметр с пределом измерений Um?

Дано:

Найти: ,

Решение:

1)  Расчет
измерительной цепи амперметра

1.1 
Определяем коэффициент расширения пределов измерения по току

1.2     Определяем сопротивление
шунта

1.3 
 Схема измерительной цепи

2)  Расчет
цепи вольтметра

2.1 Определяем коэффициент
расширения пределов измерения по напряжению

2.2  Определяем добавочное
сопротивление

2.3 
Схема включения


Задача 4

Определить
цену деления измерительных приборов:

1) амперметра, имеющего на шкале na делений и предел измерения Im;

2)вольтметра, имеющего nв делений шкалы и предел измерения Um;

3) ваттметра, имеющего nВТ делений шкалы и пределы измерений по току Im ВТ и напряжению Um
ВТ
.

Дано:

Найти:

Решение:

1) Цена деления
амперметра

2) Цена деления
вольтметра

3) Цена
деления ваттметра

Задача 5

У вольтметра и
амперметра с пределами измерений Um и Im, включенных соответственно через измерительные
трансформаторы напряжения 6000/100 и тока 600/5, отчёт по шкале составил U2 и I2.
Определить напряжение и ток в сети, а также предел допускаемой абсолютной и
относительной погрешностей измерения, если известны класс точности приборов Na и Nв и
измерительных трансформаторов Nтн и Nтт. Привести схему измерения.

Дано:

Найти:

Решение:

1) Определим
коэффициенты трансформации трансформатора напряжения и тока

2) Определим
ток и напряжение в сети

3) Определим
абсолютные погрешности амперметра и вольтметра

4) Определяем
абсолютные погрешности коэффициентов трансформации трансформатора тока и
напряжения

5) Результирующие
абсолютные погрешности измерения тока и напряжения равны

6)
Относительные погрешности измерения тока и напряжения

Задача 6

Определить
относительные погрешности измерения сопротивления Rx
в цепи постоянного тока с помощью амперметра и вольтметра при подключении их
двумя возможными способами. Сопротивление амперметра – Ra,
вольтметра – Rв. Сделать вывод о
целесообразности использования той или иной схемы.

Дано:

Найти: .

Решение:

Принципиальные
схемы

 

Схема
1                                              Схема 2

1)  Для
схемы включения 1.

1.1. 
Измеренное сопротивление.

1.2. 
Определяем абсолютную погрешность.

1.3. 
Определяем относительную погрешность.

Погрешности измерений

Общие сведения об измерениях. Погрешности измерений и средств измерений

Общие сведения об измерениях

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств. Под измерением понимается процесс экспериментального сравнения данной физической величины с однородной физической величиной, значение которой принято за единицу.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы классифицируются по различным признакам. Например, измерительные приборы можно построить на основе аналоговой схемотехники или цифровой. Соответственно их делят на аналоговые и цифровые. Ряд приборов, выпускаемых промышленностью, допускают только отсчитывание показаний. Эти приборы называются показывающими. Измерительные приборы, в которых предусмотрена регистрация показаний, носят название регистрирующих.

Погрешности измерений

Погрешность является одной из основных характеристик средств измерений.

Под погрешностью электроизмерительных приборов, измерительных преобразователей и измерительных систем понимается отклонение их выходного сигнала от истинного значения входного сигнала.

Абсолютная погрешность Δa прибора есть разность между показанием прибора ах и истинным значением а измеряемой величины, т.е.

Абсолютная погрешность, взятая с обратным знаком, называется поправкой.

Относительная погрешность δ представляет собой отношение абсолютной погрешности к истинному значению измеряемой величины. Относительная погрешность, обычно выражаемая в процентах, равна

Приведенная погрешность γП есть выраженное в процентах отношение абсолютной погрешности Δa к нормирующему значению апр

Нормирующее значение – условно принятое значение, могущее быть равным конечному значению диапазона измерений (предельному значению шкалы прибора).

Погрешности средств измерений

Класс точности прибора указывают просто числом предпочтительного рода, например, 0,05. Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность). Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Класс точности прибора (например, амперметра) дается выражением

При установлении классов точности приборов нормируется приведенная погрешность, а не относительная. Причина этого заключается в том, что относительная погрешность по мере уменьшения значений измеряемой величины увеличивается.

По ГОСТ 8.401-80 в качестве значений класса точности прибора используется отвлеченное положительное число из ряда:

В интервале от 1 до 100 можно использовать в качестве значений класса точности числа:

(α = 1) 10; 15; 20; 25; 40; 50; 60.

Т.е. четырнадцать чисел 1; 1,5; 2; 2,5; 4; 5; 6; 10; 15; 20; 25; 40; 50; 60.

Необходимо отметить, классы точности от 6,0 и выше считаются очень низкими.

Примеры решения задач

Определить для вольтметра с пределом измерения 30 В класса точности 0,5 относительную погрешность для точек 5, 10, 15, 20, 25 и 30 В и наибольшую абсолютную погрешность прибора.

  1. Класс точности указывают просто числом предпочтительного рода, например, 0,5. Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность). Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Приведенная погрешность (выраженное в процентах отношение абсолютной погрешности к нормирующему значению)

постоянна и равна классу точности прибора.

Относительная погрешность однократного измерения (выраженное в процентах отношение абсолютной погрешности к истинному значению измеряемой величины)

уменьшается к значению класса точности прибора с ростом измеренного значения к предельному значению шкалы прибора.

Абсолютная погрешность однократного измерения

постоянна на всех отметках рабочей части шкалы прибора.

По условию задачи: Uизм = Ui = 5, 10, 15, 20, 25 и 30 В – измеренное значение электрической величины; Uпр = 30 В – предел шкалы вольтметра.

Наибольшая абсолютная погрешность вольтметра

Источник

Как определить абсолютную погрешность измерения напряжения вольтметром

Метод и средства для измерения напряжения и тока.

При измерении напряжения и тока используют прямые и косвенные способы. Прямые измерения основаны на сравнении измеряемой величина с мерой этой величины или на непосредственной оценке измеряемой величины по отчетному устройству измерительного прибора. Косвенные измерения основаны на прямых измерениях другой величины, функционально связанной с измеряемой величиной. Например, косвенное измерение тока выполняют при помощи вольтметра, измеряющего напряжение на известном сопротивлении R0, и расчете тока по формуле

Погрешность косвенного метода измерения зависит от погрешности прямого измерения и погрешности расчета по функциональной зависимости (23). Сопротивление, используемое при косвенном измерении тока, называют шунтом. Дополнительная погрешность при косвенных измерениях обусловлена перераспределением тока между шунтом и вольтметром при изменении температуры окружающей среды. Для снижения температурной погрешности применяют специальные схемы компенсации,

В зависимости от рода тока приборы делят на четыре группы;

1) вольтметры постоянного напряжения (группа В2),
2) вольтметры переменного напряжения (группа ВЗ),
3) вольтметры импульсного напряжения (группа В4),
4) вольтметры селективные (группа В6).

Универсальные приборы, предназначенные для измерения постоянного и импульсного напряжения и тока, выделены в группу В7.

Программа работы

1. Определение основной погрешности, вариация показаний и поправку вольтметра.
2. Определение чувствительности и цены деления вольтметра.
3. Определение входного сопротивления вольтметра.
4. Определение частотного диапазона вольтметра.
5. Исследование влияния формы напряжения на показание вольтметра.
6. Определение погрешности при прямых и косвенных измерениях тока.

Порядок выполнения работы.

1. Определение основной погрешности, вариация показаний и поправки вольтметра выполняют по схеме, изображенной на рис. 1. В качестве поверяемого прибора используют вольтметр типа МПЛ-46, а образцовый служит цифровой вольтметр типа В2-23. Перед проведением измерений прибор В2-23 включить в сеть и выждать 10…15 мин. Затем произвести установку нуля и калибровку вольтметра И2-23 в соответствии с инструкцией по пользованию прибором. Кроме того, необходимо выполнить установку нуля вольтметра МПЛ-46, пользуясь корректором.

Для выполнения п.1 программы поверяемый вольтметр МПЛ-46 устанавливают на диапазон 15 В и измеряют напряжение на всех оцифрованных делениях шкалы, изменяя входное напряжение регулируемого источника ТЕС-13. Измерение напряжения на каждом оцифрованном делении шкалы МПЛ-46 производят дважды: один раз при возрастании напряжения (показание образцового вольтметра U’обр), а второй раз при убывание напряжения (показание образцового вольтметра U’’обр). При этом на образцовом вольтметре В2-23 необходимо выбрать поддиапазон, обеспечивающий не менее трех значащих цифр. Результаты измерений занести в ф.1.

Действительные значения на оцифрованных делениях шкалы поверяемого вольтметра определяют как среднее значение двух измерений Uср=(U’обр+U’’обр)/2.
Расчет погрешности измерений выполняют по формулам:
Абсолютная погрешность U=Uпов-Uср,
Относительная погрешность =(U/ Uпов)*100%,
Приведенная погрешность п=(U/ Uном) *100%,
где Uном=15 В – номинальное значение напряжения поверяемого.
Вариацию показаний вольтметра определяют по формулам:
Абсолютное значение вариации U=U’обр-U’’обр,
Приведенное значение вариации в=(Uобр/ Uном)*100%,
Поправку вольтметра вычисляют по формуле П=-U.
Из полученных значений п и в необходимо выбрать наибольшее и сравнить их с классом точности Кu поверяемого вольтметра. Если п макс и в макс окажутся больше Кu, то поверяемый вольтметр нельзя использовать с указанным классом точности.

Источник

Оценка абсолютной погрешности прямых измерений

Систематические погрешности (ошибки) обычно остаются постоянными на протяжении всей серии измерений. Например, при переключении шкалы вольтметра с одного предела на другой меняется его внутреннее сопротивление, что может внести в последующие измерения систематическую погрешность.

Систематические погрешности надо стараться отслеживать и учитывать, корректируя полученные результаты, т.е. исправляя их на необходимую величину. Однако обнаружение систематических погрешностей требует, как правило, дополнительных более точных или альтернативных экспериментов, проведение которых невозможно в рамках лабораторных работ. В этих случаях достаточно указать возможный источник ошибок.

Все остальные погрешности являются случайными.

Промахи грубые ошибки, обычно они связаны с неправильным отсчетом по шкале прибора, нарушением условий эксперимента и т.д. Их надо отбросить. В сомнительных случаях вопрос о том, является ли данный результат промахом, решают с помощью повторного, если возможно, более точного эксперимента или привлекая математические методы обработки полученных результатов, изучение которых лежит за рамками излагаемого элементарного анализа оценки погрешностей.

Приборные погрешности определяются двумя факторами:

1. классом точности прибора, связанным с его устройством – элементной базой и принципом действия.

Абсолютная погрешность через класс точности оценивается следующим образом:
(Dx) к.т.= (g/100)A,
где g — класс точности в %, указанный на панели прибора,
А= Аmax – предел измерения для стрелочных приборов, либо А есть текущее значение для магазинов сопротивления, индуктивности, емкости;

2. ценой делений шкалы прибора:

(Dx) ц.д.= h,

где h – цена деления шкалы прибора, т.е. расстояние между ближайшими штрихами шкалы, выраженное в соответствующих единицах измерения.
Погрешности разброса возникают вследствие различия экспериментальных значений при многократном повторении измерений одной и той же величины. Простейший способ определения (Dх)р дает метод Корнфельда , который предписывает следующий образ действий, если физическая величина х измерена n раз:

1) имея х1 , …,хn – значений измеряемой величины х, выбираем из хmax и хmin и находим среднее значение х:
;
2) находим абсолютную погрешность Dxр =
3) Записываем результат в виде: с , где a — доверительная вероятность того, что истинное значение измеренной величины находится на отрезке .
Доверительная вероятность определяет собой долю средних значений х, полученных в аналогичных сериях измерений, попадающих в доверительный интервал. (Эта формула доказывается в теории ошибок.)
Недостатком метода Корнфельда является то обстоятельство, что вероятность приводимого результата определяется исключительно количеством n проведенных измерений и не может быть изменена посредством увеличения или уменьшения доверительного интервала ± Dх. Такую возможность предусматривает несколько более сложный метод расчета погрешностей Стьюдента [2,3,7]. Последовательность расчета погрешностей этим методом такова:

1) Вы измерили и получили несколько i = 1. m значений случайной
величины i. Сначала исключаем промахи, то есть заведомо неверные
результаты.
2) По оставшимся n значениям определяем среднее значение величины :
i
3) Определяем среднеквадратичную погрешность среднего значения :

i
4) Задаемся доверительной вероятностью a. По таблице коэффициентов
Стьюдента (Приложение 1) определяем по известному значению
числа измерений n и доверительной вероятности a коэффициент
Стьюдента tan.
5) Определяем погрешность среднего значения величины (доверительный интервал)
D= tan s
6) Записываем результат
= ( ± D ) с указанием доверительной вероятности a.

В научных статьях обычно приводят доверительный интервал
D = s ,

соответствующий доверительной вероятности α =0,7. Такой интервал называется стандартным, при его использовании часто значение доверительной погрешности не приводят. Использование метода Стьюдента является необходимым, когда требуется знать значение физических параметров с заданной доверительной вероятностью (как в ряде лабораторных работ). На практике доверительная вероятность погрешности разброса выбирается в соответствии с доверительной вероятностью, соответствующей классу точности измерительного прибора.
Для большинства исследований, в которых не выдвигается жестких требований к вероятности полученных результатов, метод Корнфельда является вполне приемлемым.
В теории ошибок показывается, что результирующая погрешность , если все эти погрешности рассчитаны для одной и той же доверительной вероятности. На практике, т.к. суммарная погрешность округляется до одной значащей цифры, достаточно выбрать максимальную из трех вычисленных погрешностей, и если она в 3 или более раз превосходит остальные, принять ее за погрешность измеренной величины, при этом фактор, с которым связана эта погрешность и будет в данном случае определять собой точность (а вернее — погрешность) эксперимента (подробнее см. в работе [1]).

Источник

Понравилась статья? Поделить с друзьями:
  • Как найти номер телефона втб банк
  • Как в скайпе найти свои чаты
  • Как найти в каком госпитале
  • Что такое профессиограмма как ее составить
  • Как найти внутреннего бога