Как найти абсолютную погрешность по верным цифрам

Абсолютная и относительная погрешности

Пусть А-точное
значение некоторой величины,


известное приближение к нему, т.е.
приближенное значение величины А.
Обозначим

или

.

В зависимости от
типа величины принято называть А
точным числом,
а его
приближение а
приближенным
числом.

Например, в соотношениях

число


является точным; числа 3,14; 3,142 –
приближенные.

Разность

или (
)
между точным и приближенным значениями
величины называется погрешностью
значения

(но не А).
Так как степень точности приближений
удобно характеризовать с помощью
неотрицательных чисел, вводится понятие
абсолютной
погрешности:

(1)

Знак (
)
свидетельствует о том, что погрешность
между А
и а
не больше

(но может быть и меньше). Действительно,
совершенно неважно

или

.
Главное — насколько они отличаются.

Абсолютная
погрешность дает ценную информацию о
неизвестном (часто) точном значении А:
оно находится от известного приближения
(
)
на расстоянии, не большем, чем

.
Запись (1) можно представить иначе

.

Следовательно,
найдя приближенное значение

и его абсолютную погрешность

,
узнаем, что точное значение А
располагается на отрезке

,
но где точно — ответить на этот вопрос
нельзя. Например, для измерения длины
l
болта
использованы метровая линейка с делениями
0,5 см и линейка с делениями 1 мм (0,1 см). В
обоих случаях получен результат

см. Ясно, что в первом случае отклонение
найденной длины 3,5 см от истинной не
должно по модулю превышать 0,5 см, во
втором случае – 0,1 см. Иначе, в первом
случае

см,
во втором случае

см.
Очевидно, во втором случае измерение
выполнено более точно. Отклонение

;

называется
относительной
погрешностью.
Она
позволяет оценить точность несопоставимых
чисел. Часто используют соотношения:


.

Если известна
абсолютная погрешность

приближенного значения а,
то а
называется приближением
к А с точностью до

.
Когда говорят,
что надо получить результат с заданной
точностью ε,
это означает, что его абсолютная
погрешность

не должна
быть больше ε.

Разрядность чисел, значащие и верные цифры

С помощью абсолютных
погрешностей определяют так называемые
верные
и значащие
цифры приближенных чисел.

Пусть приближенные
число записано в виде десятичной дроби:

, т.е.

;

.

Степени (i
j)
называются «порядок числа», а число,
равное 10i,
называется разрядом числа. Очевидно,
все целые числа от 0 до 9 – числа нулевого
порядка (имеют разряд единиц, т.к. 100=1),
от 10 до 99 – числа первого порядка (имеют
разряд десятков, т.к. 101=10),
от 100 до 999 – числа второго порядка (имеют
разряд сотен, т.к. 102=100)
и т.д. Если говорят, что данное число
является (или должно быть) четвертого
порядка, то это любое число от 10000 до
99999.

Все цифры дробной
части (десятичной) записи числа, начиная
с первой ненулевой цифры слева, называются
значащими
цифрами
этого
числа. Нули в конце числа всегда считаются
значащими, в противном случае их не
пишут. Например, числа 0,5020 и 0,05020 имеют
одинаковые значащие цифры: 5; 0; 2; 0.
Абсолютную погрешность не следует
записывать с большим количеством
значащих цифр. Основной информацией,
содержащейся в ней, является значение
первой ненулевой цифры и десятичный
разряд, в котором эта цифра расположена
(например, ± 0,004, ±0,0001).

Все значащие
цифры подразделяются на верные
и сомнительные
.
Их идентификация базируется на величине
заданной погрешности числа.

Правило 1.
Значащая цифра приближенного числа а
называется
верной,
если она находится в разряде, половина
которого больше абсолютной погрешности

.
Остальные цифры, для которых это правило
не выполняется, считаются сомнительными.

Задача 1.
Для приближенного числа x=72,356
известна абсолютная погрешность

.
Требуется определить его верные значащие
цифры.

Решение.
Выполним
проверку на «верность» для каждой цифры
числа.

1) Проверим цифру
7. Половина единицы ее разряда

.
Значит, она верная.

2) Проверим – цифру
2. Половина единицы ее разряда

.
Она тоже верная.

3) Цифра 3. Половина
ее разряда

.
Значит и она верная.

4) Цифра 5. Половина
ее разряда

.
Значит цифра 5 сомнительная, а соответственно
сомнительна и цифра 6.

Итак, верными
являются цифры 7; 2; 3. Остальные цифры –
сомнительные.

Задача 2.
Даны числа
а,в,с
и их абсолютные погрешности. Определить
верные цифры.

а=2,645


в=0,81726



с=3968


.

Решение. В
числе а
верными
будут числа 2, 6, 4, сомнительная одна
цифра 5.

В числе
в
верной
будет цифра 8, остальные сомнительные.

В числе с
верными будут только цифры 3, 9, остальные
сомнительные.

Таким образом,
верные цифры в равноправной степени

— могут состоять
только из нулей (например, если число
78,00 имеет все верные цифры, значит оно
записано с точностью до 0,005) и тогда нули
пишут обязательно;

— могут содержать
и значащие цифры (например, число 78,0051
с точностью до 0,0005 имеет верные цифры
после запятой 0; 0; 5, а число 1 сомнительное).

Нередко бывает
так, что исходные числовые данные
приводятся без оценки их погрешностей,
но с известными верными цифрами. Возникает
обратная задача: найти
абсолютные погрешности этих чисел,

необходимые для последующего учета
погрешностей. Решение следует из
определения верной цифры. Если дробная
часть числа а=4,06
содержит только верные цифры, то это
означает, что

.

Правило 2:
за абсолютную погрешность (если она не
задана отдельно) приближенного числа
с известными верными цифрами принимается
половина
единицы того разряда,
где
находится последняя верная цифра.

Обратим внимание
на информационную значимость нулей,
записанных в конце числа. Так, если
известно, что все цифры чисел 3,2 и 3,20
верные, то эти записи неравноценны. За
абсолютную погрешность первого числа
можно взять

.
Для второго

.

Правило 3:
когда в конце числа получаются верные
нули округления, их следует сохранять.

Пусть число а=
-17,298
с
абсолютной погрешностью

требуется округлить до верных цифр.
Очевидно, что последней верной цифрой
должна быть вторая после запятой, т.е.
а= -17,30, но
не а= — 17,3
(заметим, что в числе а=17,30
нет сомнительных цифр). Но если для того
же числа

,
округленное число будет а=17,3.

Очень часто, для
облегчения понимания требований,
предъявляемых к приближенному числу,
применяют термин «точность». В числе,
определяемом как точность, последняя
правая цифра указывает на разряд
последней верной цифры, например, в
дробной части приближенного числа. Если
приближенное число должно быть вычислено
с точностью, например, до 0,001, это означает,
что в результате третья после запятой
цифра должна быть верной, если точность
оценивается числом 0, 01, то в дробной
части вторая цифра после запятой должна
быть верной. Заметим, что для выполнения
первого требования число должно иметь
абсолютную погрешность не более ±0,0005,
во втором случае – не более ±0,005

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


Download Article


Download Article

Absolute error is the difference between the measured value and the actual value.[1]
It is one way to consider error when measuring the accuracy of values. If you know the actual and measured values, calculating the absolute error is a simple matter of subtraction. Sometimes, however, you may be missing the actual value, in which case you should use the maximum possible error as the absolute error.[2]
If you know the actual value and the relative error, you can work backwards to find the absolute error.

  1. Image titled Calculate Absolute Error Step 1

    1

    Set up the formula for calculating the absolute error. The formula is Delta x=x_{{0}}-x, where Delta x equals the absolute error (the difference, or change, in the measured and actual value), x_{{0}} equals the measured value, and x equals the actual value.[3]

  2. Image titled Calculate Absolute Error Step 2

    2

    Plug the actual value into the formula. The actual value should be given to you. If not, use a standardly accepted value. Substitute this value for x.[4]

    • For example, you might be measuring the length of a football field. You know that the actual, or accepted length of a professional American football field is 360 feet (including both end zones). So, you would use 360 as the actual value:Delta x=x_{{0}}-360.

    Advertisement

  3. Image titled Calculate Absolute Error Step 3

    3

    Find the measured value. This will be given to you, or you should make the measurement yourself. Substitute this value for x_{{0}}.

    • For example, if you measure the football field and find that it is 357 feet long, you would use 357 as the measured value:Delta x=357-360.
  4. Image titled Calculate Absolute Error Step 4

    4

    Subtract the actual value from the measured value. Since absolute error is always positive, take the absolute value of this difference, ignoring any negative signs. This will give you the absolute error.[5]

    • For example, since Delta x=357-360=-3, the absolute error of your measurement is 3 feet.
  5. Advertisement

  1. Image titled Calculate Absolute Error Step 5

    1

    Set up the formula for relative error. The formula is delta x={frac  {x_{{0}}-x}{x}}, where delta x equals the relative error (the ratio of the absolute error to the actual value), x_{{0}} equals the measured value, and x equals the actual value.[6]

  2. Image titled Calculate Absolute Error Step 6

    2

    Plug in the value for the relative error. This will likely be a decimal. Make sure you substitute it for delta x.

    • For example, if you know that the relative error is .025, your formula will look like this: .025={frac  {x_{{0}}-x}{x}}.
  3. Image titled Calculate Absolute Error Step 7

    3

    Plug in the value for the actual value. This information should be given to you. Make sure you substitute this value for x.

    • For example, if you know that the actual value is 360 ft, your formula will look like this: .025={frac  {x_{{0}}-360}{360}}.
  4. Image titled Calculate Absolute Error Step 8

    4

    Multiply each side of the equation by the actual value. This will cancel out the fraction.

  5. Image titled Calculate Absolute Error Step 9

    5

    Add the actual value to each side of the equation. This will give you the value of x_{{0}}, giving you the measured value.

  6. Image titled Calculate Absolute Error Step 10

    6

    Subtract the actual value from the measured value. Since absolute error is always positive, take the absolute value of this difference, ignoring any negative signs. This will give you the absolute error.[7]

    • For example, if the measured value is 369 ft, and the actual value is 360 feet, you would subtract 369-360=9. So, the absolute error is 9 feet.
  7. Advertisement

  1. Image titled Calculate Absolute Error Step 11

    1

    Determine the measuring unit. This is the “to the nearest” value. This might be explicitly stated (for example, “The building was measured to the nearest foot.”), but it doesn’t have to be. To determine the measuring unit, just look at what place value the measurement is rounded to.

    • For example, if the measured length of a building is stated as 357 feet, you know that the building was measured to the nearest foot. So, the measuring unit is 1 foot.
  2. Image titled Calculate Absolute Error Step 12

    2

  3. Image titled Calculate Absolute Error Step 13

    3

    Use the maximum possible error as the absolute error.[9]
    Since absolute error is always positive, take the absolute value of this difference, ignoring any negative signs. This will give you the absolute error.

    • For example, if you find the measurement of a building to be 357pm .5ft, the absolute error is .5 ft.
  4. Advertisement

Add New Question

  • Question

    How do I find absolute error of any equation?

    Donagan

    An equation does not contain an «absolute error.» Re-read the introduction above.

  • Question

    How do I find the root value of a 6-digit number?

    Donagan

  • Question

    What is the absolute error in 2.11?

    Donagan

    As explained above, the concept of «absolute error» involves both a measured value and an «actual» value.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • If the actual value is not given, you can look for the accepted or theoretical value.

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To calculate the absolute error, use the formula, “Absolute Error = Measured Value — Actual Value.” Begin by plugging the actual value into the formula, which will either be given to you or is the standardly accepted value. Then, make a measurement and put the measured value into the formula. Finally, subtract the actual value from the measure value to calculate the absolute error. If there are any negative signs, ignore them when you record your answer. To learn how to find the absolute error if you don’t have the measured value, keep reading.

Did this summary help you?

Thanks to all authors for creating a page that has been read 203,406 times.

Did this article help you?

Абсолютная и относительная погрешность


Абсолютная и относительная погрешность

4.2

Средняя оценка: 4.2

Всего получено оценок: 2197.

4.2

Средняя оценка: 4.2

Всего получено оценок: 2197.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Опыт работы учителем математики — более 33 лет.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Заключение

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Светлана Лобанова-Асямолова

    10/10

  • Валерий Соломин

    10/10

  • Анастасия Юшкова

    10/10

  • Ксюша Пономарева

    7/10

  • Паша Кривов

    10/10

  • Евгений Холопик

    9/10

  • Guzel Murtazina

    10/10

  • Максим Аполонов

    10/10

  • Olga Bimbirene

    9/10

  • Света Колодий

    10/10

Оценка статьи

4.2

Средняя оценка: 4.2

Всего получено оценок: 2197.


А какая ваша оценка?

Лабораторная работа №1

Методы оценки погрешностей

  I.  Описание работы

Тема: Методы оценки погрешностей приближенных величин.

Задание 1. Округляя точные числа до трех значащих цифр, определить абсолютную и относительную погрешности полученных приближенных чисел.

Дано:

Найти:

Решение:

— приближенное значение числа A

Абсолютная погрешность:

Относительная погрешность:

Ответ: ;

Задание 2. Определить абсолютную погрешность приближенных чисел по их относительной погрешности .

Дано:

Найти:

Решение:

Абсолютная погрешность:

Ответ:

Задание 3. Решить задачу.

При измерении длины с точностью до 5 м получено км, а при определении другой длины с точностью до 0.5 см, получено метров. Какое измерение по своему качеству лучше?

Дано: Км, М, М, См

Сравнить: и

Решение: Итак, по 1-му измерению, результат Км = М с точностью до М ( — абсолютная погрешность величины ).

Тогда относительная погрешность: %

По 2-му измерению, результат Км с точностью до См =М ( — абсолютная погрешность величины ).

Тогда относительная погрешность: %

Так как , то измерение можно считать по качеству лучше, чем .

Ответ: измерение по качеству лучше, чем .

Задание 4. а) Определить количество верных знаков в числе , если известна его предельная абсолютная погрешность

Дано:

Найти:

Решение:

По определению, n первые значащие цифры являются верными в узком смысле, если абсолютная погрешность этого числа не превышает половины единицы разряда младшей цифры, считая слева направо.

Абсолютная погрешность: , поэтому значащие цифры 8 и 4 числа 0,00842 верны в узком смысле.

Ответ: число X имеет две верных цифры в узком смысле (8 и 4), то есть

Б) Определить количество верных знаков в числе , если известна его предельная относительная погрешность .

Дано: %

Найти:

Решение:

Предельная абсолютная погрешность:

Только первая значащая цифра 1 числа A верна в узком смысле.

Ответ: число A имеет одну верную цифру в узком смысле (1), то есть

Задание 5. Найти предельные относительные погрешности, допускаемые при взятии вместо чисел 3.1, 3.14, 3.1416:

А) считая, что у них все записанные знаки являются верными;

Б) зная, что

Провести сравнения погрешностей и сделать необходимые выводы.

Дано: , ,

Найти:

Решение:

А) :

Если считать, что все записанные знаки являются верными в узком смысле, то абсолютная погрешность:

Предельная абсолютная погрешность:

Тогда предельная относительная погрешность:

%

:

Если считать, что все записанные знаки являются верными в узком смысле, то абсолютная погрешность:

Предельная абсолютная погрешность:

Тогда предельная относительная погрешность:

%

:

Если считать, что все записанные знаки являются верными в узком смысле, то абсолютная погрешность:

Предельная абсолютная погрешность:

Тогда предельная относительная погрешность:

%

Б) Пусть (прервем запись числа на 7-м знаке после запятой и считаем полученное число точным значением числа ).

Тогда абсолютная погрешность первого представления числа : .

Относительная погрешность: %

Абсолютная погрешность второго представления числа : .

Относительная погрешность: %

Абсолютная погрешность третьего представления числа : %.

Относительная погрешность: %

Выводы:

1) Можно заметить, что , то есть ;

, то есть ;

, то есть

Иными словами, для трех чисел их «истинная» относительная погрешность ограничена предельной относительной погрешностью, определенной из условия верности знаков чисел. Причем, для каждого числа две оценки отличаются меньше, чем на порядок. Значит, предположение о верности всех знаков чисел Обосновано.

2) Сравнение относительных погрешностей чисел :

показывает,

Что числа Перечислены

В порядке увеличения точности представления числа ,

То есть точнее , точнее .

Ответ: а)

б)

Задание 6. Найти сумму приближенных чисел , , считая в них все знаки верными, т. е. что абсолютная погрешность каждого слагаемого не превосходит половины единицы младшего разряда этого слагаемого. Определить абсолютную и относительную погрешности суммы.

Дано: , ,

Найти:

Решение:

1) Считаем, что в числах , , все знаки верны в узком смысле, то есть

Число с наибольшей абсолютной погрешностью .

2) Остальные числа округлим, сохраняя один запасный десятичный знак по сравнению с ранее выделенным наименее точным слагаемым :

, абсолютная погрешность округления

, абсолютная погрешность округления

3) Сложим все эти числа, учитывая все сохраненные знаки:

4) Полученный результат округлим на один знак (формально):

, абсолютная погрешность округления

5) Полную абсолютную погрешность суммы будем складывать из трех компонентов:

A)  суммы предельных абсолютных погрешностей исходных чисел;

B)  абсолютной величины суммы ошибок округления слагаемых;

C)  заключительной погрешности округления результата.

— абсолютная погрешность суммы.

% — относительная погрешность суммы.

Ответ: ; %.

Задание 7. Найти предельную абсолютную и относительную погрешности при вычислении объема прямого кругового цилиндра, если значения его высоты и радиуса основания имеют все верные знаки.

Дано: ,

Найти:

Решение:

,

Примем

1) Так как в числах и все числа верны, то их абсолютные погрешности:

Число с наибольшей абсолютной погрешностью .

Число R округлим, сохраняя один запасный десятичный знак по сравнению с ранее выделенным наименее точным слагаемым :

, абсолютная погрешность округления (округления не требуется)

2) перемножим числа, учитывая все сохраненные знаки:

3) Полученный результат округляем, сохраняя столько значащих цифр, сколько верных цифр имеется в числе H, то есть 2 значащих цифры:

;

Абсолютная погрешность округления

4) Полную абсолютную погрешность произведения будем складывать из двух слагаемых:

A) предельной абсолютной погрешности произведения до его округления;

B) заключительной погрешности округления произведения.

Абсолютную погрешность произведения до округления вычислим на основе предварительно найденной относительной погрешности произведения округленных сомножителей:

%.

Полная абсолютная погрешность

Теперь перейдем к искомому объему.

(Здесь полученный результат округляем до трех значащих цифр).

— предельная абсолютная погрешность объема.

% — предельная относительная погрешность объема.

Ответ: , , %

Задание 8. Привести пример потери точности при вычитании двух близких чисел.

Решение:

Пусть и — два близких числа; примем, что у них одинаковое число знаков после запятой.

Считаем, что все знаки в числах и верны в узком смысле. Тогда абсолютные погрешности:

Относительные погрешности:

%

%

Так как , то

Абсолютная погрешность результата:

Относительная погрешность результата: %

При вычитании двух близких чисел и относительная погрешность возросла на 3 порядка!

Лабораторная работа №2

Метод Гаусса

  I.  Описание работы

Тема: Решение системы линейных неоднородных алгебраических уравнений методом Гаусса (схема единственного деления).

Задание. Решить систему трех уравнений с тремя неизвестными с точностью искомых неизвестных до .

Промежуточные вычисления вести с двумя запасными знаками.

,

Решение:

Исходные данные и все результаты вычислений запишем в таблицу 1.

Прямой ход

1.  Записываем коэффициенты данной системы в трех строках и четырех столбцах раздела 1 таблицы 1.

2.  Суммируем все коэффициенты по строке и записываем сумму в столбце (столбец контроля), например .

3.  Делим все числа, стоящие в первой строке, на и результаты записываем в 4-й строке раздела 1.

4.  Вычисляем и делаем проверку, если вычисления ведутся с 6 и более знаками после запятой, то числа и не должны отличаться более, чем на единицу последнего разряда:

5.  По формулам вычисляем коэффициенты :

Результаты записываем в первые две строки раздела:

6.  Делаем проверку. Сумма элементов каждой строки не должна отличаться от более, чем на 1-2 единицы последнего разряда. Заметим, что ,

,

,

7.  Делим все элементы 1 строки раздела 2 на и результаты записываем в 3 строке раздела 2.

8.  Делаем проверку:

9.  По формулам вычисляем :

Результаты записываем в 1 строку раздела 3.

10. Делаем проверку:

,

11. Делим все элементы 1 строки раздела 3 на и результаты записываем в следующей (второй) строке этого раздела.

12.  Делаем проверку:

Обратный ход

1.  В разделе 4 записываем единицы

2.  Записываем .

3.  Для вычисления и используем лишь строки разделов, содержащие 1.

4.  Вычислим по формуле: .

5.  Вычислим по формуле:

.

6.  Аналогично проводим обратный ход в контрольной системе. Записываем ,

вычисляем и с заменой и на и соответственно:

Делаем обычную проверку по строкам – должно быть , с точностью до 1-2 единиц последнего разряда.

Действительно:

Заполним таблицу 1 результатами вычислений:

Таблица 1

Раз

Дел

1

1

2

3

2

2

3

3

3

4

1

1

1

1

1

Округлим полученное решение до , по требованию задачи:

Окончательную проверку точности полученного решения системы выполним подстановкой этого решения в систему. Должно получиться приближенное тождество с точностью до .

Ответ:

< Предыдущая   Следующая >

Понравилась статья? Поделить с друзьями:
  • Идентификатор не найден c как исправить
  • Как составить акрослова
  • Как найти девушку для легких отношений
  • Как найти свой вес тела
  • Как исправить лаги в fallout 3