Как найти абсолютную погрешность приближения числа числом

Абсолютная и относительная погрешность


Абсолютная и относительная погрешность

4.2

Средняя оценка: 4.2

Всего получено оценок: 2197.

4.2

Средняя оценка: 4.2

Всего получено оценок: 2197.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Опыт работы учителем математики — более 33 лет.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Заключение

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Светлана Лобанова-Асямолова

    10/10

  • Валерий Соломин

    10/10

  • Анастасия Юшкова

    10/10

  • Ксюша Пономарева

    7/10

  • Паша Кривов

    10/10

  • Евгений Холопик

    9/10

  • Guzel Murtazina

    10/10

  • Максим Аполонов

    10/10

  • Olga Bimbirene

    9/10

  • Света Колодий

    10/10

Оценка статьи

4.2

Средняя оценка: 4.2

Всего получено оценок: 2197.


А какая ваша оценка?

Материал по математике на тему «Абсолютная и относительная погрешность»

Разработка содержит определения и примеры по теме.

Описание разработки

Практическая деятельность человека неразрывно связана с числами, которые можно получать тремя способами: в результате измерений, счета и выполнения математических операций.

Однако:

— Любое измерение нельзя выполнить точно: ошибку дает либо прибор, либо наблюдатель.

— Счет дает точные результаты, только если количество предметов невелико и если оно постоянно во времени.

— Далеко не все математические операции можно выполнить абсолютно точно.

В этих случаях мы имеем дело с приближенными числами. Но при вычислениях важно знать отклонение приближенного значения величины от ее точного значения, для этого вводится понятие абсолютной погрешности приближения.

Определение.

Абсолютной погрешностью приближения называется модуль разности между точным значением величины и ее приближенным значением.

Δ = |а-х|, где Δ – абсолютная погрешность

a – точное значение величины

x – приближенное значение

Δ = |а-х| → a — x= ± Δ → a = x ± Δ

Пример. Найти абсолютную погрешность приближения 0,44 числа 4/9.

Δ = |4/9-0,44| = |4/9-11/25|=|100-99/225| = 1/225

На практике во многих случаях точное значение бывает неизвестно, поэтому абсолютную погрешность найти нельзя. Однако можно дать оценку абсолютной погрешности, если известны приближения с избытком и с недостатком.

Определение Границей абсолютной погрешности Δ приближения называется такое положительное число h больше которого абсолютная погрешность быть не может.

Δ = |а-х| ≤ h

Пример. 1/225=0,004444 < 0,0045

Материал по математике на тему Абсолютная и относительная погрешность

x — Δ – Нижняя граница (Н. Г.)

x + Δ – Верхняя граница (В. Г.)

Приближенные числа, как и точные записываются как правило при помощи десятичных дробей.

Но если в записи точного числа все его цифры верные, то в приближенном некоторые его цифры верные, а другие являются сомнительными.

Определение. Цифра называется верной (точно значащей), если абсолютная погрешность числа не превосходит единицы того разряда в котором записана эта цифра.

В противном случае она называется сомнительной.

Пример. x = 3,7412 ± 0,002.

Определить верные и сомнительные цифры.

В. Г. = 3,7412 + 0,002 = 3,7432

Н. Г. = 3,7412 — 0,002 = 3,7392

Верные – 3 и 7, сомнительные 4,1 и 2.

Замечания.

1) В записи приближенного числа сохраняются только верные цифры. x = 3,7

2) Если в десятичной дроби последние верные цифры нули, то они остаются в записи числа.

x = 0,301 ±0,001

В. Г. = 0,302 Н. Г. = 0, 300  x = 0,30

3) В десятичной записи числа значащими цифрами называются все его верные цифры, начиная с первой слева отличной от нуля.

0, 583;  38,57;  38,507;  29,830

Весь материал — в документе.

Содержимое разработки

Тема: Абсолютная и относительная погрешность.

Практическая деятельность человека неразрывно связана с числами, которые можно получать тремя способами: в результате измерений, счета и выполнения математических операций.

Однако:

— Любое измерение нельзя выполнить точно: ошибку дает либо прибор, либо наблюдатель.

— Счет дает точные результаты, только если количество предметов невелико и если оно постоянно во времени.

— Далеко не все математические операции можно выполнить абсолютно точно.

В этих случаях мы имеем дело с приближенными числами. Но при вычислениях важно знать отклонение приближенного значения величины от ее точного значения, для этого вводится понятие абсолютной погрешности приближения.

Определение. Абсолютной погрешностью приближения называется модуль разности между точным значением величины и ее приближенным значением.

Δ = , где Δ – абсолютная погрешность

aточное значение величины

x – приближенное значение

Δ = a x= Δ a = x Δ

Пример. Найти абсолютную погрешность приближения 0,44 числа 4/9.

Δ = =

На практике во многих случаях точное значение бывает неизвестно, поэтому абсолютную погрешность найти нельзя. Однако можно дать оценку абсолютной погрешности, если известны приближения с избытком и с недостатком.

Определение Границей абсолютной погрешности Δ приближения называется такое положительное число h больше которого абсолютная погрешность быть не может.

Δ = h

Пример. 0,0045

x Δ – Нижняя граница (Н.Г.)

x + Δ – Верхняя граница (В.Г.)

Приближенные числа, как и точные записываются как правило при помощи десятичных дробей. Но если в записи точного числа все его цифры верные, то в приближенном некоторые его цифры верные, а другие являются сомнительными.

Определение. Цифра называется верной (точно значащей), если абсолютная погрешность числа не превосходит единицы того разряда в котором записана эта цифра. В противном случае она называется сомнительной.

Пример. x = 3,7412 0,002

Определить верные и сомнительные цифры.

В.Г. = 3,7412 + 0,002 = 3,7432

Н.Г. = 3,7412 — 0,002 = 3,7392

Верные – 3 и 7, сомнительные 4,1 и 2.

Замечания.

  1. В записи приближенного числа сохраняются только верные цифры. x = 3,7

  2. Если в десятичной дроби последние верные цифры нули, то они остаются в записи числа.

x = 0,301 0,001

В.Г. = 0,302 Н.Г. = 0, 300 x = 0,30

3) В десятичной записи числа значащими цифрами называются все его верные цифры, начиная с первой слева отличной от нуля.

0, 583; 38,57; 38,507; 29,830

Правило округления чисел: Если первая слева отбрасываемая цифра меньше 5, то округляют с недостатком, если это цифра 5 или больше, то округляют с избытком.

Пример. 5,739 (с точностью до 0,01) 5,74

3, 53 (с точностью до целых) 4

30253 (с точностью до 1000) 30000

Но абсолютной погрешности не достаточно для полной характеристики приближения.

Если измерять расстояние между двумя городами, которое равно 100 км, с точность до 1 м, то это будет точное измерение, а если с точность до 1м измерена длина участка земли, которая равна 10м, то это грубое измерение.

Определение. Относительной погрешностью называется отношение абсолютной погрешности к приближенному значению измеряемой величины. Обычно выражается в процентах.

ω = ; ω% =

Т.о. для более полной оценки точности измерений необходимо определить, какую часть, или сколько процентов, составляет абсолютная погрешность от значения данной величины.

Пример. Сравнить точность двух измерений .

d = 4 0,3; H = 600 0,3

ω(d) =

ω(H) =

Второе измерение более точное.



-80%

Скачать разработку

Сохранить у себя:

Материал по математике на тему «Абсолютная и относительная погрешность» (61 КB)

Похожие файлы

  • Научно-исследовательская работа по математике «Решение уравнений содержащих переменную под знаком модуля»

  • Сборник методических указаний по выполнению практических работ по учебной дисциплине «Математика»

  • Рабочая программа по математике (алгебра, 9 класс)

  • Календарно-тематическое планирование по математике 8 класс

  • Рабочая программа по математике (7 класс)

Абсолютная и
относительная погрешность числа.

В качестве
характеристик точности приближенных
величин любого происхождения вводятся
понятия абсолютной и относительной
погрешности этих величин.

Обозначим через
а приближение
к точному числу А.

Определени.
Величина
называется
погрешностью приближенного числаа.

Определение.
Абсолютной погрешностью

приближенного
числа а
называется
величина
.

Практически точное
число А обычно
неизвестно, но мы всегда можем указать
границы, в которых изменяется абсолютная
погрешность.

Определение.
Предельной абсолютной погрешностью

приближенного
числа а
называется
наименьшая из верхних границ для величины
,
которую можно найти при данном способе
получения числаа.

На практике в
качестве

выбирают одну
из верхних границ для
,
достаточно близкую к наименьшей.

Поскольку
,
то.
Иногда пишут:.

Абсолютная
погрешность

— это разница между результатом измерения

и истинным
(действительным) значением
измеряемой
величины.

Абсолютная
погрешность и предельная абсолютная
погрешность не достаточны для
характеристики точности измерения или
вычисления. Качественно более существенна
величина относительной погрешности.

Определение.
Относительной погрешностью

приближенного
числа а назовем
величину:

Определение.
Предельной относительной погрешностью

приближенного
числа а назовем
величину

Так как
.

Таким образом,
относительная погрешность определяет
фактически величину абсолютной
погрешности, приходящейся на единицу
измеряемого или вычисляемого приближенного
числа а.

Пример.
Округляя
точные числа А до трех значащих цифр,
определить

абсолютную Dи относительную
δ погрешности полученных приближенных

чисел.

Дано:

А=-13,327

Найти:

∆-абсолютная
погрешность

δ –относительная
погрешность

Решение:

=|А-а|

А=а±.

a=-13.3

=|-13.327-(-13.3)|=0.027

,a0

*100%=0.203%

Ответ: =0,027;
δ=0.203%

2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).

Верные знаки числа.

Определение.
Значащей цифрой приближенного числа а
называется
всякая цифра, отличная от нуля, и нуль,
если он расположен между значащими
цифрами или является представителем
сохраненного десятичного разряда.

Например, в числе
0,00507 =
имеем
3 значащие цифры, а в числе 0,005070=значащие цифры,
т.е. нуль справа, сохраняя десятичный
разряд, является значащим.

Условимся впредь
нули справа записывать, если только они
являются значащими. Тогда, иначе говоря,

значащими являются
все цифры числа а,
кроме нулей слева.

В десятичной
системе счисления всякое число а
может быть
представлено в виде конечной или
бесконечной суммы (десятичной дроби):

где
,
— первая значащая
цифра, m —
целое число, называемое старшим десятичным
разрядом числа а.

Например, 518,3
=,
m=2.

Пользуясь записью

,
введем понятие о верных десятичных
знаках (в значащих цифрах) приближенно-

го числа.

Определение.
Говорят, что в приближенном числе а
формы

n —
первых значащих цифр
,

где i=
m, m-1,…, m-n+1 являются
верными, если абсолютная погрешность
этого числа не превышает половины
единицы разряда, выражаемого n-й
значащей цифрой:

В противном случае
последняя цифра

называется
сомнительной.

При записи
приближенного числа без указания его
погрешности требуют, чтобы все записанные
цифры

были верными. Это
требование соблюдено во всех математических
таблицах.

Термин “n
верных знаков”
характеризует лишь степень точности
приближенного числа и его не следует
понимать так, что n
первых значащих
цифр приближенного числа а
совпадает с
соответствующими цифрами точного числа
А.
Например, у чисел А=10,
а=9,997 все
значащие цифры различны, но число а
имеет 3 верных
значащих цифры. Действительно, здесь
m=0 и
n=3
(находим
подбором).

На практике
отыскание n из

при
известных

и
m требует
решения нелинейного неравенства, что
составляет непростую задачу. Правильный
выбор n возможен
из тривиального линейного равенства
по следующей методике.

Величину

записываем в
виде
,
где 0,05<d≤0,5,
что всегда возможно. Тогда в

неравенство для

коэффициентов
выполняется (d≤1/2), основания степеней
справа и слева одинаковы , поэтому можем
приравнять показатели степеней: s=m-n+1,
поэтому n=m-s+1.

ТЕОРЕМА 1 .
Если положительное приближенное число
а имеет
n верных
десятичных знаков, то для относительной
погрешности

этого числа
справедлива оценка:

где

— первая значащая
цифра числа а.

Доказательство.
Пусть число а
определено
формулой

со знаком +
перед скобкой.
По условию а
имеет n
верных знаков,
следовательно

Тогда

Следствие.
В качестве предельной относительной
погрешности числа а
можно принять

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Чтобы узнать, на сколько приближенное значение отличается от точного, надо из большего числа вычесть меньшее. Иначе говоря, надо найти модуль разности точного и приближенного значений. Этот модуль разности называют абсолютной погрешностью.

Абсолютной погрешностью, или, короче, погрешностью приближенного числа, называется разность между этим числом и его точным значением (из большего числа вычитается меньшее).

Пример 1. На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет 1300 – 1284 = 16. При округлении до 1280 абсолютная погрешность составляет 1284 – 1280 = 4.

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому числу.

Пример 2. В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет 200 – 197 = 3. Относительная погрешность равна (frac{3}{197}) или, округленно, (frac{3}{197}) = 1,5 %.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

ВИДЕО УРОК

Абсолютная погрешность.

Разность между истинным значением измеряемой величины
и её приближённым значением называется абсолютной погрешностью.

Для подсчёта
абсолютной погрешности необходимо из большего числа вычесть меньшее число.

Существует формула
абсолютной погрешности. Обозначим точное число буквой 
А, а буквой  а
приближение к точному числу. Приближённое число – это число, которое
незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда
формула будет выглядеть следующим образом:

а = А – а.

ПРИМЕР:

В школе учится  374 ученика. Если округлить это число до  400,
то абсолютная погрешность измерения равна
:

400 – 374 = 26.

ПРИМЕР:

На предприятии  1284  рабочих и
служащих. При округлении этого числа до 
1300  абсолютная
погрешность составляет

1300 – 1284 = 16.

При округлении до  1280  абсолютная
погрешность составляет

1284 – 1280 = 4.

Редко когда можно
точно знать значение измеряемой величины, чтобы рассчитать абсолютную
погрешность. Но при выполнении различных измерений мы обычно представляем себе
границы абсолютной погрешности и всегда можем сказать, какого определённого
числа она не превосходит.

ПРИМЕР:

Торговые весы могут дать абсолютную погрешность, не
превышающую 
5 г, а аптекарские – не превышающую одной сотой грамма.

Записывают
абсолютную погрешность числа, используя знак 
±.

ПРИМЕР:

Длина рулона обоев составляет.

30 м ± 3
см.

Границу абсолютной
погрешности называют предельной абсолютной погрешностью.

Но абсолютная
погрешность не даёт нам представление о качестве измерения, то есть о том,
насколько тщательно это измерение выполнено. Чтобы понять эту мысль, достаточно
разобраться в таком примере.

ПРИМЕР:

Допустим, что при измерении коридора длиной в  20
м  мы допустили абсолютную погрешность
всего только в 
1 см. Теперь представим себе, что, измеряя корешок книги,
имеющий 
18
см  длины, мы тоже допустили абсолютную
погрешность в 
1 см. Тогда понятно, что первое измерение нужно признать
превосходным, но зато второе – совершенно неудовлетворительным. Это значит, что
на 
20
м  ошибка в 
1
см  вполне допустима и неизбежна, но
на 
18
см  такая ошибка является очень грубой.

Отсюда ясно, что для оценки качества измерения
существенна не сама абсолютная погрешность, а та доля, какую она составляет от
измеряемой величины. При измерении коридора длиной в 
20 м погрешность в  1 см 
составляет

долю
измеряемой величины, а при измерении корешка книги погрешность в 
см составляет


долю
измеряемой величины
.

Делаем вывод, что измеряя корешок книги, имеющий  18
см  длины и допустив погрешность в 
1
см, можно считать измерение с большой ошибкой. Но если погрешность в 
1
см  была допущена при измерении коридора
длиной в 
20
м, то это измерение можно считать максимально точным.

Если ошибка,
возникающая при измерении линейкой или каким либо другим измерительным
инструментом, значительно меньше, чем деления шкалы этой линейки, то в качестве
абсолютной погрешности измерения обычно берут половину деления. Если деления на
линейке нанесены достаточно точно, то ошибка при измерении близка к нулю.

Тогда
значение измеряемой длины предмета будет значение ближайшей метки линейки.
Поэтому, если измерение выполнено аккуратно, то истинная длина предмета может
отличаться от измеренной длины не более чем на половину деления шкалы, то есть 
0,5 мм.

ПРИМЕР:

Для измерения длины болта использованы метровая линейка с
делениями 
0,5 см  и линейка с
делениями 
1 мм. В обоих случаях получен результат  3,5
см. Ясно, что в первом случае отклонение найденной длины 
3,5
см  от истинной, не
должно по модулю превышать 
0,5 см, во втором случае 
0,1 см.

Если этот же результат получится при измерении
штангенциркулем, то

p(l; 3,5) = |l – 3,5 ≤ 0,01|.

Данный пример показывает зависимость абсолютной
погрешности и границ, в которых находится точный результат, от точности
измерительных приборов. В одном случае 
l = 0,5  и, следовательно,

3
l ≤ 4,

в другом – l = 0,1  и

3,4
l ≤ 3,6.

ПРИМЕР:

Длина листа бумаги формата  А4  равна  (29,7 ± 0,1)
см. А расстояние от Санкт-Петербурга до Москвы равно 
(650 ± 1) км. Абсолютная погрешность в первом случае
не превосходит одного миллиметра, а во втором – одного километра. Необходимо
сравнить точность этих измерений.

РЕШЕНИЕ:

Если вы думаете, что длина листа измерена точнее потому,
что величина абсолютной  погрешности не
превышает  1 мм, то вы ошибаетесь.
Напрямую сравнить эти величины нельзя. Проведём некоторые рассуждения.

При измерении длины листа абсолютная погрешность не
превышает 
0,1 см на  29,7 см, то есть в процентном отношении это составляет

0,1
: 29,7 ∙ 100% ≈ 0,33%

измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до
Москвы, то абсолютная погрешность не превышает 
1 км 
на 
650 км, что в процентном соотношении составляет

1
: 650 ∙ 100% ≈ 0,15%

измеряемой величины.

Видим, что расстояние между городами измерено точнее, чем
длинна листа формата 
А4.

Истинное значение
измеряемой величины известно бывает лишь в очень редких случаях, а поэтому и
действительная величина абсолютной погрешности почти никогда не может быть вычислена.
На практике абсолютной погрешности недостаточно для точной оценки измерения.
Поэтому на практике более важное значение имеет определение относительной
погрешности измерения.

Относительная погрешность.

Абсолютная
погрешность, как мы убедились, не даёт возможности судить о качестве измерения.
Поэтому для оценки качества приближения вводится новое понятие – относительная
погрешность. Относительная погрешность позволяет судить о качестве измерения.

Относительная погрешность –
это частное от деления абсолютной погрешности на модуль приближённого значения
измеряемой величины, выраженная в долях или процентах. 

Относительная
погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность
всегда положительная величина, и мы делим её на модуль приближённого значения
измеряемой величины, а модуль тоже всегда положителен.

ПРИМЕР:

Округлим дробь  14,7 до целых и найдём относительную погрешность приближённого
значения
:

14,7 ≈ 15,

Для вычисления
относительной погрешности, кроме приближённого значения, нужно знать ещё и
абсолютную погрешность. Обычно абсолютная погрешность неизвестна, поэтому
вычислить относительную погрешность нельзя. В таких случаях ограничиваются
оценкой относительной погрешности.

ПРИМЕР:

При измерении в (сантиметрах) толщины 
b 
стекла и длины 
l  книжной полки
получили следующие результаты
:

b 0,4 с
точностью до
  0,1,

l 100 с
точностью до
  0,1.

Абсолютная погрешность каждого из этих измерений не
превосходит 
0,1. Однако  0,1  составляет
существенную часть числа 
0,4  и
ничтожную часть числа 
100. Это показывает, что качество второго
измерения намного выше, чем первого.

В результате измерения нашли,
что 
b
0,4  с точностью до  0,1, то
есть абсолютная погрешность измерения не превосходит 
0,1.
Значит, отношение абсолютной погрешности к приближённому значению меньше или равно

то есть относительная погрешность приближения не превосходит  25%.

Аналогично найдём, что
относительная погрешность приближения, полученного при измерении длины полки,
не превосходит

Говорят, что в первом случае измерение выполнено с
относительной точностью до 
25%,
а во втором – с относительной точностью до
  0,1%.

ПРИМЕР:

Если взять абсолютную погрешность в  1
см,  при измерении длины отрезков 
10
см  и  10
м, то относительные погрешности будут соответственно равны 
10%  и  0,1%. Для
отрезка длиной в 
10 см  погрешность
в 
1
см  очень велика, это ошибка в  
10%. А для десятиметрового отрезка  1 см  не имеет значения, эта ошибка всего в   0,1%.

Чем меньше относительная погрешность
измерения, тем оно точнее.

Различают
систематические и случайные погрешности.

Систематической погрешностью называют ту погрешность, которая остаётся неизменной при
повторных измерениях.

Случайной погрешностью называют ту погрешность, которая возникает в результате
воздействия на процесс измерения внешних факторов и может изменять своё
значение.

В большинстве
случаев невозможно узнать точное значение приближённого числа, а значит, и
точную величину погрешности. Однако почти всегда можно установить, что
погрешность (абсолютная или относительная) не превосходит некоторого числа.

ПРИМЕР:

Продавец взвешивает арбуз на чашечных весах. В наборе
наименьшая гиря –
50
г. Взвешивание показало  
3600 г. Это число – приближённое. Точный вес арбуза
неизвестен. Но абсолютная погрешность не превышает 
50
г. Относительная погрешность не превосходит 

50/3600
1,4%.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной
погрешностью.

Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной
погрешностью.

В предыдущем примере
за предельную абсолютную погрешность можно взять 
50 г, а за предельную относительную погрешность  1,4%.

Величина предельной
погрешности не является вполне определённой. Так в предыдущем примере можно
принять за предельную абсолютную погрешность 
100 г, 150 г  и вообще всякое
число, большее чем 
50 г.
На практике берётся по возможности меньшее значение предельной погрешности. В
тех случаях, когда известна точная величина погрешности, эта величина служит
одновременно предельной погрешностью. Для каждого приближённого числа должна
быть известна его предельная погрешность (абсолютная или относительная). Когда
она прямо не указана, подразумевается что предельная абсолютная погрешность
составляет половину единицы последнего выписанного разряда. Так, если приведено
приближённое число 
4,78  без указания предельной погрешности, то подразумевается,
что предельная абсолютная погрешность составляет 
0,005. В следствии этого соглашения всегда можно обойтись без указания
предельной погрешности числа.

Предельная
абсолютная погрешность обозначается греческой буквой 
(<<дельта>>),
предельная относительная погрешность – греческой буквой 
δ
(<<дельта малая>>). Если приближённое число обозначить буквой 
а

Правила округления.

На практике
относительную погрешность округляют до двух значащих цифр, выполняя округление
с избытком, то есть, всегда увеличивая последнюю значащую цифру на единицу.

ПРИМЕР:

Для  х = 1,7 ± 0,2  относительная погрешность измерений равна:

ПРИМЕР:

Длина карандаша измерена линейкой с миллиметровым
делением. Измерение показало 
17,9 см. Какова предельная относительная погрешность этого
измерения
?

РЕШЕНИЕ:

Здесь  а =
17,9
см. Можно принять 
= 0,1 см, так как с точностью
до 
1 мм 
измерить карандаш нетрудно, а значительно уменьшить предельную
погрешность не удастся
(при навыке можно прочесть на хорошей линейке и  0,02  и даже  0,01 см, но
у самого карандаша рёбра могут отличаться на большую величину
). Относительная погрешность равна

Округляя, находим

ПРИМЕР:

Цилиндрический поршень имеет около  35
мм  в диаметре. С какой точностью нужно
его измерить микрометром, чтобы предельная относительная погрешность составляла
  0,05% ?

РЕШЕНИЕ:

По условию, предельная относительная
погрешность должна составлять 
0,05%  от  35 мм. Следовательно, предельная абсолютная
погрешность равна

или, усиливая, 0,02
мм.

Можно воспользоваться
формулой

Подставляя в формулу 

а = 35,

𝛿 = 0,0005,

имеем

Значит,


= 35 × 0,0005 = 0,0175
мм.

Действия над приближёнными числами.

Сложение и вычитание приближённых чисел.

Абсолютная погрешность суммы двух величин равна сумме
абсолютных погрешностей отдельных слагаемых.

ПРИМЕР:

Складываются приближённые числа

265  и  32.

РЕШЕНИЕ:

Пусть предельная погрешность первого есть  5,
а второго 
1. Тогда предельная погрешность суммы равна

5
+ 1 = 6.

Так, если истинное значение первого есть  270,
а второго 
33, то приближённая сумма

265
+ 32 = 297

на  6  меньше истинной

270
+ 33 = 303.

ПРИМЕР:

Найти сумму приближённых чисел:

0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667

 + 0,0625 + 0,0588 + 0,0556 + 0,0526.

РЕШЕНИЕ:

Сложение даёт следующий результат – 0,6187.

Предельная погрешность каждого слагаемого 

0,00005.

Предельная погрешность суммы:

0,00005
9 = 0,00045.

Значит, в последнем (четвёртом) знаке суммы возможна ошибка до  5
единиц. Поэтому округляем сумму до третьего знака, то есть до тысячных.
Получаем 
0,619,
здесь все знаки верные.

При значительном
числе слагаемых обычно происходит взаимная компенсация погрешностей, поэтому
истинная погрешность суммы лишь в исключительных случаях совпадает с предельной
погрешностью или близка к ней. Насколько редки эти случаи, видно из предыдущего
примера, где 
9 слагаемых. Истинная величина каждого из них может
отличаться в пятом знаке от взятого приближённого значения на 
1, 2, 3, 4  или даже на  5 единиц в ту и в другую сторону.

Например, первое
слагаемое может быть больше своего истинного значения на 
4 единицы пятого знака, второе – на две, третье – меньше
истинного на одну единицу и так далее.

Расчёт показывает,
что число всех возможных случаев распределения погрешностей составляет около
одного миллиарда. Между тем лишь в двух случаях погрешность суммы может
достигнуть предельной погрешности 
0,00045,
это произойдёт:

– когда истинная величина каждого слагаемого больше
приближённой величины на 
0,00005;

– когда истинная величина каждого слагаемого меньше
приближённой величины на 
0,00005.

Значит, случаи,
когда погрешность суммы совпадает с предельной, составляют только 
0,0000002%  всех возможных случаев.

Дальнейший расчёт
показывает, что случаи, когда погрешность суммы девяти слагаемых может
превысить три единицы последнего знака, тоже очень редки. Они составляют
лишь 
0,07% 
из числа всех
возможных. Две единицы последнего знака погрешность может превысить 
2%  всех возможных случаев, а одну единицу –
примерно в 
25%.
В остальных 
75%  случаев погрешность девяти слагаемых не
превышает одной единицы последнего знака.

ПРИМЕР:

Найти сумму точных чисел:

0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667

 + 0,0625 + 0,0588 + 0,0556 + 0,0526.

РЕШЕНИЕ:

Сложение даёт следующий результат – 0,6187.

Округлим их до тысячных и сложим:

0,091
+ 0,083 + 0,077 + 0,071 + 0,067

 + 0,062 + 0,059 + 0,056 + 0,053 = 0,619.

Предельная погрешность суммы:

0,0005
9 = 0,0045.

Приближённая сумма отличается от истинной на  0,0003,
то есть на треть единицы последнего знака приближённых чисел. Все три знака
приближённой суммы верны, хотя теоретически последняя цифра могла быть грубо
неверной.

Произведём в наших слагаемых округление до сотых. Теперь
предельная погрешность суммы будет
:

0,005
9 = 0,045.

Между тем получим:

0,09
+ 0,08 + 0,08 + 0,07 + 0,07

 + 0,06 + 0,06 + 0,06 + 0,05 = 0,62.

Истинная погрешность составляет только  0,0013.

Предельная абсолютная погрешность разности двух величин
равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.

ПРИМЕР:

Пусть предельная погрешность приближённого
уменьшаемого 
85  равна  2,
а предельная погрешность вычитаемого 
32  равна  3.
Предельная погрешность разности

85
– 32 = 53

есть

2
+ 3 = 5.

В самом деле, истинное значение уменьшаемого и
вычитаемого могут равняться

85
+ 2 = 87 
и

32
– 3 = 29
.

Тогда истинная разность есть

87
– 29 = 58.

Она на  5  отличается от
приближённой разности 
53.

Относительная погрешность суммы и разности.

Предельную
относительную погрешность суммы и разности легко найти, вычислив сначала
предельную абсолютную погрешность.

Предельная
относительная погрешность суммы (но не разности!) лежит между наименьшей и
наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют
одну и ту же (или примерно одну и ту же) предельную относительную погрешность,
то и сумма имеет ту же (или примерно ту же) предельную относительную
погрешность. Другими словами, в этом случае точность суммы (в процентном
выражении) не уступает точности слагаемых. При значительном же числе слагаемых
сумма, как правило, гораздо точнее слагаемых.

ПРИМЕР:

Найти предельную абсолютную и предельную относительную
погрешность суммы чисел
:

24,4
+ 25,2 + 24,7.

РЕШЕНИЕ:

В каждом слагаемом суммы

24,4
+ 25,2 + 24,7 = 74,3

предельная относительная погрешность примерно одна и та
же, а именно
:

0,05
: 25 = 0,2%.

Такова же она и для суммы.

Здесь предельная абсолютная погрешность равна  0,15,
а относительная

0,15
: 74,3 ≈ 0,15 : 75 = 0,2%.

В противоположность
сумме разность приближённых чисел может быть менее точной, чем уменьшаемое и
вычитаемое. <<Потеря точности>> особенно велика в том случае, когда
уменьшаемое и вычитаемое мало отличаются друг от друга.

Относительные погрешности при сложении и вычитании
складывать нельзя.

Умножение и деление приближённых чисел.

При делении и умножении чисел требуется сложить
относительные погрешности.

ПРИМЕР:

Пусть перемножаются приближённые числа  50  и  20, и пусть предельная относительная погрешность первого
сомножителя есть 
0,4%, а второго 
0,5%.

Тогда предельная относительная погрешность произведения

50
× 20 = 1000

приближённо равна  0,9%.
В самом деле предельная абсолютная погрешность первого сомножителя есть

50
× 0,004 = 0,2,

а второго

20
× 0,005 = 0,1
.

Поэтому истинная величина произведения не больше чем

(50
+ 0,2)(20 + 0,1) = 1009,02,

и не меньше, чем

(50
– 0,2)(20 – 0,1) = 991,022
.

Если истинная величина произведения есть  1009,2,
то погрешность произведения равна

1009,2
– 1000 = 9,02,

а если  991,02, то погрешность произведения равна

1000
– 991,02 = 8,98.

Рассмотренные два случая – самые неблагоприятные. Значит,
предельная абсолютная погрешность произведения есть 
9,02.
Предельная относительная погрешность равна

9,02
: 1000 = 0,902%,

то есть приближённо  0,9%.

Задания к уроку 16

  • Задание 1
  • Задание 2
  • Задание 3
  • Урок 1. Числовые неравенства
  • Урок 2. Свойства числовых неравенств
  • Урок 3. Сложение и умножение числовых неравенств
  • Урок 4. Числовые промежутки
  • Урок 5. Линейные неравенства
  • Урок 6. Системы линейных неравенств
  • Урок 7. Нелинейные неравенства
  • Урок 8. Системы нелинейных неравенств
  • Урок 9. Дробно-рациональные неравенства
  • Урок 10. Решение неравенств с помощью графиков
  • Урок 11. Неравенства с модулем
  • Урок 12. Иррациональные неравенства
  • Урок 13. Неравенства с двумя переменными
  • Урок 14. Системы неравенств с двумя переменными
  • Урок 15. Приближённые вычисления

Понравилась статья? Поделить с друзьями:
  • Как найти клементину stray
  • Как найти тайную переписку в ватсапе
  • Как титаник нашли на дну океана
  • Как найти огонь в майнкрафте
  • Как найти арктангенс в маткаде