Как найти амперы физика 8 класс

В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.

Сила тока (I) — скалярная величина, равная отношению заряда (q), прошедшего через поперечное сечение проводника, к промежутку времени (t), в течение которого шёл ток.

I=qt

, где (I) — сила тока, (q) — заряд, (t) — время.
Единица измерения силы тока в системе СИ — ([I]~=~1~A) (ампер).

В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:

при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.

За единицу силы тока (1~A) принимают силу тока, при которой два параллельных проводника длиной (1) м, расположенные на расстоянии (1) м друг от друга в вакууме, взаимодействуют с силой (0,0000002)H (рис. 1.).

Definition_Ampere.png

Рис. 1. Определение единицы силы тока

Единица силы тока называется ампером ((A)) в честь французского учёного А.-М. Ампера (рис. 2).

Ampere_Andre_1825.png

Андре-Мари Ампер

(1775 — 1836)

Рис. 2. Ампер Андре-Мари

А.-М. Ампер ввёл термины: электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток.

Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую (100) Вт лампочку накаливания проходит ток с силой, приблизительно равной (0,5A). Ток в электрическом обогревателе может достигать (10A), а для работы карманного микрокалькулятора достаточно (0,001A).

Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
(1 мA = 0,001 A), (1 мкA = 0,000001 A), (1 кA =1000 A).
То есть (1 A = 1000 мA), (1 A = 1000000 мкA), (1 A = 0,001 кA).

Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным.

Переменным называется ток, сила и направление которого периодически изменяются.

В бытовых электросетях используют переменный ток напряжением (220) В и частотой (50) Гц. Это означает, что ток за (1) секунду (50) раз движется в одном направлении и (50) раз — в другом. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).

Силу тока измеряют амперметром. В электрической цепи он обозначается так:

ammeter-31989_640.png

Рис. 3. Схематичное изображение единицы силы тока

Амперметр включают в цепь последовательно с тем прибором, силу тока в котором нужно измерить.

Обрати внимание!

Амперметр нельзя подсоединять к источнику тока, если в цепь не подключён потребитель!

Измеряемая сила тока не должна превышать максимально допустимую силу тока для измерения амперметром. Поэтому существуют различные амперметры (рис. 4), где измерительная шкала представлена с использованием кратных и дольных единиц 1 А (миллиампер — мА, микроампер — мкА, килоампер — кА).

mAamp_L4.png

Рис. 4. Изображение миллиамперметра

Различают амперметры для измерения силы постоянного тока и силы переменного тока (рис. 5).

Обозначения диапазона измерения амперметров:

  • «(sim)» означает, что амперметр предназначен для измерения силы переменного тока; 
  • «(-)» означает, что амперметр предназначен для измерения силы постоянного тока.

Можно обратить внимание на клеммы прибора. Если указана полярность («(+)» и «(-)»), то это прибор для измерения постоянного тока.

Иногда используют буквы (AC/DC). В переводе с английского (AC) (alternating current) — переменный ток, а (DC) (direct current) — постоянный ток.

Для измерения силы постоянного тока

Для измерения силы переменного тока

Amp_lidzstr.png Amp_mainstr.png

Рис. 5. Амперметры для измерения силы постоянного и переменного токов

Для измерения силы тока можно использовать и мультиметр (рис. 6). Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.

Multimetr.png

Рис. 6. Изображение мультиметра

Включая амперметр в цепь постоянного тока, необходимо соблюдать полярность (рис. 7):

  • провод, который идёт от положительного полюса источника тока, нужно соединять с клеммой амперметра со знаком «(+)»;

  • провод, который идёт от отрицательного полюса источника тока, нужно соединять с клеммой амперметра со знаком «(-)».

Если полярность на источнике тока не указана, следует помнить, что длинная линия соответствует плюсу, а короткая — минусу.

Amp_shema.png

Рис. 7. Изображение электрической схемы (постоянный ток)

В цепь переменного тока включается амперметр для измерения переменного тока. Он полярности не имеет.

Амперметр подключается последовательно к тому прибору, на котором измеряется сила тока (рис. 7).

Безопасным для организма человека можно считать переменный ток силой не выше (0,05~A), ток силой более (0,05)-(0,1~A) опасен и может вызвать смертельный исход.

Источники:

Рис. 1. By Patrick Nordmann — http://schulphysikwiki.de/index.php/Datei:Definition_Ampere.png, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=91011035.

Рис. 2. By Ambrose Tardieu — The Dibner collection ::::::::::,,,;at the Smithsonian Institution (USA),, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6366734.

Рис. 3. Указание авторства не требуется, лицензия Pixabay, 2021-06-14, может использоваться в коммерческих целях, https://clck.ru/VVqyJ.

Рис. 4. Изображение миллиамперметра. © ЯКласс.

Рис. 5. Амперметры для измерения силы постоянного и переменного токов. © ЯКласс.

Рис. 6. Multimeter with probes on white, CC BY 2.0, 2021-06-14, https://www.flickr.com/photos/30478819@N08/50838190626/in/photostream/.

Рис. 7. Изображение электрической схемы (постоянный ток). © ЯКласс.

При прохождении электрического тока по цепи мы можем наблюдать различные его действия: тепловое, химическое, магнитное, световое. 

Возьмем, к примеру, тепловое действие. Вы можете уверенно сказать, что оно точно может проявляться в разной степени. Это подтверждали наши опыты. Натянутая медная проволока просто нагревалась, а вот вольфрамовая спираль в электрической лампе уж точно нагревалась сильнее. Ведь она накалилась настолько, что начинала излучать свет. Значит, мы могли накалить до похожего состояния и медную проволоку. Что же для этого нужно сделать? Как контролировать силу действия тока? Что эта сила вообще из себя представляет?

На данном уроке вы узнаете ответы на все эти вопросы. Мы рассмотрим, как заряд перемещается по проводнику при прохождении тока. С помощью этих знаний мы подойдем к определению новой силы и ее свойств — силы тока.

Перемещение заряда по проводнику

Как вы уже знаете, электрический ток представляет собой упорядоченное движение заряженных частиц. Мы говорим, что частицы “заряженные” — это означает, что они имеют какой-то определенный заряд $q$.

Соответственно, при движение таких частиц происходит перенос некоторого заряда. Каждый свободный электрон в металле переносит заряд. Каждый ион в растворе кислот, солей или щелочей тоже переносит заряд.

Логично, что чем больше частиц переместится от одного участка цепи к другому, тем больший общий заряд будет ими перенесен.

От чего же зависит интенсивность действий электрического тока? Опытным путем было доказано, что интенсивность (степень действия) электрического тока зависит как раз от величины этого переносимого заряда.

Сила тока

Электрический заряд, проходящий через поперечное сечение проводника в $1 space с$, будет определять такую величину, как сила тока в цепи (рисунок 1).

Рисунок 1. Заряд, проходящий через поперечное сечение проводника

Сила тока — это физическая величина, равная отношению электрического заряда $q$, прошедшего через поперечное сечение проводника, ко времени его прохождения $t$:
$I = frac{q}{t}$,
где $I$ — сила тока.

Сила взаимодействия проводников с током как основа для определения единицы силы тока

Для того, чтобы определить единицу измерения силы тока, были проведены опыты, которые мы сейчас и рассмотрим. Опыты эти заключались в явлении взаимодействия двух проводников с током.

Возьмем два гибких прямых проводника. Расположим их параллельно друг другу. Подсоединим их к источнику тока (рисунок 2).

Рисунок 2. Взаимодействие проводников с током

После замыкания цепи по ней пойдет электрический ток. Ток будет идти и по нашим подопытным проводникам.

Что мы увидим? Они начнут взаимодействовать друг с другом. А именно, они будут притягиваться друг к другу (рисунок 2, а) или отталкиваться друг от друга (рисунок 2, б). Это будет зависеть от направления тока в них.

Тут же встает вопрос о том, как же измерить эту силу, с которой взаимодействуют проводники? Опыты показали следующее.

Сила взаимодействия между проводниками с током зависит от:
длины проводников;
расстояния между ними;
среды, в которой находятся проводники;
силы тока в проводниках.

Для нас сейчас имеет значение самый последний пункт. Возьмем проводники, для которых все остальные условия будут одинаковы, кроме силы токов. Окажется, что, чем больше сила тока в каждом проводнике, тем с большей силой они взаимодействуют между собой.

Единица измерения силы тока

А теперь представьте себе очень тонкие и очень длинные проводники. Расположены они параллельно друг другу. Расстояние между ними — $1 space м$. Сила тока в них одинакова. И все это в вакууме! Вот здесь и появляется единица измерения силы тока (рисунок 3).

За единицу силы тока принимаю такую силу тока, при которой отрезки параллельных проводников длиной $1 space м$ взаимодействуют с силой $2 cdot 10^{-7} space Н$ ($0.0000002 space Н$).

Рисунок 3. Определение единицы измерения силы тока

Имя этой единицы — ампер ($А$). Она названа в честь французского физика Андре Ампера (рисунок 4).

Рисунок 4. Ампер Андре Мари (1775 — 1836) — французский физик, математик и естествоиспытатель. Ввел в физику понятие электрического тока, за что в научном кругу его прозвали “Ньютоном электричества”

Дольные и кратные единицы силы тока

На практике вы часто можете увидеть следующие единицы: миллиампер ($мА$), микроампер ($мкА$), килоампер ($кА$).

$1 space мА = 0.001 space А = 1 cdot 10^{-3} space А$;
$1 space мкА = 0.000001 space А = 1 cdot 10^{-6} space А$;
$1 space кА = 1000 space А = 1 cdot 10^3 space А$.

Сила тока некоторых электроприборов

Для лучшего понимания, сколько же составляет один ампер на практике, в таблице 1 приведены средние значения силы тока для некоторых электроприборов.

Устройство Значение силы тока $I$, А
Лампочка карманного фонаря 0,1
Обычная лампа накаливания 0,3 — 0,5
Холодильник 0,8 — 1
Телевизор 1,2 — 2
Электрический утюг 3
Пылесос 4 — 9
Стиральная машина 6 — 10
Двигатель троллейбуса 160 — 220
Молния более 400 000
Таблица 1. Значения силы тока в различных потребителях электроэнергии

Связь единицы измерения заряда и единицы измерения силы тока

Хоть мы уже и говорили о заряде и единице его измерения (кулон) ранее, в физике принято определять его через ампер.

Выразим из определения силы тока ($I = frac{q}{t}$) сам заряд и получим следующую формулу.

$q = It$.

Если $I = 1 space А$, а $t = 1 space с$, то мы получим единицу электрического заряда — $1 space Кл$.

$1 space кулон = 1 space ампер cdot 1 space с$, или
$1 space Кл = 1 space А cdot 1 space с = 1 space А cdot с$.

За единицу электрического заряда принимают электрический заряд, проходящий сквозь поперечное сечение проводника при силе тока $1 space А$ за время $1 space с$.

Электрический заряд и его зависимость от силы тока и времени

Мы получили формулу, позволяющую по-новому взглянуть на определение электрического заряда: $q = It$.

Делаем вывод:
электрический заряд, проходящий через поперечное сечение проводника зависит от силы тока и времени его прохождения.

 Эти знания пригодятся в решении задач. Обратите внимание, что электрический заряд иногда называют количеством электричества.

Например, давайте найдем количество электричества, которое проходит сквозь поперечное сечение спирали лампы за $1 space мин$. Сила тока лампы равна $400 space мА$.

Дано:
$I = 400 space мА$
$t = 1 space мин$

СИ:
$I = 0.4 space А$
$t = 60 space с$

$q — ?$

Показать решение и ответ

Скрыть

Решение:

Используем формулу для электрического заряда, полученную из определения силы тока:
$q = It$.

Рассчитаем этот заряд:
$q = 0.4 space А cdot 60 space с = 24 space Кл$.

Ответ: $q = 24 space Кл$.

Упражнения

Упражнение №1

Выразите в амперах силу тока, равную $2000 space мА$; $100 space мА$; $55 space мА$; $3 space кА$.

Дано:
$I_1 = 2000 space мА$
$I_2 = 100 space мА$
$I_3 = 55 space мА$
$I_4 = 3 space кА$

Показать решение и ответ

Скрыть

Решение:

$I_1 = 2000 space мА = 2000 cdot 10^{-3} space А = 2 space А$.

$I_2 = 100 space мА = 100 cdot 10^{-3} space А = 0.1 space А$.

$I_3 = 55 space мА = 55 cdot 10^{-3} space А = 0.055 space А$.

$I_4 = 3 space кА = 3 cdot 10^3 space А = 3000 space А$.

Ответ: $I_1 = 2 space А$, $I_2 = 0.1 space А$, $I_3 = 0.55 space А$, $I_4 = 3000 space А$.

Упражнение №2

Сила тока в цепи электрической плитки равна $1.4 space А$. Какой электрический заряд проходит через поперечное сечение ее спирали за $10 space мин$?

Дано:
$t = 10 space мин$
$I = 1.4 space А$

СИ:
$t = 600 space с$

$q — ?$

Показать решение и ответ

Скрыть

Решение:

Используем формулу: $q = It$.
$q = 1.4 space А cdot 600 space с = 840 space Кл$.

Ответ: $q = 840 space Кл$.

Упражнение №3

Сила тока в цепи электрической лампы равна $0.3 space А$. Сколько электронов проходит через поперечное сечение спирали за $5 space мин$?

Маленькое напоминание:
заряд одного электрона по модулю равен $|q_e| = 1.6 cdot 10^{-19} space Кл$.

Дано:
$t = 5 space мин$
$I = 0.3 space А$
$|q_e| = 1.6 cdot 10^{-19} space Кл$

СИ:
$t = 300 space с$

$n_e — ?$

Показать решение и ответ

Скрыть

Решение:

Для начала определим суммарный заряд, который проходит через поперечное сечение спирали лампы за указанное время:
$q = It$,
$q = 0.3 space А cdot 300 space с = 90 space Кл$.

А теперь найдем количество электронов, которые в сумме несут этот заряд:
$n_e = frac{q}{|q_e|}$,
$n_e = frac{90 space Кл}{1.6 cdot 10^{-19} space Кл} approx 56 cdot 10^{19}$.

Вот такое огромное количество электронов проходит через поперечное сечение спирали всего за 5 минут.

Ответ: $n_e = 56 cdot 10^{19}$.


Загрузить PDF


Загрузить PDF

Ампер (обозначение: А) – это единица измерения силы электрического тока. Электрический ток является движением заряженных частиц.[1]
Эта информация пригодится при подключении электроприбора к сетевой розетке, переменный ток к которой подается непосредственно с электростанции.[2]
[3]

  1. Изображение с названием Find Amps Step 1

    1

    Воспользуйтесь формулой для цепи постоянного тока. Силу электрический тока (I), которая измеряется в амперах (А), можно вычислить, разделив мощность (P), которая измеряется в ваттах (Вт), на напряжение (V), которое измеряется в вольтах (В). Запомните следующую формулу:

    • I(A) = P(Вт) / V(В)[4]

      Или так: Ампер = Ватт / Вольт.
  2. Изображение с названием Find Amps Step 2

    2

    Если в задаче рассматривается цепь переменного тока, уясните определение коэффициента мощности. Коэффициент мощности (PF) – это отношение активной мощности, которая потребляется электроприбором, к полной мощности; значение коэффициента мощности лежит в пределах от 0 до 1. Активная мощность (Р) измеряется в ваттах, а полная мощность (S) – в вольт-амперах (В•А).

    • PF = P / S[5]
  3. Изображение с названием Find Amps Step 3

    3

    Вычислите полную мощность, чтобы найти коэффициент мощности. Полная мощность вычисляется по формуле:

    S = Vrms x Irms

    где S – полная мощность, которая измеряется в вольт-амперах (В•А), Vrms – среднеквадратическое значение напряжения, Irms – среднеквадратическое значение силы тока. Последние две величины можно найти следующим образом:

    • Vrms = Vpeak / √2 (в вольтах, В)
    • Irms = Ipeak / √2 (в амперах, A)
  4. Изображение с названием Find Amps Step 4

    4

    Воспользуйтесь коэффициентом мощности в случае однофазного переменного тока. Здесь сила тока (I) измеряется в амперах (А) и равна отношению активной мощности (P), которая измеряется в ваттах (Вт), к произведению коэффициента мощности (PF) на среднеквадратичное значение (RMS) напряжения, которое измеряется в вольтах (В).

    • I(A) = P(Вт) / (PF x V(В)[6]

      Или так: Ампер = Ватт/(Коэффициент мощности х Вольт)

    Реклама

  1. Изображение с названием Find Amps Step 5

    1

    Убедитесь, что ток является постоянным. Постоянный ток не изменяется по величине и направлению. Если источником тока является батарейка или аккумулятор, то ток будет постоянным.[7]

    • Имейте в виду, что ток, подающийся к электророзеткам, является переменным.[8]
      Переменный ток можно сделать постоянным при помощи трансформатора, выпрямителя и фильтра.[9]
  2. Изображение с названием Find Amps Step 6

    2

    Определите схему электрической цепи. Чтобы вычислить силу тока в цепи, амперметр нужно подключить к определенному участку этой цепи. Чтобы определить схему цепи, отследите электропровода, идущие от положительного к отрицательному полюсу аккумулятора.

  3. Изображение с названием Find Amps Step 7

    3

    Протестируйте работу цепи. Если в ней присутствует разрыв или аккумулятор неисправен, амперметр не сможет измерить силу тока (или измерит ее неточно). Замкните цепь, чтобы убедиться, что она нормально работает.

  4. Изображение с названием Find Amps Step 8

    4

    Разомкните цепь. В некоторых цепях нужно полностью отсоединить аккумулятор. Работая с мощным аккумулятором, вы рискуете получить удар электрическим током, поэтому обязательно обесточьте цепь. Или же наденьте плотные резиновые перчатки, чтобы избежать поражения электрическим током.

  5. Изображение с названием Find Amps Step 9

    5

    Подключитесь к положительной клемме амперметра. У любого амперметра две цветные клеммы (ила два цветных провода): красная, которая соответствует положительному (+) полюсу, и черная, которая соответствует отрицательному (-) полюсу. Положительный полюс аккумулятора подключите к положительной клемме амперметра.[10]

    • Амперметр не воспрепятствует потоку электричества, но измерит силу тока и отобразит ее на экране.
  6. Изображение с названием Find Amps Step 10

    6

    Замкните цепь, подключившись к отрицательной клемме амперметра. Отрицательную клемму амперметра подключите к электропроводу, который вы отсоединили от положительного полюса аккумулятора.[11]

  7. Изображение с названием Find Amps Step 11

    7

    Замкните цепь. В некоторых цепях просто подсоедините аккумулятор. Цепь замкнется, и амперметр измерит и отобразит силу тока в амперах (А) или миллиамперах (мА) (если источник тока небольшой).[12]

    Реклама

  1. Изображение с названием Find Amps Step 12

    1

    Воспользуйтесь законом Ома. Этот закон описывает зависимость между напряжением и силой тока.[13]
    Формулы закона Ома: V = I х R, R = V / I, I = V / R, где:

    • V – напряжение.
    • R – сопротивление
    • I – сила тока, который проходит через резистор.[14]
  2. Изображение с названием Find Amps Step 13

    2

    Определите напряжение в цепи. Например, если напряжение источника тока равно 9 В, то и напряжение в цепи равно 9 В. Напряжение аккумулятора указывается на его корпусе или упаковке; также напряжение определенной модели источника тока можно найти в интернете.

    • Напряжение большинства батареек (типоразмера от ААА до D) равно 1,5 В.[15]
  3. Изображение с названием Find Amps Step 14

    3

    Найдите резисторы, подключенные к цепи. Резисторы обладают определенным сопротивлением, которое препятствует свободному прохождению электрического тока; определите, какие резисторы являются частью цепи. Схемы цепей отличаются друг от друга (в простейших схемах вообще нет резисторов), поэтому изучите схему вашей цепи, чтобы найти резисторы и определить их сопротивление, которое измеряется в омах (ОМ).

    • Электропровода также обладают некоторым сопротивлением. Скорее всего, таким сопротивлением можно пренебречь, если только электропровода не повреждены или не очень длинные.
    • Формула для вычисления сопротивления: сопротивление = (сопротивление х длина) / площадь поперечного сечения.[16]
  4. Изображение с названием Find Amps Step 15

    4

    Воспользуйтесь законом Ома. Так как напряжение источника тока распространяется на всю цепь, чтобы вычислить силу тока, нужно разделить общее напряжение на сопротивление каждого резистора. Так вы найдете силу тока (I), которая измеряется в амперах (А). Формула для вычислений:

    • (V/R1) + (V/R2) + (V/R3), где V – общее напряжение в цепи (в вольтах), R – сопротивление резисторов (в омах).[17]

    Реклама

Предупреждения

  • Соблюдайте меры безопасности, работая с электричеством. Вы рискуете получить удар электрическим током, а высокое напряжение может привести к пожару. Рекомендуется надевать плотные резиновые перчатки.

Реклама

Об этой статье

Эту страницу просматривали 34 572 раза.

Была ли эта статья полезной?

«Сила тока. Напряжение»



Сила тока

Характеристикой тока в цепи служит величина, называемая силой тока (I).  Сила тока – физическая величина, характеризующая скорость прохождения заряда через проводник и равная отношению заряда q, прошедшeгo через пoперeчное сечение проводника за промежуток времени t, к этому промежутку времени: I = q/t. Единица измерения силы тока – 1 ампер (1 А).

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2*10-7Н. Эта единица и называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1А * 1с.

Амперметр

Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить, и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

Сила тока. Напряжение

У клемм амперметра стоят знаки «+» и «—», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному пoлюсу источника тока, а клемма со знаком «—» к отрицательному пoлюсу истoчникa тока.

Напряжение

Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда.

Напряжение (U) — это физическая величина, равную отношению работы (А) электрического поля по перемещению электрического заряда к заряду (q): U = A/q.

Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда (t), то получим: U = At/qt. В числителе этой дроби стоит мощность тока (Р), а в знаменателе — сила тока (I). Получается формула: U = Р/I, т.е. напряжение — это физическая величина, равная отношению мощности электрического тока к силе тока в цепи.

Единица напряжения: [U] = 1 Дж/1 Кл = 1 В (один вольт).

Вольтметр

Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят. Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.

У клемм вольтметра стоят знаки «+» и «—», при включении вольтметра в цепь клeмма со знаком «+» присоединяется к положительному полюсу источника тока, а клеммa со знаком «—» к отрицательному полюсу источника тока.



Формулы и определения.

Сила тока. Напряжение. Мощность. Таблица

1. Все проводники, используемые в электрических цепях, имеют условные обозначения для изображения на схемах и могут образовывать последовательные, параллельные и смешанные соединения.

2. Мощность тока – физическая величинa, хаpактеpизующая скорость превращения электрической энергии в другие её виды. Единица для измерения – 1 ватт (1 Вт). Измерительный прибор – ваттметр.

3. Сила тока – физическaя вeличина, характеpизующaя скоpость прохождения заряда через проводник и равная отношению заряда, пpoшедшего через попеpeчное сечение проводника, ко времени перемещения. Единица – 1 ампер (1 А). Измерительный прибор – амперметр (подключают последовательно).

4. Электрическое напряжение – физическaя вeличина, характеризующая электрическое поле, создающее ток, и равная отношению мощности тока к его силе. Единица – 1 вольт (1 В). Измерительный прибор – вольтметр (подключают параллельно)

5. Работа тока – физичeская величинa, хаpактеpизующая количество электроэнергии, превратившейся в другие виды энергии. Единица – 1 джоуль (1 Дж). Измерительный прибор – электрический счётчик, использующий единицу 1 киловатт-час (1 кВт·ч).

сила тока


Конспект урока «Сила тока. Напряжение».

Следующая тема: «Электрическое сопротивление».

На основе магнитных явлениях построено действие электротехнических устройств. Все современные электромоторы, генераторы и множество других электромеханических приборов работают по принципу взаимодействия электрического тока с окружающими его магнитными полями. Эти взаимодействия описывает знаменитый закон Ампера, названный так в честь своего первооткрывателя.

Влияние электричества на поведение магнитной стрелки впервые обнаружил Х. К. Эрстед. Он заметил, что вопреки ожиданию, магнитное поле не параллельно вектору тока, а перпендикулярно ему. Развивая выводы Эрстеда, и продолжая исследования в этом направлении, Мари Ампер установил [1], что электричество взаимодействует не только с магнитами, но и между собой. Заслуга Ампера в том, что он теоретически обосновал взаимное влияние токов и предоставил формулу, позволяющую вычислять силы этого взаимодействия.

Определение и формула

Экспериментальным путём Ампер установил, что между двумя параллельными проводниками, подключенными к постоянному току, действует притяжение (однонаправленные токи) либо отталкивание (если направления противоположные). Эти силы взаимодействия определяются параметрами токов (прямо пропорциональная зависимость), и расстоянием между проводниками (обратно пропорциональная зависимость).

Расчёт амперовой силы на единицу длины проводника осуществляется по формуле:

Формула расчета амперовой силы

где F – сила, I1, I2 – величина тока в проводниках, а μ – магнитная проницаемость среды, окружающей проводники (см. рис. 1).

Природой взаимодействия является магнитное поле, образованное перемещаемыми по проводникам электрическими зарядами. Под влиянием магнитного поля на электрические заряды возникает сила магнитной индукции, которую обозначают символом B.

Линии, в каждой точке которых касательные к ним совпадают с направлением соответствующих векторов магнитной индукции, получили название линий электромагнитной индукции. Применяя мнемоническое правило буравчика, можно определить ориентацию в пространстве линий магнитной индукции. То есть, при ввинчивании буравчика в сторону, куда направлен вектор электрического тока, движение концов его рукоятки укажет направление векторов индукции.

Из сказанного выше следует, что в проводниках, с одинаково ориентированными токами, направления векторов магнитной индукции совпадают, а значит, векторы сил направлены навстречу друг к другу, что и вызывает притяжение.

Взаимодействие параллельных проводников

Рис. 1. Взаимодействие параллельных проводников

Подобным образом проводники взаимодействуют не только между собой, но и с магнитными полями любой природы. Если такой проводник окажется в магнитном поле, то на элемент, расположенный в зоне действия магнита, будет действовать сила, которую именуют Амперовой:

Амперова сила

Для вычисления модуля этой силы пользуются формулой: dF = IBlsinα , где α — угол, образованный векторами индукции и ориентацией тока.

Рассмотренную нами зависимость описывает закон Ампера, формулировка которого понятна из рисунка 2.

Закон Ампера

Рис. 2. Формулировка закона Ампера

Не трудно сообразить, что когда α = 900, то sinα = 1. В этом случае величина F приобретает максимальное значение: F = B*L*I, где L– длина проводника, оказавшегося под действием магнитного поля.

Таким образом, из закона Ампера вытекает:

  • проводник с током реагирует на магнитные поля.
  • действующая сила находится в прямо пропорциональной зависимости от параметров тока, величины магнитной индукции и размеров проводника.

Обратите внимание, что на данном рисунке 3 проводник расположен под углом 90º к линиям магнитной индукции, что вызывает максимальное действие магнитных сил.

Проводник в магнитном поле

Рис. 3. Проводник в магнитном поле

Направление силы Ампера

Принимая к сведению то, что сила – векторная величина, определим её направление. Рассмотрим случай, когда проводник с током расположен между двумя полюсами магнитов под прямым углом к линиям магнитной индукции.

Выше мы установили, что согласно закону Ампера, действующая на данный проводник сила, равна: F = B*L*I. Направление вектора рассматриваемой силы определяется по результатам векторного произведения:

Амперова сила

Если полюса магнита статичны (неподвижны), то векторное произведение будет зависеть только от параметров электричества, в частности, от того, в какую сторону оно течёт.

Направление силы Ампера определяют по известному правилу левой руки: ладонь располагают навстречу магнитным линиям, а пальцы размещают вдоль проводника, в сторону устремления тока. На ориентацию силы Ампера указывает большой палец, образующий прямой угол с ладонью (см. рис. 4).

Интерпретация правила

Рис. 4. Интерпретация правила

Измените мысленно направление электрического тока, и вы увидите, что направление вектора Амперовой силы изменится на противоположное. Модуль вектора имеет прямо пропорциональную зависимость от всех сомножителей, но на практике эту величину удобно регулировать путём изменения параметров в электрической цепи (например, для регулировки мощности электродвигателя).

Применение

Закон Ампера, а точнее следствия, вытекающие из него, используются в каждом электромеханическом устройстве, где необходимо вызвать движение рабочих элементов. Самым распространённым механизмом, работа которого базируется на законе Ампера, является электродвигатель.

Применение электромоторов настолько широкое, что его можно увидеть практически во всех сферах человеческой деятельности:

  • на производстве, в качестве приводов станков и различного оборудования;
  • в бытовой сфере (бытовая электротехника);
  • в электроинструментах;
  • на транспорте;
  • в устройствах автоматики, в офисной технике и во многих других сферах.

Из закона Ампера вытекает возможность получения электротока путём перемещения проводников, находящихся в магнитном поле. На данном принципе построены все генераторы электрического тока. Благодаря этой уникальной возможности, у нас появился доступ к использованию электроэнергии для различных потребностей.

Мы буквально окружены проявлением закона Ампера. Например, просмотр телепередачи сопровождается звуком, который транслируется через динамики. Но диффузор динамика приводит в движение сила Ампера. Мы разговариваем по телефону – там тоже есть динамик и микрофон. Принцип действия современных микрофонов также основан на законе Ампера.

Вход в помещение через автоматическую раздвижную дверь, поднятие на лифте, поездка в троллейбусе, трамвае, запуск двигателя автомобиля – всё это было бы невозможным, если бы не существовало взаимодействия электрического тока с силами магнитной индукции.

Ампер открыл перед человечеством такие возможности, без которых развитие научно-технического прогресса было бы невозможным. Влияние этого закона в электротехнике сравнимо с законами Ньютона, которые в своё время совершили революцию в механике. В этом огромная заслуга учёного-физика Мари Ампера, труды которого увенчались открытием в 1820 г. знаменитого закона.

Понравилась статья? Поделить с друзьями:
  • Как найти работу в новомосковске тульской области
  • Сталкер тень чернобыля как найти ломоть мяса
  • Как найти андроид если потерял через google
  • Как найти сталкера warframe
  • Как найти массу при удельной теплоемкости