Как найти амплитуды гармонических колебаний

Механические колебания.

  • Гармонические колебания.

  • Уравнение гармонических колебаний.

  • Пружинный маятник.

  • Математический маятник.

  • Свободные и вынужденные колебания.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний T — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний nu — это величина, обратная периоду: nu =1/T. Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

к оглавлению ▴

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой x. Положению равновесия отвечает значение x=0. Основная задача механики в данном случае состоит в нахождении функции x(t) , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на pi /2, можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:

x=Acos(omega t+alpha ) (1)

Выясним смысл входящих в эту формулу величин.

Положительная величина A является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому A — амплитуда колебаний.

Аргумент косинуса omega t+alpha называется фазой колебаний. Величина alpha , равная значению фазы при t=0 , называется начальной фазой. Начальная фаза отвечает начальной координате тела: x_{0}=Acos alpha .

Величина называется omega циклической частотой. Найдём её связь с периодом колебаний T и частотой nu. Одному полному колебанию отвечает приращение фазы, равное 2 pi радиан: omega T=2 pi, откуда

omega = frac{displaystyle 2pi }{displaystyle T} (2)

omega =2 pi nu (3)

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1):

x=Acos(frac{displaystyle 2pi t }{displaystyle T}+ alpha), x=Acos(2 pi nu t + alpha).

График функции (1), выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1.

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину x_{0} и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае x_{0}=A, поэтому можно положить alpha=0. Мы получаем закон косинуса:

x=Acos omega t.

График гармонических колебаний в этом случае представлен на рис. 2.

Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае x_{0}=0, так что можно положить alpha =-pi /2. Получаем закон синуса:

x=Asin omega t.

График колебаний представлен на рис. 3.

Рис. 3. Закон синуса

к оглавлению ▴

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1). Дифференцируем это равенство:

v_{x}=dot{x}=-Aomega sin(omega t+alpha ). (4)

Теперь дифференцируем полученное равенство (4):

a_{x}=ddot{x}=-Aomega^{2} cos(omega t+alpha ). (5)

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем -omega^{2}:

a_{x}=-omega^{2}x. (6)

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

ddot{x}+omega^{2}x=0. (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными A, alpha;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6), (7) описывают гармонические колебания с циклической частотой omega и только их. Две константы A, alpha определяются из начальных условий — по начальным значениям координаты и скорости.

к оглавлению ▴

Пружинный маятник.

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу m, жёсткость пружины равна k.

Координате x=0отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости vec F со стороны пружины. Второй закон Ньютона для груза в проекции на ось X имеет вид:

ma_{x}=F_{x}. (8)

Если x>0 (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и F_{x}<0. Наоборот, если x<0, то F_{x}>0. Знаки x и F_{x} всё время противоположны, поэтому закон Гука можно записать так:

F_{x}=-kx

Тогда соотношение (8) принимает вид:

ma_{x}=-kx

или

a_{x}=-frac{displaystyle k}{displaystyle m}x.

Мы получили уравнение гармонических колебаний вида (6), в котором

omega ^{2}=frac{displaystyle k}{displaystyle m}.

Циклическая частота колебаний пружинного маятника, таким образом, равна:

omega =sqrt{frac{displaystyle k}{displaystyle m}}. (9)

Отсюда и из соотношения T=2 pi / omega находим период горизонтальных колебаний пружинного маятника:

T=2 pi sqrt{frac{displaystyle m}{displaystyle k}}. (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10).

к оглавлению ▴

Математический маятник.

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна l. Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

m vec a=m vec g + vec T,

и спроектируем его на ось X:

ma_{x}=T_{x}.

Если маятник занимает положение как на рисунке (т. е. x>0), то:

T_{x}=-Tsinvarphi =-Tfrac{displaystyle x}{displaystyle l}.

Если же маятник находится по другую сторону от положения равновесия (т. е. x<0), то:

T_{x}=Tsinvarphi =-Tfrac{displaystyle x}{displaystyle l}.

Итак, при любом положении маятника имеем:

ma_{x}=-Tfrac{displaystyle x}{displaystyle l}. (11)

Когда маятник покоится в положении равновесия, выполнено равенство T=mg. При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство T approx mg. Воспользуемся им в формуле (11):

ma_{x}=-mgfrac{displaystyle x}{displaystyle l},

или

a_{x}=-frac{displaystyle g}{displaystyle l}x.

Это — уравнение гармонических колебаний вида (6), в котором

omega ^{2}=frac{displaystyle g}{displaystyle l}.

Следовательно, циклическая частота колебаний математического маятника равна:

omega =sqrt{frac{displaystyle g}{displaystyle l}}. (12)

Отсюда период колебаний математического маятника:

T=2pi sqrt{frac{displaystyle l}{displaystyle g}}. (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

к оглавлению ▴

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6).

Рис. 6. Затухающие колебания

Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы F(t), периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна omega_{0}, а вынуждающая сила зависит от времени по гармоническому закону:

F(t)=F_{0}cos omega t.

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
omega вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7.

Рис. 7. Резонанс

Мы видим, что вблизи частоты omega=omega_{r} наступает резонанс — явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: omega_{r} approx omega_{0}, и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, omega_{r} = omega_{0}, а амплитуда колебаний возрастает до бесконечности при omega Rightarrow omega_{0}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Механические колебания.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Гармонические колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Гармонические колебания в физике — формулы и определение с примерами

Содержание:

Гармонические колебания:

Некоторые движения, встречающиеся в быту, за равные промежутки времени повторяются. Такое движение называется периодическим движением. Часто встречается движение, при котором тело перемещается то в одну, то в другую сторону относительно равновесного состояния. Такое движение тела называется колебательным движением или просто колебанием.

Колебания, совершаемые телом, которое выведено из равновесного состояния в результате действия внутренних сил, называются собственными (свободными) колебаниями. Величина удаления от равновесного состояния колеблющегося тела называется его смещением (

Для наблюдения механических колебаний ознакомимся с колебаниями груза, закрепленного на конце пружины (рис. 5.1). На этом рисунке груз, закрепленный на пружине, сможет двигаться без трения с горизонтальным стержнем, так как силу тяжести шарика приводит в равновесие реакционная сила стержня.
Коэффициент упругости пружины – , а ее масса ничтожна мала и можно ее не учитывать. Считаем, что масса системы сосредоточена в грузе, а упругость в пружине.

Если груз, который находится в равновесии, потянем вправо на расстояние и отпустим, то под действием силы упругость, которая появляется в пружине, груз смещается в
сторону равновесного состояния.

С течением времени смещение груза уменьшается относительно , но скорость груза при этом увеличивается. Когда груз доходит до равновесного состояния, его смещение () равняется нулю и соответственно сила упругости равняется нулю. Но груз по инерции начинает двигаться в левую сторону. Модуль силы упругости, которая появляется в пружине, тоже растет. Однако из-за того, что сила упругости постоянно направлена против смещения груза, она начинает тормозить груз. В результате движение груза замедляется, и, в результате, прекращается. Теперь груз под воздействием эластической силы сжатой пружины начинает двигаться в сторону равновесного состояния.
Для определения закономерности изменения в течение времени системы, которая периодически совершает колебания, заполним воронку песком, подвесим на веревке, подложим бумагу под систему и раскачаем воронку. В ходе колебания начинаем равномерно вытягивать бумагу из-под системы. В результате мы увидим, что следы песка на бумаге образуют синусоиду. Из этого можно сделать следующий вывод: смещение периодически колеблющегося тела по истечении времени изменяется по закону синусов и косинусов. При этом самое большое значение смещения равняется амплитуде ():

здесь: – циклическая частота, зависящая от параметров колеблющихся систем, – начальная фаза, () фаза колебания с течением времени .
Из математики известно, что поэтому формулу (5.2.) можно записать в виде

Колебания, в которых с течением времени параметры меняются по закону синуса или косинуса, называются гармоническими колебаниями.

Значит, пружинный маятник, вышедший из равновесного состояния, совершает гармоническое колебание. Для того чтобы система совершала гармоническое колебание: 1) при выходе тела из равновесного состояния, для возвращения его в равновесное состояние должна появиться внутренняя сила; 2) колеблющееся тело должно обладать инертностью и на него не должны оказывать воздействие силы трения и сопротивления. Эти условия называется условиями проявления колебательных движений.

Основные параметры гармонических колебаний

a) период колебания – время одного полного колебания:

)

б) частота колебания – количество колебаний, совершаемых за 1 секунду:

Единица
c) циклическая частота – количество колебаний за секунд:

С учетом формул (5.5) и (5.6) уравнение гармонических колебаний (5.2) можно записать в следующей форме.

Большинство величин, количественно описывающих гармонические колебания, смещения которых с течением времени меняются по закону синусов или косинусов (скорость, ускорение, кинетическая и потенциальная энергия), тоже гармонически меняются.
Это подтверждается следующими графиками и уравнениями:

Пример решения задачи:

Точка совершает гармоническое колебательное движение. Максимальное смещение и скорость соответственно равны 0,05 м и 0,12 м/с. Найдите максимальное ускорение и скорость колебательного движения, а также ускорение точки в момент, когда смещение равно 0,03 м.

Формула и решение:

Гармонические колебания пружинного маятника

В 1985 году в городе Мехико произошла ужасная катастрофа, причина которой было землетрясение: 5526 человек погибли, 40 ООО человек ранены, 31000 человек остались без крова. Из проведенных затем исследований ученые выяснили, что главной причиной разрушений во время землетрясения является совпадение частоты свободных колебаний зданий с частотой вынужденных колебаний Земли. Поэтому при возведении новых зданий в сейсмически активной зоне необходимо, чтобы эти частоты не совпадали. Это даст возможность уменьшить последствия землетрясения. С этой целью важно знать, от чего зависят частота и период колебаний.

Одной из простейших колебательных систем, совершающих гармонические колебания, является пружинный маятник.

Пружинный маятник — это колебательная система, состоящая из пружины и закрепленного на ней тела. Колебания, возникающие в пружинном маятнике, являются гармоническими колебаниями:

Под гармоническими колебаниями подразумеваются колебания, возникающие под действием силы, прямо пропорциональной перемещению и направленной против направления перемещения.

Исследование колебаний пружинного маятника имеет большое практическое значение, например, при вычислении колебаний рессор автомобиля при езде; в исследовании воздействия колебаний на фундамент зданий и тяжелых станков, в определении эластичности ушных перепонок при диагностике лор-заболеваний. По этой причине изучение колебаний пружинного маятника является актуальной проблемой.

С целью уменьшения количества сил, действующих на колебательную систему, целесообразно использовать горизонтально расположенную колебательную систему пружина-шарик (d).

В этой системе действия силы тяжести и реакции опоры уравновешивают друг друга. При выведении шарика из состоянии равновесия, например, при растяжении пружины до положения сила упругости, возникающая в ней, сообщает шарику ускорение и приводит его в колебательное движение. По II закону Ньютона уравнение движения маятника можно записать так:

Формула (4.9) является уравнением свободных гармонических колебаний пружинного маятника.

Где — масса шарика, закрепленного на пружине, — проекция ускорения шарика вдоль оси — жесткость пружины, -удлинение пружины, равное амплитуде колебания. Для данной колебательной системы отношение — постоянная положительная величина (так как масса и жесткость не могут быть отрицательными). При сравнении уравнения колебаний (4.9) пружинного маятника с выражением для другого вида периодического движения — известным выражением центростремительного ускорения при равномерном движении по окружности получается, что отношение соответствует квадрату циклической частоты

Таким образом, уравнение движения пружинного маятника можно записать и так:

Уравнение (4.12) показывает, что колебания пружинного маятника с циклической частотой являются свободными гармоническими колебаниями. Из математики известно, что решением этого уравнения является:

Так как тригонометрическая функция является гармонической функцией, то и колебания пружинного маятника являются гармоническими колебаниями.

Здесь фаза колебания, — начальная фаза. Единица измерения фазы в СИ — радиан (1 рад). Фазу также можно измерять в градусах: Значение начальной фазы зависит от выбора начального момента времени. Начальный момент времени можно выбрить так, чтобы В этом случае формулу гармонических колебаний пружинного маятника можно записать так:

или

Из сравнения выражений (4.11) и (4.5) определяются величины, от которых зависят период и частота колебаний пружинного маятника:

Из выражений (4.14) и (4.15) видно, что период и частота пружинного маятника зависят от жесткости пружины и массы груза, подвешенного к нему.

Гармонические колебания математического маятника

До наших дней дошла такая историческая информация: однажды в 1583 году итальянский ученый Г. Галилей, находясь в храме города Пиза, обратил внимание на колебательное движение люстры, подвешенной на длинном тросе. Он, сравнивая колебания люстры со своим пульсом, определил, что, несмотря на уменьшение амплитуды колебания, время, затрачиваемое на одно полное колебание (период колебания) люстры, не изменяется. Затем Галилей в результате многочисленных проведенных исследований, изменяя длину нитевого маятника, массу подвешенного к нему груза, высоту расположения маятника (по сравнению с уровнем моря), определил, от чего зависят период и частота колебаний маятника.

Гармонические колебания возникают также под действием силы тяжести. Это можно наблюдать с помощью математического маятника.

Математический маятник — это идеализированная колебательная система, состоящая из материальной точки, подвешенной на невесомой и нерастяжимой нити.

Для исследования колебаний математического маятника можно использовать систему, состоящую из тонкой длинной нити и шарика (b).

Сила тяжести действующая на шарик в положении равновесия маятника, уравновешивается силой натяжения нити Однако, если вывести маятник из состояния равновесия, сместив его на малый угол в сторону, то возникают две составляющие вектора силы тяжести -направленная вдоль нити и перпендикулярная нити Сила натяжения и составляющая силы тяжести уравновешивают друг друга. Поэтому равнодействующая сила будет равна составляющей «пытающейся» вернуть тело в положение равновесия (см.: рис. b). Учитывая вышеуказанное и ссылаясь на II закон Ньютона, можно написать уравнение колебательного движения тела массой в проекциях на ось ОХ:

Приняв во внимание, что:

Для уравнения движения математического маятника получим:

Где — длина математического маятника (нити), — ускорение свободного падения, — амплитуда колебания.

Для данной колебательной системы отношение — постоянная положительная величина, потому что ускорение свободного падения и длина нити не могут быть отрицательными. Если сравнить уравнения (4.16) и (4.10), с легкостью можно увидеть, что отношение также соответствует квадрату циклической частоты

Таким образом, уравнение движения математического маятника можно записать и так:

Уравнение (4.19) показывает, что колебания математического маятника являются гармоническими колебаниями с циклической частотой со. Из математики вы знаете, что решением этого уравнения является нижеприведенная функция:

Так как эта функция является гармонической, то и колебания математического маятника являются гармоническими колебаниями.

Отсюда определяются величины, от которых зависят период и частота колебаний математического маятника:

Таким образом, период и частота колебаний математического маятника зависят от длины маятника и напряженности гравитационного поля в данной точке.

Скорость и ускорение при гармонических колебаниях

Вы уже знакомы с основными тригонометрическими функциями и умеете строить графики тригонометрических уравнений, описывающих гармонические колебания.

При гармонических колебаниях маятника его смещение изменяется по гармоническому закону, поэтому не трудно доказать, что его скорость и ускорение также изменяются по гармоническому закону. Предположим, что смещение изменяется по закону косинуса и начальная фаза равна нулю

Так как скорость является первой производной смещения (координат) по времени, то:

Как видно из выражения (4.23), скорость, изменяющаяся по гармоническому закону, опережает колебания смещения по фазе на (а).

Максимальное (амплитудное) значение скорости зависит от амплитуды, частоты и периода колебаний:

Так как ускорение является первой производной скорости по времени, то получим:

Как видим, колебания ускорения, изменяющегося по гармоническому закону, опережают колебания скорости по фазе на а колебания смещения на

(см.: рис. а). Максимальное (амплитудное) значение ускорения зависит от амплитуды, частоты и периода колебаний:

Превращения энергии при гармонических колебаниях

Теоретический материал

Потенциальная и кинетическая энергия свободных гармонических колебаний в замкнутой системе периодически превращаются друг в друга.

В таблице 4.4 дано сравнение превращений энергий в пружинном и математическом маятниках. Как видно из таблицы, потенциальная энергия колебательной системы в точке возвращения имеет максимальное значение:

Если же маятник находится в точке равновесия, потенциальная энергия минимальна:

Кинетическая энергия системы, наоборот, в точке возвращения минимальна а в точке равновесия максимальна:

На рисунке (а) даны графики зависимости потенциальной и кинетической энергии при гармоническом колебательном движении от смещения.

Полная механическая энергия замкнутой колебательной системы в произвольный момент времени остается постоянной (трение не учитывается):

a) для пружинного маятника:

b) для математического маятника:

Если принять во внимание изменение смещения и скорости по гармоническому закону в формулах потенциальной и кинетической энергии колебательного движения, то станет очевидно, что при гармонических колебаниях эти энергии так же изменяются по гармоническому закону (b):

Как было отмечено выше, полная энергия системы не изменяется по гармоническому закону:

Полная энергия гармонических колебаний прямо пропорциональна квадрату амплитуды колебаний.

Если же в системе существует сила трения, то его полная энергия не сохраняется — изменение полной механической энергии равно работе силы трения. В результате колебания затухают:

Превращения энергии при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергий. Кинетической энергией тело обладает вследствие своего движения, а потенциальная энергия определяется взаимодействием тела с другими телами или полями. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силу трения не учитывают, то его механическая энергия сохраняется.

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол а (рис. 7), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:


Рис. 7. Превращения энергии при колебаниях математического маятника

Поскольку при прохождении положения равновесия его потенциальная энергия равна нулю, то кинетическая энергия (а следовательно, и скорость) будет максимальна:

Из закона сохранения механической энергии следует (рис. 8), что

(1)

Отсюда найдем модуль максимальной скорости маятника:

(2)

Высоту можно выразить через длину маятника l и амплитуду колебаний А.

Если колебания малые, то Из треугольника KCD на рисунке 8 находим

Подставив выражение для в формулу I (2), получим

Подставляя выражения для и в соотношение (1), находим

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную.

В любом промежуточном положении

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 9). В крайних точках, когда координата груза принимает значение , модуль его скорости равен нулю (v = 0) и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Таким образом, получаем, что механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда x = 0, вся энергия осциллятора переходит в кинетическую энергию груза:

где — модуль максимальной скорости груза при колебаниях.

В промежуточных точках полная механическая энергия

Отсюда можно вывести выражение для модуля скорости груза в точке с

Так как

Энергия при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергии. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силой трения пренебрегают, то его механическая энергия сохраняется. Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол (рис. 10), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Поскольку при прохождении положения равновесия потенциальная энергия равна нулю то из закона сохранения механической энергии следует (см. рис. 10), что т. е. кинетическая энергия маятника (а следовательно, и скорость) рис. ю. Определение^иhmax будет максимальна:

Запишем закон сохранения механической энергии, подставив в него выражения для потенциальной и кинетической энергии:

Отсюда найдем модуль максимальной скорости маятника:

Высоту можно выразить через длину маятника и амплитуду колебаний. Если колебания малые, то Из (см. рис. 10) находим:

или

Подставив выражение (3) для в формулу (2), получим:

Подставляя выражения (3) для и (4) для в соотношение (1), находим:

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную (рис. 11). В любом промежуточном положении

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 12).

В крайних положениях, когда модуль скорости маятника и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Таким образом, из соотношения (6) следует, что механическая энергия пружинного маятника пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда вся энергия пружинного маятника переходит в кинетическую энергию груза:

где — модуль максимальной скорости груза при колебаниях.

В положениях между крайними точками полная энергия

С учетом выражений для координаты и проекции скорости груза а также для находим его потенциальную энергию и кинетическую энергию в произвольный момент времени

Тогда полная механическая энергия пружинного маятника в этот же. момент времени есть величина постоянная и равная:

Таким образом, начальное смещение определяет начальную потенциальную, а начальная скорость определяет начальную кинетическую энергию колеблющегося тела. При отсутствии в системе потерь энергии процесс колебаний сопровождается только переходом энергии из потенциальной в кинетическую и обратно.

Заметим, что частота периодических изменений кинетической (потенциальной) энергии колеблющегося тела в два раза больше частоты колебаний маятника. Действительно, дважды за период механическая энергия тела будет полностью превращаться в потенциальную (в двух крайних положениях маятника) и дважды за период — в кинетическую (при его прохождении через положение равновесия) (рис. 13).

Пример №1

Математический маятник при колебаниях от одного крайнего положения до другого смещается на расстояние см и при прохождении положения равновесия достигает скорости, модуль которой Определите период колебании маятника.
Дано:


Решение

По закону сохранения механической энергии


Ответ:

Пример №2

Груз массой г находится на гладкой горизонтальной поверхности и закреплен на легкой пружине жесткостью Его смешают на расстояние см от положения равновесия и сообщают в направлении от положения равновесия скорость, модуль которой Определите потенциальную и кинетическую энергию груза в начальный момент времени. Запишите кинематический закон движения груза.


Решение Потенциальная энергия груза:

Кинетическая энергия груза:

Начальное смещение груза не является амплитудой, так как вместе с начальным отклонением грузу сообщили и скорость. Однако полная энергия может быть выражена через амплитуду колебаний:

Отсюда

Циклическая частота:

В начальный момент времени координата груза Отсюда начальная фаза:

Тогда закон гармонических колебаний имеет вид (рис. 14):

Ответ:

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Вынужденные колебания в физике
  • Электромагнитные колебания
  • Свободные и вынужденные колебания в физике
  • Вынужденные электромагнитные колебания
  • Закон Архимеда
  • Движение жидкостей
  • Уравнение Бернулли
  • Механические колебания и волны в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Амплитуда гармонических колебаний

Вы будете перенаправлены на Автор24

В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени. Эти движения мы можем наблюдать:

  • при движении планет;
  • в разных механических машинах;
  • они находятся в основе измерения времени;
  • звуковые явления объясняют механические колебания.

В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.

Данный тип колебаний применяют:

  • в разных технических устройствах;
  • для целей телефонной, телеграфной и радиосвязи;
  • создания технических переменных токов;
  • свет – нечто иное, как электромагнитные колебания.

Колебания, которые происходят под воздействием сил внутри самой колебательной системы, называют собственными. Собственные колебания появляются при нарушении состояния равновесия колебательной системы.

Гармоническими называют колебания, которые описывают при помощи тригонометрических законов синуса и косинуса.

Уравнение собственных электрических колебаний

Допустим, что электрические процессы в контуре, состоящем из:

  • конденсатора (ёмкость $C$);
  • сопротивления ($R$);
  • катушки индуктивности ($L$)

являются квазистационарными. Это означает:

  1. что мгновенная сила тока $I$ одинакова в каждой точке контура;
  2. к мгновенным значениям электрических параметров можно применять законы Кирхгофа.

Изменение заряда описывает в таком контуре дифференциальное уравнение второго порядка с обыкновенными производными и постоянными коэффициентами:

где $omega_0=frac<1>$ — циклическая (круговая) частота колебаний; $alpha=frac<2L>$.

Аналогичные уравнения описывают колебания напряжения и силы тока.

Если колебания описываю при помощи линейных дифференциальных уравнений, то такие колебания являются линейными, соответствующие им колебательные системы, именуют линейными колебательными системами.

Готовые работы на аналогичную тему

Амплитуды заряда, силы тока и напряжения при колебаниях в идеальном электрическом контуре.

Для того чтобы задача описания колебаний стала полностью определенной необходимо задать начальные условия, которых должно быть два, так как мы имеем уравнение второго порядка. Обычно начальными условиями для уравнения (1) являются:

Если сопротивление контура можно считать равным нулю ($R=0$), тогда уравнение колебаний (1) принимает вид:

Общим решением уравнения (2) является гармоническое колебание:

$q=Acos (omega_0 t+varphi) (3),$

где $A$ — амплитуда колебаний; $varphi$ — начальная фаза колебаний.

Амплитуда (как и начальная фаза) определяются начальными условиями колебаний.

Подставим начальные условия в гармоническое колебание (3), получим:

$Acos varphi = q_0$, $Aomega_0sin varphi = 0 (4).$

В окончательном виде уравнение гармонического колебания (3) запишем как:

$q=q_0cos (omega_0 t) (4).$

Напряжение на конденсаторе в контуре изменяется в соответствии с законом:

$U_C=frac=U_0cos omega_0 t (5),$

где амплитуда напряжения равна первоначальному напряжению на конденсаторе: $U_0=frac.$

Силу тока в контуре найдём как:

$I=-frac

=q_0omega_0 sin (omega t)=I_0 sin (omega_0 t) (6),$

где $I_0= q_0omega_0$ — амплитуда силы тока. Сравнивая выражения (4) и (6) мы видим, что заряд и силы тока совершают изменения в соответствии с гармоническими законами, при этом:

  • колебания заряда происходят по закону косинуса;
  • сила тока колеблется по закону синуса.

Поскольку из тригонометрии мы знаем, что:

$sin (omega_0 t) = cos(omega_0 t-frac<pi><2>)$ — это означает, что между колебаниями заряда и силы тока имеется разность фаз $frac<pi><2>$, колебания силы тока отстают по фазе.

Для графического изображения колебаний по горизонтальной оси откладывать время, а по вертикальной заряд (силу тока или напряжение). В таком случае получится периодическая кривая – синусоида или косинусоида. Форму кривой определяют амплитуда колебаний физического параметра и циклическая частота $omega_0$. Положение кривой зависит от начальной фазы.

Амплитуда гармонических механических колебаниях

Рассмотрим гармонические колебания материальной точки, которая совершает движения вдоль оси $X$:

$x=Acos (omega t+delta)(7),$

где $delta$ — начальная фаза колебаний; $A$ — амплитуда колебаний – максимальное отклонение колеблющейся материальной точки от положения равновесия. $omega $ — циклическая частота колебаний.

Скорость колебаний по оси $X$ нашей материальной точки составляет:

$v=dot=-omega Asin (omega t+delta) (8),$

где амплитуда скорости равна $v_m=omega A$.

Найдем вторую производную от уравнения колебаний (7), имеем:

амплитуда ускорения нашей точки равна $a_m=omega^2A $.

Амплитуда колебаний при наличии затухания

Обратимся к реальному электрическому контуру, который обладает сопротивлением отличным от нуля. В этом случае колебания подчиняются закону (1). Если $omega_0^2$ > $alpha^2$, тогда решением дифференциального уравнения (1) служит выражение:

где $A=const$ и $varphi=const$ — задаются начальными условиями; $omega = sqrt<omega_0^2-alpha^2>$.

Уравнение (9) условно можно считать гармоническим колебанием с круговой частотой $omega$ и амплитудой, равной:

которая не является постоянной, а постоянно уменьшается со временем. Величину $alpha$ называют коэффициентом затухания.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 22 05 2021

источники:

http://www.evkova.org/garmonicheskie-kolebaniya-v-fizike

http://spravochnick.ru/fizika/garmonicheskie_kolebaniya/amplituda_garmonicheskih_kolebaniy/

Автор статьи

Екатерина Владимировна Мосина

Эксперт по предмету «Физика»

Задать вопрос автору статьи

В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени. Эти движения мы можем наблюдать:

  • при движении планет;
  • в разных механических машинах;
  • они находятся в основе измерения времени;
  • звуковые явления объясняют механические колебания.

В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.

Данный тип колебаний применяют:

  • в разных технических устройствах;
  • для целей телефонной, телеграфной и радиосвязи;
  • создания технических переменных токов;
  • свет – нечто иное, как электромагнитные колебания.

Определение 1

Колебания, которые происходят под воздействием сил внутри самой колебательной системы, называют собственными. Собственные колебания появляются при нарушении состояния равновесия колебательной системы.

Гармоническими называют колебания, которые описывают при помощи тригонометрических законов синуса и косинуса.

Уравнение собственных электрических колебаний

Допустим, что электрические процессы в контуре, состоящем из:

  • конденсатора (ёмкость $C$);
  • сопротивления ($R$);
  • катушки индуктивности ($L$)

являются квазистационарными. Это означает:

  1. что мгновенная сила тока $I$ одинакова в каждой точке контура;
  2. к мгновенным значениям электрических параметров можно применять законы Кирхгофа.

Изменение заряда описывает в таком контуре дифференциальное уравнение второго порядка с обыкновенными производными и постоянными коэффициентами:

$frac{d^2q}{dt^2}+2alpha frac{dq}{dt}+omega_0^2q=0 (1),$

где $omega_0=frac{1}{LC}$ — циклическая (круговая) частота колебаний; $alpha=frac{R}{2L}$.

Аналогичные уравнения описывают колебания напряжения и силы тока.

Если колебания описываю при помощи линейных дифференциальных уравнений, то такие колебания являются линейными, соответствующие им колебательные системы, именуют линейными колебательными системами.

«Амплитуда гармонических колебаний» 👇

Амплитуды заряда, силы тока и напряжения при колебаниях в идеальном электрическом контуре.

Для того чтобы задача описания колебаний стала полностью определенной необходимо задать начальные условия, которых должно быть два, так как мы имеем уравнение второго порядка. Обычно начальными условиями для уравнения (1) являются:

  1. $q=q_0$ при $t=0$;
  2. $frac{dq}{dt}=0.$

Если сопротивление контура можно считать равным нулю ($R=0$), тогда уравнение колебаний (1) принимает вид:

$frac{d^2q}{dt^2}+omega_0^2q=0 (2).$

Общим решением уравнения (2) является гармоническое колебание:

$q=Acos (omega_0 t+varphi) (3),$

где $A$ — амплитуда колебаний; $varphi$ — начальная фаза колебаний.

Амплитуда (как и начальная фаза) определяются начальными условиями колебаний.

Подставим начальные условия в гармоническое колебание (3), получим:

$Acos varphi = q_0$, $Aomega_0sin varphi = 0 (4).$

Из (4) имеем:

$varphi=0$; $A=q_0$.

В окончательном виде уравнение гармонического колебания (3) запишем как:

$q=q_0cos (omega_0 t) (4).$

Напряжение на конденсаторе в контуре изменяется в соответствии с законом:

$U_C=frac{q}{C}=U_0cos omega_0 t (5),$

где амплитуда напряжения равна первоначальному напряжению на конденсаторе: $U_0=frac{q_0}{C}.$

Силу тока в контуре найдём как:

$I=-frac{dq}{dt}=q_0omega_0 sin (omega t)=I_0 sin (omega_0 t) (6),$

где $I_0= q_0omega_0$ — амплитуда силы тока. Сравнивая выражения (4) и (6) мы видим, что заряд и силы тока совершают изменения в соответствии с гармоническими законами, при этом:

  • колебания заряда происходят по закону косинуса;
  • сила тока колеблется по закону синуса.

Поскольку из тригонометрии мы знаем, что:

$sin (omega_0 t) = cos(omega_0 t-frac{pi}{2})$ — это означает, что между колебаниями заряда и силы тока имеется разность фаз $frac{pi}{2}$, колебания силы тока отстают по фазе.

Для графического изображения колебаний по горизонтальной оси откладывать время, а по вертикальной заряд (силу тока или напряжение). В таком случае получится периодическая кривая – синусоида или косинусоида. Форму кривой определяют амплитуда колебаний физического параметра и циклическая частота $omega_0$. Положение кривой зависит от начальной фазы.

Амплитуда гармонических механических колебаниях

Рассмотрим гармонические колебания материальной точки, которая совершает движения вдоль оси $X$:

$x=Acos (omega t+delta)(7),$

где $delta$ — начальная фаза колебаний; $A$ — амплитуда колебаний – максимальное отклонение колеблющейся материальной точки от положения равновесия. $omega $ — циклическая частота колебаний.

Скорость колебаний по оси $X$ нашей материальной точки составляет:

$v=dot{x}=-omega Asin (omega t+delta) (8),$

где амплитуда скорости равна $v_m=omega A$.

Найдем вторую производную от уравнения колебаний (7), имеем:

$a=dot{v}=ddot{x}=-omega^2Acos(omega t+delta)(8)$.

амплитуда ускорения нашей точки равна $a_m=omega^2A $.

Амплитуда колебаний при наличии затухания

Обратимся к реальному электрическому контуру, который обладает сопротивлением отличным от нуля. В этом случае колебания подчиняются закону (1). Если $omega_0^2$ > $alpha^2$, тогда решением дифференциального уравнения (1) служит выражение:

$q=Ae^{-alpha t}cos (omega t+varphi)(9),$

где $A=const$ и $varphi=const$ — задаются начальными условиями; $omega = sqrt{omega_0^2-alpha^2}$.

Уравнение (9) условно можно считать гармоническим колебанием с круговой частотой $omega$ и амплитудой, равной:

$y=Ae^{-alpha t}(10),$

которая не является постоянной, а постоянно уменьшается со временем. Величину $alpha$ называют коэффициентом затухания.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Гармонические колебания происходят по
закону:

x
= A
cos(ωt
+ φ0),

где
x
– смещение частицы от положения
равновесия, А
– амплитуда колебаний, ω – круговая
частота, φ0
– начальная фаза, t
– время.

Период
колебаний T
=
.

Скорость колеблющейся частицы:

υ
=

= – A
ω
sin (ωt
+ φ0),

ускорение
a
=

= –
A
ω2
cos
t
+ φ0).

Кинетическая энергия частицы, совершающей
колебательное движение: Ek
=
=sin2t+ φ0).

Потенциальная
энергия:

En
=
cos2t
+ φ0).

Периоды колебаний маятников

– пружинного
T
=
,

где
m
– масса груза, k
– коэффициент жесткости пружины,

– математического
T
=
,

где
l
– длина
подвеса, g
– ускорение свободного падения,

– физического
T
=
,

где
I
– момент
инерции маятника относительно оси,
проходящей через точку подвеса, m
– масса маятника, l
– расстояние от точки подвеса до центра
масс.

Приведенная
длина физического маятника находится
из условия: lnp
=
,

обозначения те
же, что для физического маятника.

При сложении двух
гармонических колебаний одной частоты
и одного направления получается
гармоническое колебание той же частоты
с амплитудой:

A
= A12
+
A22
+
2A1
A2
cos(φ2

φ1)

и
начальной
фазой:
φ =
arctg
.

где
А1,
A2
– амплитуды, φ1,
φ2
– начальные фазы складываемых колебаний.

Траектория
результирующего движения при сложении
взаимноперпендикулярных колебаний
одной частоты:

+



cos
2
– φ1)
= sin2
2
– φ1).

Затухающие колебания происходят по
закону:

x
= A0
e
β
t
cos(ωt
+ φ0),

где
β – коэффициент затухания, смысл
остальных параметров тот же, что для
гармонических колебаний, А0
– начальная амплитуда. В момент времени
t
амплитуда колебаний:

A
= A0
e
βt.

Логарифмическим
декрементом затухания называют:

λ
= ln


= βT,

где
Т
– период колебания: T
=
.

Добротностью колебательной системы
называют:

D
=
.

Уравнение плоской бегущей волны имеет
вид:

y
= y0
cos
ω(t
±
),

где
у
– смещение колеблющейся величины от
положения равновесия, у0
– амплитуда, ω – круговая частота, t
– время, х
– координата, вдоль которой распространяется
волна, υ
– скорость распространения волны.

Знак
«+» соответствует волне, распространяющейся
против оси X,
знак «–» соответствует волне,
распространяющейся по оси Х.

Длиной волны называют ее пространственный
период:

λ
= υT,

где
υ–скорость
распространения волны, T–период
распространяющихся колебаний.

Уравнение волны можно записать:

y
= y0
cos

(+).

Стоячая волна описывается уравнением:

y
= (2y0
cos
)
cos ωt.

В скобки заключена амплитуда стоячей
волны. Точки с максимальной амплитудой
называются пучностями,

xп
= n,

точки с нулевой
амплитудой – узлами,

xу
=
(n
+

).

Примеры решения задач

Задача
20

Амплитуда
гармонических колебаний равна 50 мм,
период 4 с и начальная фаза
.
а) Записать уравнение этого колебания;
б) найти смещения колеблющейся точки
от положения равновесия при t=0
и при t
= 1,5 с; в) начертить график этого движения.

Решение

Уравнение
колебания записывается в виде x
= a
cos(t
+
0).

По
условию известен период колебаний.
Через него можно выразить круговую
частоту 
=
.
Остальные параметры известны:

а)
x
= 0,05 cos(t
+

).

б)
Смещение x
при t
=
0.

x1
= 0,05 cos=
0,05
=
0,0355 м.

При
t
=
1,5 c

x2
= 0,05 cos(1,5
+
)=
0,05 cos 
=
– 0,05 м.

в)
график функцииx=0,05cos
(t
+

)
выглядит следующим образом:

Определим
положение нескольких точек. Известны
х1(0)
и х2(1,5),
а также период колебаний. Значит, через
t
= 4 c
значение х
повторяется, а через t
=
2 c
меняет знак. Между максимумом и минимумом
посередине – 0 .

Задача
21

Точка
совершает гармоническое колебание.
Период колебаний 2 с, амплитуда 50 мм,
начальная фаза равна нулю. Найти скорость
точки в момент времени, когда ее смещение
от положения равновесия равно 25 мм.

Решение

1
способ. Записываем уравнение колебания
точки:

x
= 0,05 cos 
t
,
т.
к.

=

=.

Находим
скорость в момент времени t:

υ
=

= – 0,05
cos

t.

Находим
момент времени, когда смещение равно
0,025 м:

0,025
= 0,05 cos 
t
1,

отсюда
cos t1
=
,
t1
=
.
Подставляем
это значение в выражение для скорости:

υ
= – 0,05 
sin

=

0,05 

=
0,136 м/c.

2
способ. Полная энергия колебательного
движения:

E
=
,

где
а
– амплитуда, 
– круговая частота,
m

масса
частицы.

В
каждый момент времени она складывается
из потенциальной и кинетической энергии
точки

Ek
=
,
Eп
=

,
но k
= m2,
значит, Eп
=

.

Запишем
закон сохранения энергии:

=
+
,

отсюда
получаем: a22
=
υ
2
+
2x2,

υ
= 

=

=
0,136 м/c.

Задача
22

Амплитуда
гармонических колебаний материальной
точки А
= 2 см, полная энергия Е
=
3∙10-7
Дж.
При каком смещении от положения равновесия
на колеблющуюся точку действует сила
F
=
2,25∙10-5
Н?

Решение

Полная
энергия точки, совершающей гармонические
колебания, равна:

E
=
.
(13)

Модуль
упругой силы выражается через смещение
точек от положения равновесия x
следующим образом:

F
=
k
x

(14)

В
формулу (13) входят масса m
и круговая частота ,
а в (14) – коэффициент жесткости k.
Но круговая частота связана с m
и k:

2
=
,

отсюда
k
= m2
и F
= m2x.
Выразив m2
из
соотношения (13) получим:
m2
=

,
F
=
x.

Откуда
и получаем выражение для смещения x:

x
=
.

Подстановка
числовых значений дает:

x
=

= 1,5∙10-2
м
= 1,5 см.

Задача
23

Точка
участвует в двух колебаниях с одинаковыми
периодами и начальными фазами. Амплитуды
колебаний А1
=
3 см и А2
= 4 см. Найти амплитуду результирующего
колебания, если: 1) колебания происходят
в одном направлении; 2) колебания взаимно
перпендикулярны.

Решение

  1. Если
    колебания происходят в одном направлении,
    то амплитуда результирующего колебания
    определится как:

A
=
,

где
А1
и А2
– амплитуды складываемых колебаний,
1
и 2–начальные
фазы. По условию начальные фазы одинаковы,
значит 2

1
=
0, а cos
0 = 1.

Следовательно:

A
=
==
А1+А­2
=
7 см.

  1. Если
    колебания взаимно перпендикулярны, то
    уравнение результирующего движения
    будет:

cos(
2


1)
= sin2(
2


1).

Так
как по условию 2

1
=
0, cos
0 = 1, sin
0 = 0, то уравнение запишется в виде:

=0,

или

=0,

или

.

Полученное
соотношение между x
и у
можно
изобразить на графике. Из графика видно,
что результирующим будет колебание
точки на прямой MN.
Амплитуда этого колебания определится
как:
A

=
=
5 см.

Задача
24

Период
затухающих колебаний Т=4
с, логарифмический декремент затухания

= 1,6 , начальная фаза равна нулю. Смещение
точки при t
=


равно 4,5 см. 1) Написать уравнение этого
колебания; 2) Построить график этого
движения для двух периодов.

Решение

  1. Уравнение
    затухающих колебаний с нулевой начальной
    фазой имеет вид:

x
= A0e
t
cos2.

Для
подстановки числовых значений не хватает
величин начальной амплитуды А0
и
коэффициента затухания .

Коэффициент
затухания можно определить из соотношения
для логарифмического декремента
затухания:

 =
Т.

Таким
образом 
=


=

= 0,4 с-1.

Начальную
амплитуду можно определить, подставив
второе условие:

4,5
см
= A0

cos
2= A0

cos
=A0

.

Отсюда
находим:

A0
=
4,5∙

(см)
= 7,75 см.

Окончательно
уравнение движения:

x
= 0,0775
cost.

  1. Для
    построения графика сначала рисуем
    огибающую x
    =
    0,0775
    ,
    а затем колебательную часть.

Задача
25

Чему
равен логарифмический декремент
затухания математического маятника,
если за t
=
1 мин амплитуда колебаний уменьшилась
в два раза? Длина маятника l
=
1 м.

Решение

Логарифмический
декремент затухания можно найти из
соотношения: =
Т,

где

– коэффициент затухания, Т
– период колебаний. Собственная круговая
частота математического маятника:

0
=
= 3,13 с-1.

Коэффициент
затухания колебаний можно определить
из условия:

A
0
=
A0
et,

t
= ln2
= 0,693 ,

 =
= 0,0116c-1.

Поскольку

<< 0,
то
в формуле 
=
можно пренебречь
по сравнению с 0
и
период
колебаний определить по формуле:

T
=
= 2c.

Подставляем

и Т
в выражение для логарифмического
декремента затухания и получаем:

 =
T
= 0,0116 с-1
∙ 2 с = 0,0232.

Задача
26

Уравнение
незатухающих
колебаний
дано
в виде
x

=
4
sin600
t
см.

Найти
смещение от положения равновесия точки,
находящейся на расстоянии l
= 75 см от источника колебаний, через t
= 0,01 с после начала колебаний. Скорость
распространения колебаний υ
= 300 м/с.

Решение

Запишем
уравнение волны, распространяющейся
от данного источника: x
= 0,04 sin
600 (t

).

Находим
фазу волны в данный момент времени в
данном месте:

t

= 0,01 –= 0,0075 ,

600

0,0075
= 4,5
,

sin
4,5
= sin


= 1.

Следовательно,
смещение точки x
= 0,04 м, т.е. на расстоянии l
=75
см от источника в момент времени t
= 0,01 c
смещение точки максимально.

Список литературы

  1. Волькенштейн
    В.С
    . Сборник задач по общему курсу
    физики. – СПб.: СпецЛит, 2001.

  2. Савельев
    И.В
    . Сборник вопросов и задач по общей
    физике. – М.: Наука, 1998.

35

Соседние файлы в папке FIZIKA

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Гармоническими законами называют законы синуса и косинуса. Следовательно, гармоническими колебаниями называют те колебания, при которых координата тела изменяется синусоидально или косинусоидально.

Определение

Гармонические колебания — колебания, при которых координата тела изменяется с течением времени по гармоническому закону.

Ниже представлен график косинусоидальной функции. Обратите внимание, что косинус при возрастании аргумента от нуля сначала меняется медленно, а потом он все быстрее и быстрее приближается к нулю. Пройдя через него, его модуль снова быстро возрастает. Но по мере приближения к максимальному значению он снова замедляется. Точно так же меняются координаты свободно колеблющегося тела.

Важно! Гармоническими можно считать только те колебания, что совершаются грузом, закрепленном на пружине, или математическим маятником, отклоняемым на малый угол, при котором ускорение тела пропорционально его смещению.

Уравнение движения гармонических колебаний

Известно, что ускорение колеблющегося на пружине груза пропорционально его смещению от положения равновесия:

ax=kmx

Также известно, что ускорение есть вторая производная координаты. Следовательно, при свободных колебаниях координата изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

x″
=kmx

Вид уравнения гармонических колебаний зависит от начальных условий. Так, на характер колебательного движения влияет амплитуда, представляющая собой расстояние, на которое изначально было отклонено тело от положения равновесия. Амплитуда обозначается как xmax. Но нельзя просто считать, что x=xmaxcost или =xmaxsint, поскольку двойная производная от этих функций будет равна:

x″=xmaxcost=x

Видно, что в этом случае теряется величина km, служащая постоянной для каждой колебательной системы. Чтобы получить ее во второй производной, нужно усложнить функцию до следующего вида:

x=xmaxcoskmt

Тогда первая производная примет вид:

x′=kmxmaxsinkmt

Вторая производная примет вид:

x″
=kmxmaxcoskmt=kmx

Так как мы получили ровно такое же выражение, то описать свободные колебания можно уравнениями следующего вида:

x=xmaxsinkmt

x=xmaxcoskmt

Обозначим постоянную величину km, зависящую от свойств системы, за ω0:

ω0=km

Тогда получим:

x=xmaxsinω0t

x=xmaxcosω0t

Само уравнение движения, описывающего свободные колебания, примет вид:

x″= ω20x

Период и частота гармонических колебаний

Минимальный промежуток времени T, через который движение тела полностью повторяется, называют периодом колебания. Зная его, можно вычислить частоту колебаний, равную числу колебаний в единицу времени. Эти величины связаны между собой выражением:

ν=1T

Через промежуток времени, равный периоду T и соответствующий изменению аргумента косинуса на ω0T, движение тела повторяется, и косинус принимает прежнее значение. Но из математики известно, что наименьший период косинуса равен 2π. Следовательно:

ω0T=2π

Отсюда:

ω0=2πT=2πν

Таким образом, величина ω0 представляет собой число колебаний тела, но не за 1 секунду, а за 2π секунд. Эта величина называется циклической (круговой) частотой. А частоту свободных колебаний называют собственной частотой колебательной системы.

Зависимость частоты и периода свободных колебаний от свойств системы

Изначально за величину ω0 мы принимали постоянную, характеризующую свойства системы:

ω0=km

Теперь мы выяснили, что циклическая частота связана с периодом и частотой колебаний. Следовательно, период и частота колебаний также зависят от свойств системы:

ω0=km=2πT=2πν

Отсюда период и частота колебаний соответственно равны:

T=2πω0=2πmk

ν=12πkm

Вспомним, что свойства колебательной системы математического маятника определяются постоянной величиной gl. Следовательно, циклическая частота для него равна:

ω0=gl

Отсюда период и частота колебаний математического маятника соответственно равны:

T=2πω0=2πlg

ν=12πgl

Эта формула была впервые получена и проверена на опыте голландским ученым Г. Гюйгенсом, современником И. Ньютона.

Период колебания возрастает с увеличением длины маятника. От массы маятника он не зависит. Это легко проверить на опыте с различными маятниками. Зависимость периода от ускорения свободного падения также легко прослеживается. Чем меньше величина g, тем больше период колебания маятника, и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут в сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета, который находится на высоте 200 м. И это только за счет уменьшения ускорения свободного падения с высотой.

Зависимость периода колебаний маятника от значения g используется на практике. Измеряя период колебания, можно легко измерить g. Ускорение свободного падения меняется с географической широтой. Но и на данной широте оно неодинаково, так как плотность земной коры неоднородна. В районах, где залегают более плотные породы, ускорение свободного падения принимает большие значения.

Пример №1. Сколько колебаний совершает математический маятник длиной 4,9 м за время 5 минут?

5 мин = 300 с

Искомое число колебаний равно отношению времени к периоду колебаний:

N=tT

Период колебаний для математического маятника определяется формулой:

T=2πlg

Тогда:

N=t2πgl=3002·3,149,84,968

Фаза колебаний

При заданной амплитуде гармонических колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса, который равен ω0t. Обозначим его за ϕ и получим:

ϕ=ω0t

Величину ϕ, стоящую под знаком косинуса или синуса, называют фазой колебаний, описываемой этой функцией. Выражается фаза в угловых единицах — радианах (рад).

Фаза определяет значение не только координаты, но и других физических величин (к примеру, скорости и ускорения, которые также изменяются по гармоническому закону). Отсюда можно сделать вывод, что фаза определяет при заданной амплитуде состояния колебательной системы в любой момент времени.

Колебания с одинаковыми частотами и амплитудами могут отличаться друг от друга фазами. Так как ω0=2πT, фаза определяется формулой:

ϕ=ω0t=2πtT

tT — отношение, которое указывает, какая часть периода прошла от момента начала колебаний. Любому моменту времени, выраженному в долях периода, соответствует значение фазы, выраженное в радианах. К примеру:

Время, t (с) 0

T4

T2

3T4

T

Фаза, ϕ (рад) 0

π2

π

3π2

2π

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. В этом случае графиком также будет являться косинусоида (или синусоида), но аргументом функции будет не время (период), а фаза, выражающаяся в радианах (см. рис.).

Синус от косинуса отличается только смещением аргумента на π2 (см. рис. ниже). Поэтому для описания гармонических колебаний можно использовать как синусоидальный, так и косинусоидальный закон.

Выбор закона зависит от условий задачи. Если колебания начинаются с того, что тело выводят из положения равновесия и отпускают, удобнее пользоваться косинусоидальным законом, поскольку в начальный момент времени косинусоида показывает, что это тело отклонено максимально, а не находится в положении равновесия. Если для того чтобы начались колебания, совершают толчок, удобнее использовать синусоидальный закон, так как начальному моменту времени на синусоиде соответствует положение равновесия.

Колебания, совершаемые по закону синуса и косинуса, отличаются только фазой, которая смещена на значение, равное π2. Это значение называют сдвигом фаз, или их разностью. Поэтому косинусоидальная функция также может быть записана как:

x=xmaxcosω0t=xmaxsin(ω0t+π2)

Превращение энергии при гармонических колебаниях

Чтобы описать превращения энергии при гармонических колебаниях, условимся, что силой трения будем пренебрегать. Для описания обратимся к рисунку ниже.

Точке О на рисунке соответствует положение равновесия шарика. Если его оттянуть на расстояние xmax, равное амплитуде, пружина получит потенциальную энергию, которая примет в этом положении максимальное значение, равное:

Wp max=kx2max2

Когда шарик отпускают, возникает сила упругости, под действием которой шарик устремляется влево. По мере уменьшения расстояния между точкой максимального отклонения и положением равновесия уменьшается и потенциальная энергия. Но в это время увеличивается кинетическая энергия шарика. Когда шарик проходит через положение равновесия в первый раз, его потенциальная энергия становится равной нулю, а кинетическая энергия обретает максимальное значение (скорость в этот момент времени тоже максимальна):

Wk max=mv2max2

После прохождения точки О расстояние между шариком и положением равновесия снова увеличивается, и потенциальная энергия растет. Кинетическая же энергия при этом уменьшается. А в крайнем положении слева она становится равной нулю, в то время как потенциальная энергия снова примет максимальное значение.

Так как мы условились пренебрегать трением, данную колебательную систему можно считать изолированной. Тогда в ней должен соблюдаться закон сохранения энергии. Согласно ему, полная механическая энергия системы равна:

W=Wp+Wk=kx2x2+mv2x2=kx2max2=mv2max2

В действительности свободные колебания всегда затухают, так как в колебательной системе действует сила трения. И часть механической энергии рассеивается в виде тепла. Пример графика затухающих колебаний выглядит следующим образом:

Пример №2. Груз, прикрепленный к пружине, колеблется на горизонтальном гладком стержне. Найдите отношение кинетической энергии груза к его потенциальной энергии системы в момент, когда груз находится в точке, расположенной посередине между крайним положением и положением равновесия.

Так как груз находится посередине между крайним положением и положением равновесия, его координата равна половине амплитуды:

x=xmax2

В это время потенциальная энергия груза будет равна:

Wp=kx22=k(xmax2)22=kx2max8

Согласно закону сохранения энергии, кинетическая энергия в это время равна:

Wk=WWp

Полная механическая энергия системы равна максимальной потенциальной энергии:

W=Wp max=kx2max2

Тогда кинетическая энергия равна:

Wk=kx2max2kx2max8

Следовательно, отношение кинетической энергии к потенциальной будет выглядеть так:

WkWp=kx2max2kx2max8kx2max8=kx2max28kx2max1=41=3

Резонанс

Самый простой способ возбуждения незатухающих колебаний состоит в том, что на систему воздействуют внешней периодической силой. Такие колебания называют вынужденными.

Работы силы над такой системой обеспечивает приток энергии к системе извне. Приток энергии не дает колебаниям затухнуть, несмотря на действие сил трения.

Особый интерес вызывают вынужденные колебаний в системе, способной совершать свободные колебания. Примером такой системы служат качели. Их не получится отклонить на большой угол всего лишь одним толчком. Если их толкать то в одну, то в другую сторону, тоже ничего не получится. Но если подталкивать качели всякий раз, как они сравниваются с нами, можно раскачать их очень сильно. При этом не нужно прикладывать большую силу, но на это понадобится время. Причем после каждого такого толчка амплитуда колебаний качелей будет увеличиваться до тех пор, пока не достигнет своего максимального значения. Такое явление называется резонансом.

Определение

Резонанс — резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой свободных колебаний.

Графически явление резонанса можно изобразить как резкий скачок графика вверх (см. рис. выше). Причем высота «зубца», или амплитуда колебаний, будет зависеть от величины сил трения. Чем больше сила трения, тем меньше при резонансе возрастает амплитуда вынужденных колебаний. Это можно продемонстрировать графиками на рисунке ниже. Графику 1 соответствует минимальное трение, графику 3 — максимальное.

На явлении резонанса основан принцип работы частотомера — устройства, предназначенного для измерения частоты переменного тока. Он состоит из набора упругих пластин, которые закреплены на одной планке. Каждая пластина обладает определенной собственной частотой колебаний, которая зависит от упругих свойств, длины и массы. Собственные колебания пластин известны. Под действием электромагнита планка, а вместе с ней и пластины совершают вынужденные колебания. Но лишь та пластина, собственная частота которой совпадает с частотой колебаний планки, будет иметь большую амплитуду колебаний. Таким образом, определяется частота переменного тока.

Пример №3. Автомобиль движется по неровной дороге, на которой расстояние между буграми равно приблизительно 8 м. Период свободных колебаний автомобиля на рессорах 1,5 с. При какой скорости автомобиля его колебания в вертикальной плоскости станут особенно заметными?

Колебания автомобиля в вертикальной плоскости будут заметны тогда, когда частота наезда на бугры сравняется с частотой свободных колебаний автомобиля на рессорах. Поскольку частота обратно пропорциональна периоду, можно сказать, что резонанс будет достигнут тогда, когда автомобиль будет наезжать на бугры каждые 1,5 секунды. Зная расстояние между буграми и время, можем вычислить скорость:

v=st=81,55,33 (мс)19,2(кмч)

Задание EF17508

Смещение груза пружинного маятника меняется с течением времени по закону x=Acos2πTt, где период Т = 1 с. Через какое минимальное время, начиная с момента t = 0, потенциальная энергия маятника вернется к своему исходному значению?

Ответ:

а) 0,1 с

б) 0,2 с

в) 0,3 с

г) 0,5


Алгоритм решения

1.Определить исходное значение потенциальной энергии шарика.

2.Сделать рисунок и определить положение шарика в начальный момент времени.

3.Определить положение шарика в момент в момент времени, когда потенциальная энергия шарика снова примет исходное значение.

4.Определить, через какое время шарик примет такое положение.

Решение

Известно, что смещение маятника меняется по закону:

x=Acos2πTt

В начальный момент времени t = 0 смещение будет равно амплитуде, поскольку косинус нуля равен «1». Следовательно, исходное значение потенциальной энергии маятника равно:

Wp0=kA22

Сделаем рисунок, обозначив за x0 положение равновесия системы. Тогда A и –A будут амплитудами (максимальными смещениями от положения равновесия).

Потенциальная энергия зависит только от модуля смещения, поэтому ее значение станет таким же, как в начальный момент времени, когда смещение достигнет максимального смещения с противоположной стороны (оно составит –A). В этом легко убедиться:

Wpt=k(A)22=kA22=Wp0

К этому моменту пройдет половина периода колебания, следовательно:

t=T2=12=0,5 (с)

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17644

Груз изображённого на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3. Как меняются кинетическая энергия груза маятника, потенциальная энергия и жёсткость пружины при движении груза маятника от точки 2 к точке 3? Для каждой величины определите соответствующий характер её изменения:

1) увеличивается
2) уменьшается
3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Вспомнить, от чего зависит кинетическая энергия груза маятника, и установить, как она меняется при движении груза маятника от точки 2 к точке 3.

2.Вспомнить, от чего зависит потенциальная энергия пружины маятника, и установить, как она меняется в рассматриваемый промежуток времени.

3.Вспомнить, от чего зависит жёсткость пружины, и установить, как она меняется.

Решение

Точка 2 соответствует положению равновесия, тока 3 — максимальному смещению пружинного маятника. Кинетическая энергия груза маятника зависит от скорости его перемещения:

Wk=mv22

Кинетическая энергия пружинного маятника максимально в положении равновесия и минимальная при максимальном смещении груза. Следовательно, на промежутке 2–3 она уменьшается.

Потенциальная энергия пружины маятника определяется формулой:

Wp=kx22

Так как смещение во время перемещения из точки 2 в точку 3 растет, то потенциальная энергия пружины маятника увеличивается.

Жесткость пружины зависит от природы материала. Это постоянная величина, которая с течением времени не изменяется.

Ответ: 213

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22760

Необходимо сделать нитяной маятник и с его помощью экспериментально определить ускорение свободного падения. Для этого школьник уже взял штатив с муфтой и лапкой, линейку и нить. Какие два предмета из приведённого ниже перечня оборудования необходимо дополнительно использовать для проведения этого эксперимента?

Ответ:

а) секундомер

б) динамометр

в) мензурка

г) электронные весы

д) алюминиевый шарик


Алгоритм решения

1.Записать формулу, которая связывает ускорение свободного падения с периодом колебаний маятника.

2.Определить, что не хватает для проведения эксперимента и выбрать недостающие предметы из списка.

Решение

Ускорение свободного падения с периодом колебаний маятника связывает формула:

T=2πlg

Следовательно, нужно значит не только длину нити маятника, но и период колебаний. Измерить его можно с помощью секундомера. А чтобы получить сам маятник, к нити нужно будет привязать массивный шарик. Например, алюминиевый.

Ответ: а, д

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 6.8k

Понравилась статья? Поделить с друзьями:
  • Как найти мою отправленную посылку
  • Как составить электронную формулу скандия
  • Как найти регистрационные данные организации в еис
  • Как найти силу ускорения свободного падения формулы
  • Как найти все образовавшиеся углы 7 класс