Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.
1 способ – ищем коэффициенты на графике
Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.
-
Коэффициент (a) можно найти с помощью следующих фактов:
— Если (a>0), то ветви параболы направленных вверх, если (a<0), то ветви параболы направлены вниз.
— Если (a>1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.
— Аналогично с (a<-1), только график вытянут вниз.
— Если (a∈(0;1)), то график сжат в (a) раз (по сравнению с «базовым» графиком с (a=1)). Вершина при этом остается на месте.
— Аналогично (a∈(-1;0)), только ветви направлены вниз.
-
Парабола пересекает ось y в точке (c).
-
(b) напрямую по графику не видно, но его можно посчитать с помощью (x_в) — абсциссы (икса) вершины параболы:
(x_в=-frac{b}{2a})
(b=-x_вcdot 2a)
Пример (ЕГЭ):
Решение:
Во-первых, надо разобраться, где тут (f(x)), а где (g(x)). По коэффициенту (c) видно, что (f(x)) это функция, которая лежит ниже – именно она пересекает ось игрек в точке (4).
Значит нужно найти коэффициенты у параболы, которая лежит повыше.
Коэффициент (c) у неё равен (1).
Ветви параболы направлены вниз – значит (a<0). При этом форма этой параболы стандартная, базовая, значит (a=-1).
Найдем (b). (x_в=-2), (a=-1).
(x_в=-frac{b}{2a})
(-2=-frac{b}{-2})
(b=-4)
Получается (g(x)=-x^2-4x+1). Теперь найдем в каких точках функции пересекаются:
(-x^2-4x+1=-2x^2-2x+4)
(-x^2-4x+1+2x^2+2x-4=0)
(x^2-2x-3=0)
(D=4+4cdot 3=16=4^2)
(x_1=frac{2-4}{2}=-1); (x_2=frac{2+4}{2}=3).
Ответ: (3).
2 способ – находим формулу по точкам
Это самый надежный способ, потому что его можно применить практически в любой ситуации, но и самый не интересный, потому что думать тут особо не надо, только уметь решать системы линейных уравнений. Алгоритм прост:
-
Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример: -
Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.
Пример: (A(-4;5)), (B(-5;5)), (C(-6;3)).
(begin{cases}5=a(-4)^2+b(-4)+c\5=a(-5)^2+b(-5)+c\3=a(-6)^2+b(-6)+c end{cases})
-
Решаем систему.
Пример:(begin{cases}5=16a-4b+c\5=25a-5b+c\3=36a-6b+c end{cases})
Вычтем из второго уравнения первое:
(0=9a-b)
(b=9a)Подставим (9a) вместо (b):
(begin{cases}5=16a-36a+c\5=25a-45a+c\3=36a-54a+c end{cases})
(begin{cases}5=-20a+c\5=-20a+c\3=-18a+c end{cases})Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:
(2=-2a)
(a=-1)Найдем (b):
(b=-9)
Подставим в первое уравнение (a):
(5=20+c)
(c=-15).Получается квадратичная функция: (y=-x^2-9x-15).
Пример (ЕГЭ):
Решение:
Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).
Таким образом имеем систему:
(begin{cases}8=a(-1)^2+b(-1)+4\2=a+b+4 end{cases})
(begin{cases}8=a-b+4\2=a+b+4 end{cases})
(begin{cases}4=a-b\-2=a+b end{cases})
Сложим 2 уравнения:
(2=2a)
(a=1)
Подставим во второе уравнение:
(-2=1+b)
(b=-3)
Получается:
(g(x)=x^2-3x+4)
Теперь найдем точки пересечения двух функций:
(-3x+13=x^2-3x+4)
(x^2-9=0)
(x=±3)
Теперь можно найти ординату второй точки пересечения:
(f(-3)=-3cdot (-3)+13)
(f(-3)=9+13)
(f(-3)=22)
Ответ: (22).
3 способ – используем преобразование графиков функций
Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.
Главный недостаток этого способа — вершина должна иметь целые координаты.
Сам способ базируется на следующих идеях:
-
График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).
-
– Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
– Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз. -
– График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
— График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц. -
График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.
У вас наверно остался вопрос — как этим пользоваться? Предположим, мы видим такую параболу:
Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).
А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).
То есть наша функция выглядит так: (y=(x-5)^2-4).
После раскрытия скобок и приведения подобных получаем искомую формулу:
(y=x^2-10x+25-4)
(y=x^2-10x+21)
Готово.
Пример (ЕГЭ):
Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:
-
Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).
-
Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).
-
Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).
-
Получается (y=-2(x^2-4x+4)+4=)(-2x^2+8x-8+4=-2x^2+8x-4).
-
(f(6)=-2cdot 6^2+8cdot 6-4=-72+48-4=-28)
Смотрите также:
Как найти k и b по графику линейной функции?
Квадратичная функция — подробнее
Квадратичная функция – это функция вида ( y=a{{x}^{2}}+bx+c), где ( ane 0), ( b) и ( c) – любые числа (они и называются коэффициентами).
Число ( a) называют старшим или первым коэффициентом такой функции, ( b) – вторым коэффициентом, а ( c) – свободным членом.
Другими словами, квадратичная функция – это зависимость, содержащая аргумент в квадрате. Отсюда и ее название.
Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения ( Dleft( y right)) и область значений( Eleft( y right)).
Какими могут быть значения аргумента квадратичной функции ( y=a{{x}^{2}}+bx+c)? Правильно, любыми. Ведь в эту формулу можно подставить любое число (в отличии, например, от функции ( y=frac{1}{x}) – в нее нельзя подставить ( x=0)).
Значит, область определения – все действительные числа:
( Dleft( y right)=mathbb{R}) или ( Dleft( y right)=left( -infty ;+infty right)).
А теперь множество значений. Все ли значения может принимать функция?
Достаточно рассмотреть самую простую квадратичную функцию ( y={{x}^{2}}) ( left( a=1,text{ }b=0,text{ }c=0 right)~), чтобы убедиться в обратном: ведь какое бы число мы не возводили в квадрат, результат всегда будет больше или равен нулю.
Значит, эта функция всегда не меньше нуля.
А вот больше нуля она может быть сколько угодно: ведь бесконечно большой x в квадрате будет еще больше.
Таким образом, можем написать для ( y={{x}^{2}}:Eleft( y right)=left[ 0;+infty right)).
В каждом отдельном случае область значений будет разная, но всегда – ограниченная.
График квадратичной функции
Наверняка ты слышал, что график квадратичной функции называется параболой. Как она выглядит? Сейчас нарисуем
Кстати мы очень подробно разобрали как быстро и правильно рисовать параболу. Переходи по ссылке и всему научишься.
Начнем с простейшей квадратичной функции – ( y={{x}^{2}}).
Составим таблицу значений:
x | -2 | -1 | 0 | 1 | 2 |
y | 4 | 1 | 0 | 1 | 4 |
Нарисуем эти точки на координатной плоскости и соединим их плавной линией:
Именно так и выглядит парабола. Самая нижняя ее точка называется вершиной, а части спарва и слева от вершины называем ветвями параболы. Как видим, ветви симметричны относительно вертикали, проходящей через вершину.
Рассмотрим теперь другую функцию: ( y={{x}^{2}}-2{x}-3).
Составим таблицу значений:
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
y | 5 | 0 | -3 | -4 | -3 | 0 | 5 |
Сравним два рисунка.
Видно, что это как будто одна и та же парабола, просто расположенная в разных местах.
Во второй параболе вершина переместилась в точку ( left( 1;-4 right)), а ветви переехали вместе с ней.
Да, так оно и есть: все параболы с одинаковым старшим коэффициентом, a выглядят одинаково – даже при разных остальных коэффициентах.
Кстати, если хочешь научиться быстро и правильно рисовать график квадратичной функции, то переходи по ссылке, там отличная статья.
Коэффициенты квадратичной функции
Давай разберем, на что влияют коэффициенты квадратичной функции.
Начнем со старшего коэффициента.
Будем рассматривать функции вида ( y=a{{x}^{2}}) (( b=0), ( c=0) – пусть не мешают).
Построим на одном рисунке графики нескольких функций: при ( a= -2,text{ }-1,frac{1}{2},text{ }1,text{ }3:)
Что ты видишь? Чем они отличаются? Какую закономерность можно заметить?
Во-первых, это невозможно не заметить, если ( displaystyle mathbf{a}<mathbf{0}), ветви парабол направлены вниз, а если ( displaystyle mathbf{a}>mathbf{0}) – вверх.
Так, хорошо.
Значит, если парабола пересекает ось ( displaystyle Ox) в двух точках, то у нас два корня квадратного уравнения.
Если не пересекает – корней нет.
Но бывает ведь, что дискриминант уравнения равен нулю, и тогда только один корень. В этом случае парабола касается оси ( displaystyle Ox) вершиной:
А что такое вершина параболы?
Решения
1. Первое: куда «смотрят» ветви параболы? Вниз. А что это значит? Правильно, ( displaystyle a<0). То есть вариант b) сразу не подходит.
Дальше посмотрим на точку пересечения с осью ( displaystyle Oy:y=4). Что нам дает эта точка? Вспоминай.
Это – свободный член c. Значит, ( displaystyle c=4) – отбросим вариант a).
Ну что же, ( displaystyle a=-1,c=4,) осталось определить b. Тут нам поможет вершина. Напоминаю, что ее координата вычисляется по формуле: ( displaystyle {{x}_{в}}=frac{-b}{2a}).
В нашем случае ( displaystyle {{x}_{в}}=1). Тогда:
( displaystyle 1=frac{-b}{2cdot left( -1 right)}text{ }Rightarrow text{ }b=2).
Итак, наша парабола задается формулой: ( displaystyle y=-{{x}^{2}}+2x+4). Это вариант ответа d)
2. Проще простого: корни – это точки пересечения параболы с осью ( displaystyle Ox).
Смотрим: ( displaystyle {{x}_{1}}=1), ( displaystyle {{x}_{2}}=5). Значит, их сумма ( displaystyle {{x}_{1}}+{{x}_{2}}=6).
3. То же самое: ( displaystyle {{x}_{1}}=-1), ( displaystyle {{x}_{2}}=5). Произведение: ( displaystyle {{x}_{1}}cdot {{x}_{2}}=-5).
4. Хм… Ну, коэффициент с мы бы нашли, да только по оси ( displaystyle Oy) нет обозначений. Зато показаны точки пересечения с осью ( displaystyle Ox). А это ведь корни уравнения ( displaystyle {{x}^{2}}+bx+c=0:{{x}_{1}}=-1,{{x}_{2}}=4).
Как это нам поможет?
Кстати, чему равен старший коэффициент?
Он равен ( displaystyle 1). Как называется такое квадратное уравнение? Вспоминай: оно называется приведенным. Теперь догадался? Можно ведь применить теорему Виета. Точно! Ведь она говорит нам, что сумма корней равна второму коэффициенту с обратным знаком:
( displaystyle {{x}_{1}}+{{x}_{2}}=-b),
а произведение – свободному члену:
( displaystyle {{x}_{1}}cdot {{x}_{2}}=c).
Ну вот и решили: ( displaystyle b=-left( -1+4 right)=-3), ( displaystyle c=-1cdot 4=-4).
Ответ: ( displaystyle -3;text{ -}4.)
Содержание:
Квадратичная функция:
- В этом параграфе вы повторите и расширите свои знания о функции и ее свойствах.
- Научитесь, используя график функции у = f (х), строить графики функций у = kf (x), у = f (х) + b, у = f(x + а).
- Узнаете, какую функцию называют квадратичной, какая фигура является ее графиком, изучите свойства квадратичной функции.
- Научитесь применять свойства квадратичной функции при решении неравенств
- Расширите свои знания о системах уравнений с двумя переменными, методах их решения, приобретете новые навыки решения систем уравнений.
Функция
Перед изучением этого пункта рекомендуем повторить содержание пунктов 31-37 на с. 291-294.
В повседневной жизни нам часто приходится наблюдать процессы, в которых изменение одной величины (независимой переменной) влечет за собой изменение другой величины (зависимой переменной). Изучение этих процессов требует создания их математических моделей. Одной из таких важнейших моделей является функция. С этим понятием вы ознакомились в 7 классе. Напомним и уточним основные сведения.
Пусть X — множество значений независимой переменной. Функция — это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной.
Обычно независимую переменную обозначают буквой х, зависимую — буквой у, функцию (правило) — буквой f. Говорят, что переменная у функционально зависит от переменной х. Этот факт обозначают так: у = f (x).
Независимую переменную еще называют аргументом функции.
Множество всех значений, которые принимает аргумент, называют областью определения функции и обозначают D (f) или D (у).
Так, областью определения обратной пропорциональности
В функциональной зависимости каждому значению аргумента х соответствует определенное значение зависимой переменной у. Значение зависимой переменной еще называют значением функции и для функции f обозначают f (х). Множество всех значений, которые принимает зависимая переменная, называют областью значений функции и обозначают Е (f) или Е (у). Так, областью значений функции
Функцию считают заданной, если указана ее область определения и правило, с помощью которого можно по каждому значению независимой переменной найти значение зависимой переменной.
Функцию можно задать одним из следующих способов:
- описательно;
- с помощью формулы;
- с помощью таблицы;
- графически.
Чаще всего функцию задают с помощью формулы. Такой способ задания функции называют аналитическим. Если при этом не указана область определения, то считают, что областью определения функции является область определения выражения, входящего в формулу. Например, если функция задана формулой то ее областью определения является область определения выражения , т. е. промежуток
В таблице приведены функции, которые вы изучали в 7 и 8 классах.
Когда сделаны уроки
История развития функции
Определение функции, которым вы пользуетесь на данном этапе изучения математики, появилось сравнительно недавно — в первой половине XIX века. Оно формировалось более 200 лет под влиянием бурных споров выдающихся математиков нескольких поколений.
Исследованием функциональных зависимостей между величинами начали заниматься еще ученые древности. Этот поиск нашел отражение в открытии формул для вычисления площадей и объемов некоторых фигур. Примерами табличного задания функций могут служить астрономические таблицы вавилонян, древних греков и арабов.
Однако лишь в первой половине XVII века своим открытием метода координат выдающиеся французские математики Пьер Ферма (1601-1665) и Рене Декарт (1596-1650) заложили основы для возникновения понятия функции.
В своих работах они исследовали изменение ординаты точки в зависимости от изменения ее абсциссы.
Важную роль в формировании понятия функции сыграли работы великого английского ученого Исаака Ньютона (1643-1727). Под функцией он понимал величину, которая изменяет свое значение с течением времени.
Термин «функция» (от латинского functio — совершение, выполнение) ввел немецкий математик Георг Лейбниц (1646-1716).
Он и его ученик, швейцарский математик Иоганн Бернулли (1667-1748) под функцией понимали формулу, связывающую одну переменную с другой, то есть отождествляли функцию с одним из способов ее задания.
Дальнейшему развитию понятия функции во многом способствовало выяснение истины в многолетнем споре выдающихся математиков Леонарда Эйлера (1707-1783) и Жана Лерона Д’Аламбера (1717-1783), одним из предметов которого было выяснение сути этого понятия. В результате был сформирован более общий взгляд на функцию как зависимость одной переменной величины от другой, в котором это понятие жестко не связывалось со способом задания функции.
В 30-х годах XIX века идеи Эйлера получили дальнейшее развитие в работах выдающихся ученых: русского математика Николая Лобачевского (1792-1856) и немецкого математика Петера Густава Лежена Дирихле (1805-1859). Именно тогда появилось такое определение: переменную величину у называют функцией переменной величины х, если каждому значению величины х соответствует единственное значение величины у.
Такое определение функции можно и сегодня встретить в школьных учебниках. Однако более современный подход — это трактовка функции как правила, с помощью которого по значению независимой переменной можно найти единственное значение зависимой переменной.
Когда на рубеже XIX и XX веков возникла теория множеств и стало ясно, что элементами области определения и области значений совсем не обязательно должны быть числа, то под функцией стали понимать правило, которое каждому элементу множества X ставит в соответствие единственный элемент множества У.
Свойства функции
Часто о свойствах объекта можно судить по его изображению: фотографии, рентгеновскому снимку, рисунку и т. п.
«Изображением» функции может служить ее график. Покажем, как график функции позволяет определить некоторые ее свойства.
На рисунке 18 изображен график некоторой функции y=f(x)
Ее областью определения является промежуток [-4; 7], а областью значений — промежуток [-4; 4].
При х = -3, х = 1, х = 5 значение функции равно нулю.
Определение: Значение аргумента, при котором значение функции равно нулю, называют нулем функции.
Так, числа -3, 1, 5 являются нулями данной функции.
Заметим, что на промежутках [-4; -3) и (1; 5) график функции расположен над осью абсцисс, а на промежутках (-3; 1) и (5; 7] — под осью абсцисс. Это означает, что на промежутках [-4; -3) и (1; 5) функция принимает положительные значения, а на промежутках (-3; 1) и (5; 7] — отрицательные.
Каждый из указанных промежутков называют промежутком знакопостоянства функции f.
Определение: Каждый из промежутков, на котором функция принимает значения одного и того же знака, называют промежутком знакопостоянства функции f.
Отметим, что, например, промежуток (0; 5) не является промежутком знакопостоянства данной функции.
Замечание. При поиске промежутков знакопостоянства функции принято указывать промежутки максимальной длины. Например, промежуток (-2; -1) является промежутком знакопостоянства функции f (рис. 18), но в ответ следует включить промежуток (—3; 1), содержащий промежуток (-2; -1).
Если перемещаться по оси абсцисс от -4 до -1, то можно заметить, что график функции идет вниз, то есть значения функции уменьшаются. Говорят, что на промежутке [-4; -1] функция убывает. С увеличением х от -1 до 3 график функции идет вверх, т.е. значения функции увеличиваются. Говорят, что на промежутке [-1; 3] функция возрастает.
Определение: Функцию f называют возрастающей на некотором промежутке, если для любых двух значений аргумента и из этого промежутка таких, что , выполняется неравенство
Определение: Функцию f называют убывающей на некотором промежутке, если для любых двух значений аргумента и из этого промежутка таких, что выполняется неравенство
Часто используют более короткую формулировку.
Определение: Функцию называют возрастающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции.
Определение: Функцию называют убывающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции.
Если функция возрастает на всей области определения, то ее называют возрастающей. Если функция убывает на всей области определения, то ее называют убывающей.
Например, на рисунке 19 изображен график функции Эта функция является возрастающей. На рисунке 20 изображен график убывающей функции у = -х. На рисунке 18 изображен график функции, не являющейся ни возрастающей, ни убывающей.
Пример №1
Докажите, что функция убывает на промежутке
Решение:
Пусть и — произвольные значения аргумента из промежутка причем Покажем, что то есть большему значению аргумента соответствует меньшее значение функции.
Имеем: Обе части последнего неравенства являются неотрицательными числами. Тогда по свойству числовых неравенств можно записать, что , то есть
Заметим, что в подобных случаях говорят, что промежуток является промежутком убывания функции у = х2. Аналогично можно доказать, что промежуток является промежутком возрастания функции у = х2.
В задачах на поиск промежутков возрастания и убывания функции принято указывать промежутки максимальной длины.
Пример №2
Докажите, что функция — убывает на каждом из промежутков
Решение:
Пусть и — произвольные значения аргумента из промежутка причем . Тогда по свойству числовых неравенств — Следовательно, данная функция убывает на промежутке
Аналогично доказывают, что функция f (x) убывает на промежутке
Заметим, что нельзя утверждать, что данная функция убывает на всей области определения, то есть является убывающей. Действительно, если, например, то из неравенства не следует, что —
Пример №3
Докажите, что линейная функция f (х) = kx + b является возрастающей при k > 0 и убывающей при k < 0.
Решение:
Пусть и — произвольные значения аргумента, причем
Имеем:
Так как
Если , то то есть Следовательно, при данная функция является возрастающей.
Если , то , то есть . Следовательно, при данная функция является убывающей.
Как построить график функции у = kf (х), если известен график функции у = f (x)
В 8 классе вы ознакомились с функцией и узнали, что ее графиком является фигура, которую называют параболой (рис. 26).
Покажем, как с помощью графика функции у = х2 можно построить график функции
у = ах2, где а .
Построим, например, график функции у = 2х2.
Составим таблицу значений функций у = х2 и у = 2х2 при одних и тех же значениях аргументах:
Эта таблица подсказывает, что каждой точке графика функции у = х2 соответствует точка графика функции у = 2х2. Иными словами, при любом значение функции у = 2х2 в 2 раза больше соответствующего значения функции у = х2. Следовательно, все точки графика функции у = 2х2 можно получить, заменив каждую точку графика функции у = х2 на точку с той же абсциссой и с ординатой, умноженной на 2 (рис. 27). Используя график функции у = х2, построим график функции
Очевидно, что каждой точке графика функции
у = х2 соответствует единственная точка графика функции
Следовательно, все точки графика функции можно получить, заменив каждую точку графика функции у = х2 на точку с той же абсциссой и ординатой, умноженной на — (рис. 28).
Рассмотренные примеры подсказывают, как, используя график функции у = f (х), можно построить график функции у = kf (х), где k > 0.
График функции у = kf (х), где k > 0, можно получить, заменив каждую точку графика функции у = f (x) на точку с той же абсциссой и ординатой, умноженной на k.
На рисунках 29, 30 показано, как «работает» это правило для построения графиков функций и
Говорят, что график функции у = kf (x) получен из графика функции у = f (х) в результате растяжения в k раз от оси абсцисс, если k > 1, или в результате сжатия в раз к оси абсцисс, если 0 < k < 1.
Рассмотрим функции и Каждой точке графика функции соответствует точка графика функции Иными словами, при любом значения функций и являются противоположными числами. Следовательно, все точки графика функции можно получить, заменив каждую точку графика функции на точку с той же абсциссой и ординатой, умноженной на -1 (рис. 31).
Теперь понятно, что правило построения графика функции у = kf (x), где k < 0, такое же, как и для случая, когда k > 0.
Например, на рисунке 32 показано, как можно с помощью графика функции у = х2 построить график функции
Рисунок 33 иллюстрирует, как с помощью графика функции можно построить графики функций и
Заметим, что при нули функций у = f (х) и у = kf (х) совпадают. Следовательно, графики этих функций пересекают ось абсцисс в одних и тех же точках (рис. 34).
На рисунке 35 изображены графики функций у = ах2 при некоторых значениях а. Каждый из этих графиков, как и график функции у = х2, называют параболой.
Точка (0; 0) является вершиной каждой из этих парабол.
Если а > 0, то ветви параболы направлены вверх, если а < 0, то ветви параболы направлены вниз.
Часто вместо высказывания «Дана функция у = ах2» употребляют «Дана парабола
у = ах2».
В таблице приведены свойства функции
Как построить графики функций y = f(x) + b и у = f(x + а), если известен график функции у = f(x)
Покажем, как, используя график функции у = х2, построить график функции у = х2 + 2. Составим таблицу значений этих функций при одних и тех же значениях аргумента.
Эта таблица подсказывает, что каждой точке графика функции у = х2 соответствует точка графика функции у = х2 + 2. Иными словами, при любом х значение функции у = х2 + 2 на 2 больше соответствующего значения функции у = х2. Следовательно, все точки графика функции у = х2 + 2 можно получить, заменив каждую точку графика функции у = х на точку с той же абсциссой и с ординатой, увеличенной на 2 (рис. 40).
Позднее на уроках геометрии вы более подробно ознакомитесь с парралельным переносом.
Говорят, что график функции у = х2 + 2 получен в результате параллельного переноса графика функции у = х2 на две единицы вверх.
Аналогично график функции у = х2 — 4 можно получить в результате параллельного переноса графика функции у = х2 на 4 единицы вниз (рис. 41).
Очевидно, что в результате параллельного переноса получаем фигуру, равную фигуре, являющейся графиком исходной функции. Например, графиками функций у = х2 + 2 и у = х — 4 являются параболы, равные параболе у = х2.
Рассмотренные примеры подсказывают, как можно, используя график функции у = f (х), построить график функции у = f (x) + b.
График функции у = f (х) + b можно получить в результате параллельного переноса графика функции у = f (х) на b единиц вверх, если b > 0, и на — b единиц вниз, если b < 0.
На рисунках 42, 43 показано, как «работает» это правило для построения графиков функций и
Покажем, как можно с помощью графика функции у = х2 построить график функции у = (х + 2)2. Пусть точка (х0; у0) принадлежит графику функции у = х2, то есть Докажем, что точка принадлежит графику функции у = (х + 2)2. Найдем значение этой функции в точке с абсциссой Имеем: Следовательно, все точки графика функции у = (х + 2)2 можно получить, заменив каждую точку графика функции у = х2 на точку с той же ординатой и абсциссой, уменьшенной на 2 (рис. 44).
Также говорят, что график функции у = (х + 2)2 получен в результате параллельного переноса графика функции у = х2 на две единицы влево. Рассмотрим еще один пример. Построим график функции Легко показать (сделайте это самостоятельно), что каждой точке графика функции у = х2 соответствует точка графика функции у = (х — 2)2. Следовательно, график функции у = (х — 2)2 получают в результате параллельного переноса графика функции у = х2 на 2 единицы вправо (рис. 45).
Ясно, что в результате описанного параллельного переноса получаем фигуру, равную фигуре, являющейся графиком исходной функции. Например, графиками функций
у = (х + 2)2 и у = (х — 2)2 являются параболы, равные параболе у = х2.
Эти примеры подсказывают, как можно, используя график функции у = f (x), построить график функции у = f(х + а).
График функции у = f (х + а) можно получить в результате параллельного переноса графика функции у = f (x) на а единиц влево, если а > 0, и на -а единиц вправо, если а < 0.
На рисунках 46, 47 показано, как «работает» это правило для построения графиков функций и
Пример №4
Постройте график функции
Решение:
- Построим график функции
- Параллельно перенесем график функции у = х2 на 1 единицу вправо. Получим график функции у = (х — 1)2 (рис. 48).
- Параллельно перенесем график функции у = (х — 1)2 на 3 единицы вверх. Получим график функции (рис. 48).
Описанный алгоритм построения представим в виде такой схемы:
Пример №5
Постройте график функции
Решение:
- Построим график функции (рис. 49).
- Параллельно перенесем график функции на 3 единицы влево. Получим график функции (рис. 49).
- Параллельно перенесем график функции на 1 единицу вниз.
Получим искомый график. Схема построения имеет такой вид:
Из описанных преобразований следует, что графиком функции является парабола с вершиной в точке (-3; -1), равная параболе
Из этого примера становится понятным алгоритм построения графика функции
у = kf (х + а) + b, в частности у = k (х + а)2 + b.
Графиком функции у = k (х + а)2 + b, является парабола, равная параболе , вершина которой находится в точке (—а; b).
Пример №6
Постройте график функции у = -2х2 — 20х — 47.
Решение:
Имеем:
Мы представили формулу, задающую данную функцию, в виде у = kf (х + а) + b, где
f (х) = х2, k = -2, а = 5, b = 3.
Схема построения имеет такой вид:
Построенный график является параболой с вершиной в точке (-5; 3), которая равна параболе (рис. 50).
Квадратичная функция, ее график и свойства
Определение: Функцию, которую можно задать формулой вида где х — независимая переменная, а, b и с — некоторые числа, причем , называют квадратичной.
Квадратичная функция не является для вас новой. Так, в 8 классе вы изучали ее частный случай, а именно, функцию
Функциональная зависимость площади S круга от его радиуса r определяет квадратичную функцию которая, в свою очередь, является частным видом функции у = ах2.
На уроках физики вы ознакомились с формулой которая задает зависимость высоты h тела, брошенного вертикально вверх с начальной скоростью от времени движения t. Эта формула задает квадратичную функцию
Покажем, как график квадратичной функции у = ах2 + bх + с можно получить из графика функции у = ах2.
Вы уже строили графики функций вида у = ах2 + bх + с, выделяя квадрат двучлена. Используем этот прием в общем виде. Имеем:
Введем обозначения
Тогда формулу можно представить в виде: Следовательно, схема построения искомого графика такова:
Графиком функции является парабола с вершиной в точке где равная параболе
Понятно, что ветви параболы у = ах2 + bх + с направлены так же, как и ветви параболы если а > 0, то ветви параболы направлены вверх, если а < 0, то ветви параболы направлены вниз.
Общее представление о графике квадратичной функции дают координаты вершины параболы и направление ее ветвей. Это представление будет тем полнее, чем больше точек, принадлежащих графику, мы будем знать. Поэтому, не используя параллельных переносов, можно построить график квадратичной функции по такой схеме:
- найти абсциссу вершины параболы по формуле
- найти ординату вершины параболы по формуле где D — дискриминант квадратного трехчлена и отметить на координатной плоскости вершину параболы;
- определить направление ветвей параболы;
- найти координаты еще нескольких точек, принадлежащих искомому графику (в частности, координаты точки пересечения параболы с осью у и нули функции, если они существуют);
- отметить на координатной плоскости найденные точки и соединить их плавной линией.
Пример №7
Постройте график функции Используя график функции, найдите область ее значений, промежутки возрастания и убывания, промежутки знакопостоянства, наименьшее и наибольшее значения функции.
Решение:
Данная функция является квадратичной функцией
-Ее графиком является парабола, ветви которой направлены вверх (а > 0).
Абсцисса вершины параболы ордината вершины
Следовательно, точка (—2; —9) — вершина параболы.
Найдем точки пересечения параболы с осью абсцисс:
Следовательно, парабола пересекает ось абсцисс в точках (-5; 0) и (1; 0).
* Формулу запоминать необязательно. Достаточно вычислить пересечение функции в точке с абсциссой
Найдем точку пересечения параболы с осью ординат: f (0) = -5. Парабола пересекает ось ординат в точке (0; -5).
Отметим найденные четыре точки параболы на координатной плоскости (рис. 60).
Теперь понятно, что удобно найти значения данной функции в точках —1, —3, —4 и, отметив соответствующие точки на координатной плоскости, провести через все найденные точки график данной функции.
Имеем:
Искомый график изображен на рисунке 61.
Область значений функции
Функция возрастает на промежутке и убывает на промежутке при или при Наименьшее значение функции равно -9, наибольшего значения не существует.
О некоторых преобразованиях графиков функций
Как построить график функции у = f (—х), если известен график функции у = f (х)
Заметим, что если точка принадлежит графику функции у = f (x), то точка принадлежит графику функции у = f (-x). Действительно,
Следовательно, все точки графика функции можно получить, заменив каждую точку графика функции на точку с такой же ординатой и противоположной абсциссой.
На рисунке 66 показано, как с помощью графика функции построен график функции
Позднее на уроках геометрии вы узнаете, что описанное преобразование графика функции у = f (х) называют осевой симметрией.
Как построить график функции у = f (| х |), если известен график функции у = f (х)
Воспользовавшись определением модуля, запишем:
Отсюда делаем вывод, что график функции при совпадает с графиком функции а при — с графиком функции
Тогда построение графика функции можно проводить по такой схеме:
- построить ту часть графика функции у = f (x), все точки которой имеют неотрицательные абсциссы;
- построить ту часть графика функции у = f (—x), все точки которой имеют отрицательные абсциссы.
Объединение этих двух частей и составит график функции у = f ( | х | ).
На рисунке 68 показано, как с помощью графика функции построен график функции у = ( | х | — 2)2.
Как построить график функции у = | f (х) |, если известен график функции у = f (х)
Для функции можно записать:
Отсюда следует, что график функции при всех х, для которых совпадает с графиком функции , а при всех , для которых , — с графиком функции
Тогда строить график функции можно по такой схеме:
- все точки графика функции с неотрицательными ординатами оставить без изменений;
- точки с отрицательными ординатами заменить на точки с теми же абсциссами, но противоположными ординатами.
На рисунке 69 показано, как с помощью графика функции построен график функции
Пример №8
Постройте график функции
Решение:
Построение искомого графика можно представить в виде такой схемы :
(рис.70.)
Пример №9
Постройте график функции
Решение:
Построение искомого графика можно представить в виде такой схемы:
(рис. 71).
Решение квадратных неравенств
На рисунке 72 изображен график некоторой функции у = f (х), областью определения которой является множество действительных чисел.
С помощью этого графика легко определить промежутки знакопостоянства функции f, а именно: на каждом из промежутков и на каждом из промежутков и
Определив промежутки знакопостоянства функции f, мы тем самым решили неравенства и
Промежутки и вместе составляют множество решений неравенства В таких случаях говорят, что множество решений неравенства является объединением указанных промежутков. Объединение промежутков записывают с помощью специального символа .
Тогда множество решений неравенства можно записать так:
Множество решений неравенства можно записать так:
Такой метод решения неравенств с помощью графика функции у = f (х) называют графическим.
Покажем, как с помощью этого метода решают квадратные неравенства.
Определение: Неравенства вида где — переменная, а, b, и с — некоторые числа, причем называют квадратными.
Выясним, как определить положение графика квадратичной функции
относительно оси абсцисс.
Наличие и количество нулей квадратичной функции определяют с помощью дискриминанта D квадратного трехчлена если D > 0, то нулей у функции два, если D = 0, то нуль один, если D < 0, то нулей нет.
Знак старшего коэффициента квадратного трехчлена определяет направление ветвей параболы При ветви направлены вверх, при — вниз.
Схематическое расположение параболы относительно оси абсцисс в зависимости от знаков чисел a и D отображено в таблице ( — нули функции, — абсцисса вершины параболы):
Разъясним, как эту таблицу можно использовать для решения квадратных неравенств.
Пусть, например, надо решить неравенство где и . Этим условиям соответствует ячейка
таблицы. Тогда ясно, что ответом будет промежуток , на котором график соответствующей квадратичной функции расположен над осью абсцисс.
Пример №10
Решите неравенство
Решение:
Для квадратного трехчлена имеем: Этим условиям соответствует ячейка таблицы. Решим уравнение Получим Тогда схематически график функции можно изобразить так, как показано на рисунке 73.
Из рисунка 73 видно, что соответствующая квадратичная функция принимает положительные значения на каждом из промежутков
Ответ:
Пример №11
Решите неравенство
Решение:
Имеем: Этим условиям соответствует ячейка таблицы. Устанавливаем, что Тогда схематически график функции
можно изобразить так, как показано на рисунке 74.
Из рисунка 74 видно, что решениями неравенства являются все числа, кроме
Заметим, что это неравенство можно решить другим способом. Перепишем данное неравенство так: Тогда Отсюда получаем тот же результат.
Ответ:
Пример №12
Решите неравенство
Решение:
Имеем: Этим условиям соответствует ячейка таблицы. В этом случае график функции не имеет точек с отрицательными ординатами.
Ответ: решений нет.
Пример №13
Решите неравенство
Решение:
Так как то данному случаю соответствует ячейка таблицы, причем Но в этом случае квадратичная функция принимает только неотрицательные значения. Следовательно, данное неравенство имеет единственное решение
Ответ: -5.
Системы уравнений с двумя переменными
В 7 классе вы ознакомились с графическим методом решения систем уравнений. Напомним, что его суть заключается в поиске координат общих точек графиков уравнений, входящих в систему. На уроках геометрии вы узнали, что графиком уравнения является окружность радиуса R с центром Вы также научились строить график квадратичной функции. Все это расширяет возможности применения графического метода для решения систем уравнений.
Пример №14
Решите графически систему уравнений:
Решение:
Первое уравнение системы равносильно такому: Его графиком является парабола, изображенная на рисунке 79.
Графиком второго уравнения является прямая, которая пересекает построенную параболу в двух точках: (1; 0) и (4; 3) (рис. 79).
Как известно, графический метод не гарантирует того, что полученный результат является точным. Поэтому найденные решения следует проверить. Проверка подтверждает, что пары чисел (1; 0) и (4; 3) действительно являются решениями данной системы.
Заметим, что эта система является «удобной» для графического метода: координаты точек пересечения графиков оказались целыми числами. Понятно, что такая ситуация встречается далеко не всегда. Поэтому графический метод эффективен тогда, когда нужно определить количество решений или достаточно найти их приближенно.
Рассмотренную систему можно решить, не обращаясь к графикам уравнений. Готовясь к изучению этой темы, вы повторили метод подстановки решения систем линейных уравнений. Этот метод является эффективным и для решения более сложных систем, в которых только одно уравнение является линейным, и для некоторых систем, в которых вообще линейных уравнений нет.
Решим систему методом подстановки.
Выразим переменную через во втором уравнении системы:
Подставим в первое уравнение вместо у выражение
Получили уравнение с одной переменной. Упростив его, получим квадратное уравнение
Отсюда
Значения у, которые соответствуют найденным значениям х, найдем из уравнения
Ответ:
Пример №15
Определите количество решений системы уравнений
Решение:
Графиком первого уравнения системы является окружность с центром (0; 0) радиуса 3.
Второе уравнение равносильно такому: Графиком этого уравнения является гипербола.
Изобразим окружность и гиперболу на одной координатной плоскости (рис. 80). Мы видим, что графики пересекаются в четырех точках. Следовательно, данная система имеет четыре решения.
Рисунок 80 также позволяет приближенно определить решения данной системы.
Не обращаясь к графическому методу, можно найти точные значения решений этой системы.
Готовясь к изучению этой темы, вы повторили метод сложения для решения систем линейных уравнений. Покажем, как этот метод «работает» и при решении более сложных систем.
Умножим второе уравнение рассматриваемой системы на 2. Получим:
Сложим почленно левые и правые части уравнений: Отсюда или
Ясно, что для решения данной системы достаточно решить две более простые системы.
Ответ:
Очевидно, что найти такое решение графическим методом невозможно.
В 8 классе вы ознакомились с методом замены переменных при решении уравнений. Этот метод применяется и для решения целого ряда систем уравнений.
Пример №16
Решите систему уравнений
Решение:
Пусть Тогда
Теперь первое уравнение системы можно записать так:
Отсюда
Для решения исходной системы достаточно решить две более простые системы.
Ответ:
Пример №17
Решите систему уравнений
Решение:
Заметим, что данная система не изменится, если заменить на , а на . В таких случаях может оказаться эффективной замена
Запишем данную систему так:
Выполним указанную замену. Получим систему:
Ее можно решить методом подстановки (сделайте это самостоятельно). Получаем:
Остается решить две системы:
Каждую из них можно решить методом подстановки. Однако здесь удобнее воспользоваться теоремой, обратной теореме Виета. Так, для системы можно считать, что и — корни квадратного уравнения
Отсюда Следовательно, пары (1; 2) и (2; 1) являются решениями этой системы.
Используя этот метод, легко убедиться (сделайте это самостоятельно), что система решений не имеет.
Ответ: (1; 2); (2; 1).
Решение задач с помощью систем уравнений второй степени
Рассмотрим задачи, в которых системы уравнений второй степени используются как математические модели реальных ситуаций.
Пример №18
Из двух пунктов, расстояние между которыми равно 18 км, вышли одновременно навстречу друг другу два туриста и встретились через 2 ч. С какой скоростью шел каждый турист, если для прохождения всего расстояния между пунктами одному из них нужно на 54 мин больше, чем другому?
Решение:
Пусть скорость первого туриста равна км/ч, а второго — км/ч, До встречи первый турист прошел км, а второй — км. Вместе они прошли 18 км. Тогда
Все расстояние между пунктами первый турист проходит за ч, а второй за ч. Так как первому туристу для прохождения этого расстояния нужно на = = больше, чем второму, то
Получаем систему уравнений:
Тогда
Решив второе уравнение последней системы, получаем: Корень -36 не подходит по смыслу задачи. Следовательно,
Ответ: 4 км/ч, 5 км/ч.
Пример №19
Два работника могут вместе выполнить производственное задание за 10 дней. После 6 дней совместной работы одного из них перевели на другое задание, а второй продолжал работать. Через 2 дня самостоятельной работы второго оказалось, что сделано всего задания. За сколько дней каждый работник может выполнить это производственное задание, работая самостоятельно?
Решение:
Пусть первый работник может выполнить все задание задней, а второй — за дней. За 1 день первый работник выполняет часть задания, а за 10 дней часть задания. Второй работник за 1 день выполняет часть задания, а за 10 дней часть задания. Так как за 10 дней совместной работы они выполняют все задание, то
Первый работник работал 6 дней и выполнил часть задания, а второй работал 8 дней и выполнил часть задания. Так как в результате было выполнено задания, то
Получили систему уравнений
решением которой является пара чисел Следовательно, первый работник может выполнить задание за 15 дней, а второй — за 30 дней.
Ответ: 15 дней, 30 дней.
Пример №20
При делении двузначного числа на произведение его цифр получим неполное частное 5 и остаток 2. Разность этого числа и числа, полученного перестановкой его цифр, равна 36. Найдите это число.
Решение:
Пусть искомое число содержит десятков и единиц. Тогда оно равно Так как при делении этого числа на число получаем неполное частное 5 и остаток 2, то
Число, полученное перестановкой цифр данного, равно . По условию Получаем систему уравнений
решениями которой являются две пары чисел: или Но вторая пара не подходит по смыслу задачи.
Следовательно, искомое число равно 62.
Ответ: 62.
Определение квадратичной функции
Моделируя реальные процессы при помощи функций, довольно часто приходят к так называемой квадратичной функции, частичным случаем которой является уже изученная функция .
В этом параграфе мы изучим: что такое квадратичная функция, каковы се свойства и график: что такое квадратичное неравенство, как решать квадратичные неравенства, исходя из свойств квадратичной функции.
В 7 классе мы начали изучать одно из важнейших понятий математики — понятие функции.
Что такое функция
Напомним, что переменную у называют функцией от переменной х, если каждому значению переменной х соответствует единственное значение переменной у. При этом переменную х называют независимой переменной, или аргументом, а переменную у — зависимой переменной, или функцией (от аргумента х).
Если переменная у является функцией от аргумента х, то записывают: (читают: у равно от х). Значение функции при обозначают через . Так, если функция задана формулой у = 2х — 3, то можно записать Тогда, например,
Область определения и область значений функции
Множество значений, которые принимает независимая переменная (аргумент), называют областью определения функции; множество значений, которые принимает зависимая переменная (функция), называют областью значений функции.
Область определения функции обозначают или , а область значений — или .
Так, областью определения линейной функции является множествен всех действительных чисел, то есть . Множеством значений этой функции также являйся множество всех действительных чисел: .
Если функция задана формулой и не указано, какие значения может принимать ар1умспт, то считают, что областью определения функции является множество всех действительных чисел, при которых выражение имеет смысл.
Если выражение является многочленом, то областью определения функции является множество всех действительных чисел; если — рациональная дробь, то областью определения функции является множество всех действительных чисел, кроме тех значений х, при которых знаменатель дроби равен нулю; если функция задана формулой , то областью определения функции является множество всех действительных чисел, при которых выполняется неравенство .
Рассмотрим, например, функцию Выражение имеет
смысл при всех значениях х, кроме х = 3. Поэтому областью определения этой функции является множество всех действительных чисел, кроме х = 3, то есть
График функции
Графиком функции называют фигуру, состоящую из всех точек координатной плоскости, абсциссы которых равны всем значениям аргумента, а ординаты — соответствующим значениям функции.
Графики функций, которые мы изучали в 7 и 8 классах, а также их области определения и области значений приведены в таблице.
На рисунке 18 изображен график функции , областью определения которой является промежуток. Точка М(2; 4) принадлежит графику. Это значит, что при х = 2 значение функции равно .
Очевидно, что наименьшее значение функции равно -1. Это наименьшее значение функция принимает при х = 4. Наибольшее значение функции равно 5 и достигается при х = 0. Областью значений функции является промежуток [-1; 5].
Задание функции несколькими формулами
Существуют функции, которые па отдельных частях области определения задаются разными формулами. Например, если функция задана в виде
то это значит, что при значения функции нужно искать по формуле , при — по формуле , а при — по формуле. Так, .
Чтобы построить график такой функции (см. рис. 19), достаточно на промежутке построить график функции у = 2x + 3, на промежутке— график функции и на промежутке — график функции у = 4.
Описанным способом можно задать и функцию у = |х|:
График функции у = |х| изображен на рисунке 20.
График функции, формула которой содержит аргумент под знаком модуля
Построим график функции у = |х — 1| + |х + 1|.
Найдем значения х, при которых значения выражений х — 1 и х + 1, стоящих под знаком модуля, равны нулю:
Значения х = -1 и х = 1 разбивают координатную прямую на три промежутка (см. рис. 21).
Учитывая определение модуля числа, получим: если , поэтому и ; если , то , и ; если , то , и .
Чтобы получить график заданной функции, строим на промежутке график функции , на промежутке [-1; 1) — график функции и на промежутке — график функции . Искомый график изображен на рисунке 22.
Пример №21
Найти область определения функции .
Решение:
Область определения функции образуют тe значения х, при которых выражение 4 — 2х принимает неотрицательные значения, а выражение 2х — положительные значения. Следовательно, нужно решить систему неравенств Получим:
Свойства функций
Нули функции. Промежутки знакопостоянства
Рассмотрим функцию, график которой изображен на рисунке 24. При х = -1, х = 4 или х = 6 значения функции равны нулю. Такие значения аргумент а а называют нулями функции.
Определение: Значения аргумента, при которых значение функции равно нулю, называют нулями функции.
Нулем функции является только одно значение х, а именно: , так как значение функции равно нулю только при .
Чтобы найти нули функции , нужно решить уравнение .
Рис. 24
Функция, график которой изображен на рисунке 24. на промежутках |-3; -1) и (4: 6) принимает только отрицательные значения, а на промежутках (-1; 4) и (6; 7| — только положительные значения. Все эти промежутки называют промежутками знакопостоянства функции.
Возрастание, убывание функции
Рассмотрим график функции на рисунке 24. На промежутке [-3; 2| График «идет вверх»: при увеличении значений х из этого промежутка соответствующие значения функции увеличиваются. Например, возьмем значения аргумента и , тогда Так как то. Большему значению аргумента соответствует большее значение функции . Говорят, что на промежутке ; функция возрастает (или является возрастающей). Такова же она и на промежутке [5; 7].
Па промежутке [2; 5] график функции «идет вниз»: при увеличении значений аргумента соответствующие значения функции уменьшаются. Говорят, что на этом промежутке функция убывает (или является убывающей).
Определение: Функцию называют возрастающей на некотором промежутке, если для любых двух значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции. Функцию называют убывающей на некотором промежутке, если для любых двух значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции.
Если функция возрастает на всей области определения, то ее называют возрастающей функцией; если же функция убывает на всей области определения, то ее называют убывающей функцией.
Например, на рисунке 25 изображен график функции, областью определения которой является промежуток |-1; 5|. Эта функция является возрастающей, так как она возрастает на всей области определения. Функция, график которой изображен на рисунке 26. является убывающей, так как она убывает на всей области определения — промежутке [-1; 5].
Возрастающими, например, являются функции (их графики всегда «идут вверх»), а убывающими — функции (их графики всегда «идут вниз»). Функция , график которой изображен на рисунке 24, не является ни возрастающей, ни убывающей. Она только возрастает или убывает на отдельных промежутках.
Функция , где , убывает на каждом из промежутков и но не является убывающей. Действительно, она не убывает на всей области определения , гак как при (см. рис. 27) имеем: .
Четные и нечетные функции
Рассмотрим функцию, ее график изображен на рисунке 28. Так как для любою значения х выполняем равенство , то . Функцию называют четной.
Определение: Функцию называют четной, если для любою значения х из определения области ее определения значение х также принадлежит области определения и выполняется равенство .
Область определения четной функции симметрична относительно начала координат, так как вместе со значением х она содержит и значение х.
График четной функции симметричен относительно оси у (см., например, рис. 28). поэтому для построения графика четной функции достаточно построить часть графика для , а потом симметрично отобразить эту часть относительно оси у.
На рисунке 29 изображен график функции . Так как для любою значения х выполняется равенство то . Функцию называют нечетной.
Определение: Функцию называют нечетной, если для любого значения х из области ее определения значение х также принадлежит области определения и выполняется равенство .
Область определения и график нечетной функции симметричны относительно начала координат. Поэтому для построения трафика нечетной функции достаточно построить часть графика для , а потом симметрично отобразить эту часть относительно начала координат.
Рассмотрим функцию . Область ее определения — множество всех действительных чисел — симметрична относительно начала координат. Для этой функции . Равенства не выполняются для всех значений х, например, дня . Эта функция не является ни четной, ни нечетной.
Функция , где , также не является ни четной, ни нечетной, так как область определения функции (промежуток не симметрична относительно начата координат.
Итог. Чтобы исследовать функцию на четность, нужно:
1) найти область определении функции и выяснить, симметрична ли она относительно начала координат;
2) если обметь определенна симметрично относительно начала координат, то находим :
а) если для любого значения х из области определения функции выполняется равенство , то функция является четной;
б) если Оля нового значения х из области определения функции выполняется равенство , то функция является нечетной:
в) если хотя бы для одного значения д из области определения функции ни одно из этих равенств не выполняется, то функция не является ни четной, ни нечетной;
3) если область определения не симметрична относительно начала координат, то функция не является ни четной, ни нечетной.
Пример №22
Найти нули функции .
Решение:
Решим уравнение
Таким образом, функция имеет два нуля: х = 2 и х = 6.
Ответ. 2; 6
Пример №23
Доказать, что функция возрастает на промежутке
Решение:
Пусть и — два произвольных значения аргумента из промежутка , причем , a — соответствующие им значения функции, то есть. Покажем, что . Для этого рассмотрим разность
Так как то . Значения и принадлежат промежутку , поэтому (поскольку ) и
Тогда:
Большему значению аргумента из промежутка соответствует большее значение функции. Следовательно, функция на промежутке возрастает.
Пример №24
Четной или нечетной является функция:
Решение:
Областью определения каждой из данных функций является множество всех действительных чисел. Поэтому область определения каждой функции симметрична относительно начала координат. Для любого значения х имеем:
a) функция является нечетной;
б ) функция является четной;
в) . Возьмем х = 1 н найдем:Видим, что Функция не является ни четной, ни нечетной.
Ответ. а) Нечетная: б) четная; в) ни четная, ни нечетная.
Преобразование графиков функций
График функции y=f(x)±n, где n > 0
График функции
Пусть имеем график функции , а нужно построить графики функций . Составим таблицу значений этих функций для некоторых значений аргумента:
Для любого значения х значение функции на 2 больше соответствующего значения функции , а значение функции на 3 меньше соответствующего значения функции . (Из таблицы это легко увидеть для выбранных значений х.)
Поэтому график функции можно получить при помощи параллельного переноса графика функции вдоль оси у на 2 единицы вверх (см. рис. 33). График функции можно получить при помощи параллельного переноса графика функции вдоль оси у на 3 единицы вниз.
Если функцию записать в виде , то функции и будут функциями вида , где , а именно: .
Вообще, график функции , где можно получить из графика функции при помощи параллельного переноса вдоль оси у на n единиц вверх: график функции , где , можно получить из графика функции при помощи параллельного переноса вдоль оси у на n единиц вниз.
График функции y=f(x±m), где m > 0
График функции , где
Пусть имеем график функции , а нужно построить графики функций и . Составим таблицу значений этих функций для некоторых значений аргумента:
Из таблицы видно, что график функции можно получить из графика функции при помощи параллельного переноса вдоль оси х на 3 единицы вправо (рис. 34).
График функции можно получить из графика функции при помощи параллельного переноса вдоль оси х на 2 единицы влево (рис. 34).
Если функцию записать в виде , то функции и будут функциями вида , где , а именно: и
Вообще, график функции , где , можно получить из графика функции при помощи параллельного переноса вдоль оси х на m единиц вправо; график функции , где , можно получить из графика функции при помощи параллельного переноса вдоль оси х на m единиц влево.
График функции y=f(x±m)+n, где m > 0 и n > 0
График функции, где и .
Рассмотрим функцию . Еe график можно получить, если осуществить параллельный перенос график функции вдоль оси х на 2 единицы вправо, а потом вдоль оси у на 1 единицу вниз (рис. 35).
График функции y=-f(x)
График функции .
Пусть имеем график функции а нужно построить график функции . Составим таблицу значений этих функций для некоторых значений аргумента:
Значения функции противоположны соответствующим значениям функции . Поэтому каждая точка графика функции симметрична соответствующей точке графика функции относительно оси х. Например, точка (2;-4) графика функции симметрична точке (2; 4) графика функции относительно оси х. Следовательно, график функции можно получить из трафика функции при помощи симметрии относительно оси х (рис. 36).
Если функцию записать в виде , то функция будет функцией вида .
Вообще, график функции можно получить ш графика функции при помощи симметрии относительно оси х.
График функции y=af(x), где a > 0
График функции , где
Пусть имеем график функции , а нужно построить графики функций . Составим таблицу значений этих функций для некоторых значений аргумента:
Для любого значения х значение функции в два раза больше соответствующего значения функции , а значение функции в два раза меньше соответствующего значения функции . (Из таблицы это легко увидеть для выбранных значений х.)
Поэтому график функции можно получить из графика функции , растянув последний or оси х в два раза, а график функции можно получить из графика функции сжав последний к оси х в два раза (см. рис. 37).
Гели функцию записать в виде , то функции и
будут функциями вида , где а > 0, а именно: .
Вообще, график функции , где , можно получить из графика функции , растянув последний от оси х в а раз при а > 1, и сжав его до оси х в раз при 0 а 1.
График функции y= [f(x)]
График функции .
По определению модуля числа имеем:
Таким образом, если , то значения функции равны, если то значения этих функций являются противоположными числами. Поэтому график функции можно получить так: строим график функции и ту его часть, которая находится ниже оси х, симметрично отображаем относительно этой оси.
На рисунке 38 изображен график функции . Сравните его с гpaфиком функции (рис. 35).
График функции y= f([x])
График функции
Отметим два свойства данной функции.
- Функция является четной. Действительно, из тождества следует, что для любою значения х из области ее определения выполняется равенство. Следовательно, трафик функции симметричен относительно оси у.
- Если , то. Поэтому при график функции совпадает с графиком функции .
Таким образом, график функции можно построить так: строим часть графика функции для ; выполнив симметрию построенной части относительно оси у, получаем вторую часть графика для .
На рисунке 39 изображен график функции у = (|л| 2)2 — 1. Сравните его с трафиком функции (рис. 35).
Пример №25
Построить график функции .
Решение:
Строим график функции . Параллельно переносим его вдоль оси х на 2 единицы влево, а потом вдоль оси у па 1 единицу вверх. Получаем искомый график (рис. 40).
Пример №26
Построить график функции .
Решение:
Последовательно строим графики следующих функций:
то есть .
График функции изображен на рисунке 41.
Пример №27
Построить график функции .
Решение:
Последовательно строим графики следующих функций:
График функции изображен на рисунке 42.
Функция y=ax2
Функция
Рассмотрим пример. Пусть тело свободно надает. Путь S, пройденный телом за время и можно найти по формуле
где g — ускорение свободного падения .
Перейдя к принятым обозначениям аргумента и функции, получим функцию, которая задается формулой вида , где .
Нa рисунках 44 и 45 изображены графики функций , , которые являются частными случаями функции при а равно
График функции , где , как и график функции называют параболой.
Функции , где , имеет такие свойства:
- Областью определения функции является множество всех действительных чисел.
- При а > 0 областью значений функции является промежуток ; при а 0 — промежуток
- График функции — парабола.
- Если х = 0, то у = 0. График проходит через точку (0; 0). Эту точку называют вершиной параболы.
- При а 0 все точки параболы, кроме ее вершины, расположены выше оси х; при а 0 — ниже этой оси. Говорят: при а > 0 ветви параболы направлены вверх; при а 0 — вниз.
- При а> 0 функция возрастает на промежутке и убывает на промежутке При а 0 функция возрастает на промежутке и убывает на промежутке
- Функция является четной, так как для любого значения х выполняется равенство . График функции симметричен относительно оси у.
Докажем, что функция при а> 0 возрастает на промежутке
Пусть — два произвольных неотрицательных значения аргумента, причем — соответствующие им значения функции, то есть , . Покажем, что Для этого рассмотрим разность:
Так как Учитывая, что а > 0, имеем:
Большему значению аргумента соответствует большее значение функции. Поэтому при а > 0 функция на промежутке возрастает.
То, что функция при а > 0 убывает на промежутке доказывается аналогично.
Вычисление квадратичной функции
Рассмотрим пример. Пусть тело движется прямолинейно вдоль оси х с ускорением . Если в начальный момент времени оно имело скорость , и находилось в точке с координатой , то координату х тела в момент времени г можно найти по формуле
В частности, если , то
Формула задает функцию, которую называют квадратичной.
Определение: Квадратичной функцией называют функцию, которую можно задать формулой вида , где х — независимая переменная, a, b и с — некоторые числа, причем
Так, — квадратичные функции.
График квадратичной функции
Выясним сначала, что является графиком квадратичной функции Для этого преобразуем квадратный трехчлен так:
Записав квадратный трехчлен в виде , говорят, что из данного квадратного трехчлена выделили квадрат двучлена х — 2.
Вообще, выделить из квадратного трехчлена квадрат двучлена значит записать его в виде , где m и n — некоторые числа.
Итак, квадратичную функцию можно задать формулой . Поэтому ее график можно получить, если график функции параллельно перенести вдоль оси x на 2 единицы вправо, а потом вдоль оси у на 1 единицу вниз (рис. 46).
Рассмотрим общий случай. Пусть имеется квадратичная функция Выделим из квадратного трехчлена квадрат двучлена:
Поэтому , где .
Следовательно, график функции можно получить из графика функции при помощи двух параллельных переносов вдоль осей координат (см. рис. 47). Графиком функции является парабола.
Точку (m;n), где , называют вершиной этой параболы. Ее осью симметрии является прямая х = m. При а> 0 ветви параболы направлены вверх, при а 0 — вниз.
Координаты вершины параболы можно найти по формулам
,
или по формулам
(ордината n вершины параболы является значением квадратичной функции при х = m).
Построение графика квадратичной функции
Рассмотрим квадратичную функцию
Так как , то график этой функции можно получить из графика функции при помощи двух параллельных переносов: вдоль оси х па 2 единицы влево и вдоль оси у на 1 единицу вниз (см. рис. 48).
Параболу, являющуюся графиком функции , можно построить и так:
1) находим координаты вершины параболы:
— абсцисса вершины;
— ордината вершины.
2) находим значения функции при нескольких целых значениях х близких к абсциссе вершины:
3) отмечаем найденные точки на координатной плоскости и соединяем их плавной линией. Получаем искомую параболу (рис. 49).
Положение графика квадратичной функции
В таблице показано положение графика функции в зависимости от знаков коэффициента а и дискриминанта D квадратного трехчлена .
При D > 0 парабола пересекает ось x в двух точках; при D = 0 — касается этой оси; при D О — не имеет с осью х общих точек.
Пример №28
Построить график функции . Используя график, найти:
а) область значений функции;
б) промежуток, па котором функция возрастает; убывает.
Решение:
Найдем координаты вершины параболы:
Составим таблицу’ значений функции для нескольких значений х:
Отметив точки, координаты которых представлены в таблице, на координатной плоскости и соединив их плавной линией, получаем искомый график (рис. 50).
Из графика следует: а) областью значений функции является промежуток; б) функция возрастает на промежутке и убывает на промежутке
Пример №29
Построить график функции
Решение:
Графиком данной функции является парабола. Нулями функции являются и . Нули параболы симметричны относительно ее оси, поэтому абсцисса ее вершины равна(середине отрезка с концами в нулях функции).
Находим ординату вершины: Ось у парабола пересекает в точке (0; 3). График функции изображен на рисунке 51.
Доказать, что функция принимает только положительные значения, и найти наименьшее значение функции.
Находим координаты вершины параболы
—абсцисса вершины; —ордината вершины.
Так как ветви параболы направлены вверх, то значение квадратичной функции при является наименьшим. Это наименьшее значение положительно, поэтому квадратичная функция принимает только положительные значения.
Неравенства второй степени с одной переменной
Неравенства вида
где х— — переменная, а, Ь, с — некоторые числа, причем называют неравенствами второй степени с одной переменной (или квадратными неравенствами).
Например, — квадратные неравенства. Решение квадратных неравенств можно свести к нахождению промежутков, на которых квадратичная функция принимает положительные, неположительные, отрицательные или неотрицательные значения. Рассмотрим примеры.
Пример №30
Решить неравенство
Решение:
Рассмотрим квадратичную функцию
Ее графиком является парабола, ветви которой направлены вверх. Выясним, пересекает ли парабола ось х. Для этого решим уравнение Его корнями являются Итак, парабола пересекает ось х в двух точках с абсциссами
Схематически изображаем параболу на координатной плоскости (рис. 53). Из построенного графика видим, что функция принимает положительные значения, если х принадлежит промежутку или промежутку (на этих промежутках парабола расположена выше оси х. Следовательно, множеством решений заданного неравенства является
Ответ. .
Используя схематическое изображение параболы (см. рис. 53), можно записать и множества решений следующих неравенств.
Пример №31
Решить неравенство
Решение:
Графиком функции является парабола, ветви которой направлены вниз. Решив уравнение получим: Поэтому парабола пересекает ось х в точках с абсциссами и 4. Схематически изображаем данную параболу (рис. 54). Функция принимает неотрицательные значения, если х принадлежит промежутку . Этот промежуток и является множеством решений неравенства.
Ответ. .
Пример №32
Решить неравенство:
Решение:
Графиком функции является парабола, ветви которой направлены вверх. Уравнение =0 не имеет корней, так как Следовательно, парабола не пересекает ось х. Схематически изображаем эту параболу (рис. 55). Функция при всех значениях х принимает положительные значения.
Поэтому множеством решений неравенства является множество всех действительных чисел, то есть , а неравенство решений не имеет.
Отвез, а); б) решений нет.
Итог. Чтобы решить неравенство вида
или где можно рассмотреть квадратичную функцию и:
1) найти нули функции;
2) если квадратичная функция имеет два нуля, то отметить их точками на оси х и через эти точки схематически провести параболу ветви которой направлены вверх при а > 0 и вниз при а 0;
если квадратичная функция имеет один нуль, то отметить его точкой на оси х и схематически провести параболу, которая касается оси х в этой точке; ветви параболы направлены вверх при а > 0 и вниз при а 0;
если квадратичная функция не имеет нулей, то схематически провести параболу, расположенную в верхней полуплоскости ветвями вверх при а > О, в нижней полуплоскости ветвями вниз при а 0;
3) найти на оси х промежутки, на которых значения функции удовлетворяют соответствующему неравенству.
Пример №33
Решить неравенство
Решение:
Перенесем слагаемые из правой части неравенства в левую, изменив их знаки на противоположные, и упростим полученное в левой части выражение: Разделим обе части последнего неравенства на -4, получим неравенство
Графиком квадратичной функции является парабола, ветви которой направлены вверх. Уравнение имеет корни и . Следовательно, парабола пересекает ось х в точках с абсциссами и . Изображаем схематически эту параболу (рис. 56). Множеством решений неравенства а значит, и заданного в условии неравенства, является промежуток.
Ответ. .
Пример №34
Найти область определения функции
Решение:
Область определения функции образуют те значения х при которых подкоренное выражение принимает неотрицательные значения.
Решим неравенство Графиком функции является парабола, ветви которой направлены вниз. Уравнение имеет корни: и . Следовательно, парабола пересекает ось х в точках с абсциссами 0 и 2. Изображаем схематически эту параболу (рис.57). Неравенство выполняется, если х принадлежит промежутку [0; 2). Это и есть искомая область определения.
Ответ. [0; 2].
Пример №35
Найти область определения функции
Решение:
Область определения функции образуют те значения х, которые являются решениями системы неравенств
Корнями уравнения являются числа -4 и 1. Так как ветви параболы направлены вверх, то множеством решений первого неравенства системы является множество
Решим второе неравенство системы: множество решений второго неравенства.
Отметим на координатной прямой множества решений обоих неравенств.
Общие решения неравенств системы образуют множество
Ответ.
Пример №36
Решить неравенство
Решение:
Выражение имеет смысл при. Поэтому решения данного неравенства должны принадлежать промежутку
Так как множитель принимает только неотрицательные значения, а именно: при, то рассмотрим два случая:
1) х = 1. Тогда получим верное неравенство Следовательно, х = 1 —решение неравенства.
2) х > 1. Тогда множитель — положительный, и данное неравенство будет выполняться, если второй множитель неотрицательный. Имеем систему неравенств: Решив эту систему, найдем решения:
Ответ.
- Заказать решение задач по высшей математике
Пример №37
Решить неравенство
Решение:
Дробь в левой части неравенства имеет смысл при . Так как при знаменатель дроби положителен, то данное неравенство будет выполняться, если Множеством решений квадратичного неравенства является промежуток Исключив из него число 2, получим множество решений данного неравенства:
Ответ.
Метод интервалов
Решим неравенство
Для этого рассмотрим функцию
и найдем значения х при которых она принимает положительные значения. Областью определения этой функции является множество всех действительных чисел, а нулями — числа -1, 2 и 4. Нули разбивают область определения па четыре промежутка: и . На каждом из этих промежутков каждый из множителей произведения (х + 1 )(х — 2)(х — 4) имеет определенный знак. Знаки множителей и знаки произведения представлены в таблице.
Следовательно, функция принимает положительные значения на промежутках Поэтому множеством решений неравенств является .
Отметим на координатной прямой нули функции и ее знаки на промежутках и (рис. 61). На каждом из этих промежутков функция сохраняет знак, а при переходе через значения -1, 2 и 4 (нули функции) ее знак поочередно меняется. На крайнем справа промежутке как видно из таблицы, функция принимает положительные значения. Поэтому знаки функции на промежутках можно было найти так: отмечаем знаком «+» знак функции на крайнем справа промежутке а потом, используя свойство чередования знаков, определяем знаки функции на остальных промежутках, двигаясь справа налево.
Описанным способом можно найти знаки функции вила
где — некоторые попарно различные числа, на промежутках, которые определяются нулями этой функции. Зная знаки функции на промежутках, можно записать множества решений неравенств
Пример №38
Решить неравенство
Решение:
Отметим на координатной прямой нули функции — числа -3, -2 и 6. Отметим далее знаки функции на образованных промежутках (на крайнем справа — знак «+», на остальных промежутках — такие знаки, чтобы, двигаясь справа налево, они чередовались).
Множеством решений неравенства является объединение промежутков и (-2; 6).
Ответ.
Рассмотренный в примере метод решения неравенств называют методом интервалов.
Чтобы решить неравенство вида (1) методом интервалов, нужно:
- отметить на координатой прямой нули функции
- отметать знаки функции на образованных промежутках (на крайнем справа— знак «+», на остальных промежутках — такие знаки, чтобы, двигаясь справа налево, эти знаки чередовались);
- выбрав промежутки, на которых функция принимает значения соответствующего знака, записать множество решений неравенства.
Метод интервалов можно применить при решении не только неравенств вида (1), но и неравенств, которые путем преобразований сводятся к одному из неравенств этого вида. Рассмотрим пример.
Пример №39
Решить неравенство
Решение:
Приведем данное неравенство к виду (1). Для этого в выражении 1 — 2х вынесем за скобки множитель -2, а квадратный трехчлен разложим на множители:
Разделив обе части неравенства на -2, получим неравенство вида (1):
Отметим на координатной прямой нули функции и ее знаки на образованных промежутках.
На промежутках и функция принимает положительные значения, а при — значение 0. Поэтому если х принадлежит промежутку или промежутку
Ответ.
Если в неравенствах (1) не все числа являются попарно различными, то рассмотренный алгоритм определения знаков функции применять нельзя. Способ решения таких неравенств показан в следующем примере.
Пример №40
Решить неравенство
Решение:
Отметим на координатной прямой нули функции и ее знаки на образованных промежутках.
На крайнем справа промежутке все множители произведения являются положительными, поэтому на этом промежутке Двигаясь справа налево при переходе через значение х = 3, функция меняет знак, та как меняет знак множитель являющийся нечетной степенью двучлена х — 3. При переходе через значение х = I знак функции не меняется, так как не меняется знак множителя , являющегося четной степенью двучлена х — 1. При переходе через значение х = -0,5 функция меняет знак, так как меняет знак множитель х + 0,5 — нечетная (первая) степень двучлена х + 0,5.
Ответ.
Решение дробных рациональных неравенств
Метод интервалов можно применять и при решении дробных неравенств.
Решим неравенство
Рассмотрим функцию
- Найдем область определения функции:
- Найдем нули функции:
- Отметим на координатной прямой точки, соответствующие числам -1, 2 и 4.
Знаки частного на промежутках определяем так же, как и знаки произведения
Функция принимает положительные значения на промежутках (-1; 2) и Поэтому множеством решений неравенства (2) является
Пример №41
Решить неравенство
Решение:
Приведем данное неравенство к неравенству, левой частью которого является дробь, а правой — нуль:
Нулем функции является х = 1; при х = -2 эта функция не определена. Отмстим на координатной прямой точки, соответствующие числам -2 и 1, а также знаки функции на образованных промежутках (на крайнем справа — знак «+», на остальных промежутках — такие знаки, чтобы, двигаясь справа налево, эти знаки чередовались).
На промежутках функция принимает положительные значения, а при х — 1 — значение 0. Поэтому множеством решений неравенства является объединение промежутков
Ответ.
Системы уравнений с двумя переменными
Уравнения с двумя переменными
Пусть известно, что гипотенуза прямоугольного треугольника равна 25 см. Если длину одного из катетов обозначить через х см, а второго — через у см, то получим равенство
содержащее две переменные х и у. Такое равенство, как известно, называют уравнением с двумя переменными (или уравнением с двумя неизвестными).
Уравнения также являются уравнениями с двумя переменными.
Левой частью уравнения является многочлен второй степени, а правой — нуль. Такое уравнение называют уравнением второй степени с двумя переменными.
Уравнения являются соответственно уравнениями первой, второй и четвертой степеней.
Напомним, что решением уравнения с двумя переменными называют пару значений переменных, при которых уравнение превращается в верное числовое равенство. Так, уравнение при х = 3, у = 4 превращается в верное числовое равенство Поэтому пара значений переменных х = 3, у = 4 является решением уравнения Это решение записывают еще и так: (3; 4). Решениями уравнения являются также пары (-3; 4), (4; 3), (0; 5), (-5; 0) и т. п.
Если на координатной плоскости отметить все точки, координаты которых являются решениями некоторою уравнения с двумя переменными, то получим график этого уравнения.
Так, графиком уравнения 2х — 5у = 1 является прямая, (графиком уравнения — окружность радиуса 5 с центром в начале координат (рис. 62). Уравнения и равносильны уравнениям . Поэтому их графиками являются соответственно парабола и гипербола.
Графический способ решения систем уравнений
В 7 классе мы рассматривали разные способы решения систем линейных уравнений: графический способ, способы подстановки, сложения. Пусть нужно решить систему оба уравнения которой являются уравнениями второй степени.
Построим в одной системе координат графики обоих уравнений системы (рис.63). Графиком уравнения является окружность, а графиком уравнения -парабола. Эти графики имеют 3 общих точки: и . Легко проверить, что координаты каждой из этих точек являются решениями как первого, так и второго уравнений системы. Поэтому система имеет 3 решения: (0: 5), (-3; -4) и (3; -4).
Чтобы решить систему уравнений с двумя переменными графическим способом, нужно построить графики уравнений системы в одной системе координат и найти координаты оби/их точек этих графиков.
Решение систем уравнений
Если в системе уравнений с двумя переменными одно из уравнений является уравнением первой степени, то такую систему можно решить способом подстановки.
Пример №42
Решить систему уравнений
Решение:
Выразим из первого у равнения переменную у через переменную х:
Подставим во второе уравнение вместо у выражение Зх — 2 и решим полученное уравнение с одной переменной х:
По формуле находим:
Итак, система имеет два решения:
Ответ.
Решая систему уравнений способом подстановки, нужно:
- выразить из некоторого уравнения системы одну переменную через другую;
- подставить полученное выражение в другое уравнение вместо соответствующей переменной;
- решить полученное уравнение с одной переменной;
- найти соответствующее значение другой переменной.
Пример №43
Решит систему уравнений
Решение:
Умножим второе уравнение на 2 и сложим с первым уравнением, получим:
Отсюда: или
Итак, возможны два случая.
1)
— решения системы.
2)
— решения системы.
Ответ.
Замечания.
- Систему из примера 2 можно решать способом подстановки, выразив из второго уравнения переменную у через переменную
- Решая систему уравнений вида где а и b — некоторые известные числа, можно использовать теорему, обратную теореме Виета. Так, решая пример 2 мы получили систему . На основании упомянутой теоремы числа х и у являются корнями квадратного уравнения Решив уравнение, найдем: Тогда пары чисел (1: 3) и (3; 1) — решения данной системы.
Пример №44
Решить систему уравнений
Решение:
Положим: Получим систему линейных уравнений
решением которой является . Возвращаясь к замене, получим:
Решив последнюю систему способом подстановки, найдем: -2.
Ответ. (2; 2), (-2; -2).
Пример №45
Решить систему уравнений
Решение:
Запишем данную систему так: Разделим почленно второе уравнение на первое (так как и на ху х делить можно). Получим: , откуда
Подставим эти значения у в первое уравнение системы:
Ответ. .
Пример №46
Построить график уравнения
Решение:
Так как при допустимых значениях х выражение принимает неотрицательные значения, то Поэтому данное уравнение равносильно таким двум условиям: или Следовательно, графиком уравнения является полуокружность радиуса 2 с центром в начале координат, находящаяся в верхней полуплоскости (рис. 64).
Пример №47
Построить график уравнения
Решение:
Если модуль числа равен 2, то этим числом является 2 или -2. Итак, 2х —у = 2 или 2х — у = -2. Поэтому графиком уравнения являются две прямые, заданные уравнениями (рис. 65).
Пример №48
Решить систему уравнений
Решение:
Прибавим к первому уравнению системы второе уравнение, получим: , откуда . Подставив вместо х выражение во второе уравнение системы, получим:
Ответ.
Решение задач при помощи систем уравнений
Рассмотрим примеры.
Пример №49
Из двух пунктов, расстояние между которыми 18 км. вышли одновременно навстречу друг другу две группы туристов и встретились через 2 ч. Найти скорость движения каждой группы, если первой для преодоления всего пути между пунктами требуется времени на 0,9 ч больше, чем второй.
Решение:
Пусть скорость первой группы туристов х км/ч, а второй— у км/ч. Группы встретились через 2 ч, поэтому до встречи первая группа проплыла путь 2х км, а вторая — 2у км. Вместе они прошли 18 км. Получаем уравнение 2х + 2у = 18.
Чтобы пройти весь путь длиной 18 км, первой группе нужно ч, а второй ч. Так как первой группе на это нужно времени на 0,9 ч больше, чем второй, то: Получаем систему уравнений:
По условию задачи х > 0 и у > 0. Поэтому, умножив обе части второго уравнения на ху, получим:
Если х = 45, то у = 9 — 45 = -36 — не удовлетворяет неравенству у > 0.
Ответ. 4 км/ч; 5 км/ч.
Пример №50
Сад и огород имеют прямоугольную форму. Длина сада на 30 м меньше длины огорода, при этом его ширина на 10 м больше ширины огорода. Найти размеры сада, если его площадь , а площадь огорода—
Решение:
По условию задачи составляем таблицу.
Получаем систему уравнений:
Решим чту систему:
Значение не удовлетворяет условию задачи (ширина сада не может выражаться отрицательным числом). Поэтому:
Ответ. 30 м; 30 м.
Напоминаю:
Парабола имеет ряд интересных свойств. Представим себе, что парабола может отражать световые лучи. Если на параболу будет падать пучок лучей параллельно ее оси симметрии, то после отражения они пройдут через одну точку, которую называют фокусом параболы (на рисунке — это точка F). Наоборот, если в фокусе параболы поместить источник света, то лучи, отразившись от параболы, пойдут параллельно ее оси симметрии.
На этом свойстве параболы основано строение параболических зеркал. Поверхность такого зеркала получают вследствие вращения параболы вокруг своей оси. Параболические зеркала используют при создании прожекторов, телескопов, автомобильных фар и т. п.
При определенных условиях камень, брошенный под углом к горизонту, движется «по параболе». То же можно сказать и о пушечном снаряде.
Парабола
Рассмотрим уравнение
Если и рассматривать как координаты точки, то уравнение (1) определит некоторое геометрическое место точек. Исследуем вид этого геометрического места. Заметим, что наше исследование будет неполным, так как останутся вопросы, которые нами пока не будут выяснены. Чем дальше мы будем продвигаться в изученйи математики, тем полнее будут проводиться исследования.
1) Так как при любом значении всегда неотрицательно, то , определяемое уравнением (1), всегда неотрицательно. Значит, любая точка, принадлежащая изучаемому геометрическому месту, не будет лежать ниже оси (рис. 18).
2) Так как и для —хи для х после возведения в квадрат получается одно и то же число, то точки, принадлежащие геометрическому месту и соответствующие значениям и , имеют одну и ту же ординату и поэтому расположены симметрично относительно оси (рис. 19).
3) Если положительно, то, чем больше , тем больше и . Поэтому по мере возрастания абсолютной величины абсциссы величина ординаты тоже возрастает. Следовательно,точки геометрического места удаляются от начала координат вправо вверх и влево вверх.
Геометрическое место, определяемое уравнением , называется параболой и имеет вид, изображенный на рис. 20. Эту кривую линию называют также графиком функции . Точка (0, 0) принадлежит геометрическому месту, поэтому можно сказать, что парабола проходит через начало координат. Эту точку называют вершиной параболы. Часть параболы, расположенная в первой четверти, и часть параболы, расположенная во второй четверти, называются ее ветвями.
Теперь рассмотрим уравнение
Оно определяет геометрическое место точек. Сравнивая уравнения (1) и (2), замечаем, что при одном и том же значения отличаются только знаками, именно , полученный из уравнения (2), всегда неположителен. Поэтому уравнение (2) тоже определяет параболу, вершина которой также находится в точке (0, 0), но ветви этой параболы идут от начала координат вниз вправо и вниз влево. График функции (2) изображен на рис. 21.
Перейдем к рассмотрению уравнения
Сравним его с уравнением (1).
Если положительно и больше единицы, то очевидно, что при одном и том же значении величина из уравнения (3) будет больше, чем величина , взятая из уравнения (1). Отсюда можно заключить, что кривая, определяемая уравнением (3), отличается от параболы (1) только тем, что ординаты ее точек растянуты в раз. Таким образом, кривая, определяемая уравнением (3), является более сжатой, чем парабола . Эту кривую тоже называют параболой.
Если , то получим параболу более раскрытую, чем парабола . Для а отрицательного получаем аналогичные выводы, которые ясны из рис. 22.
Теперь покажем, что кривая, определяемая уравнением , является параболой, только ее расположение относительно координатных осей другое, чем в разобранных случаях. Предварительно рассмотрим параллельный перенос осей координат.
Параллельный перенос осей координат
Пусть на плоскости дана система координат (рис. 23). Рассмотрим новую систему координат . Предположим, что новая ось параллельна старой оси и новая ось параллельна старой оси . Начало координат новой системы— точка Масштаб и направление осей одинаковы в старой и новой системах координат.
Обозначим координаты нового начала относительно старой системы координат через и , так что Возьмем произвольную точку на плоскости; пусть ее координаты в старой системе будут и , а в новой и Тогда , , и (на основании формулы (2) из § 1 гл. 1)
Таким образом,
Переход от старой системы координат к указанной новой называется параллельным переносом или параллельным сдвигом осей координат. Приходим к выводу:
При параллельном сдвиге осей координат старая координата точки равна новой координате той же точки плюс координата нового начала в старой системе.
Исследование функции y=ax2+bx+c
Исследование функции
Функция, определенная уравнением
называется квадратичной функцией. Функция , рассмотренная выше, является частным случаем квадратичной функции. Поставим перед собой цель—выяснить, как изменится уравнение (1), если перейти к новым координатам. Возьмем новые оси координат так, чтобы они были параллельны старым, т. е. ось будет параллельна оси , а ось —оси . Масштаб и направление осей такие же, как и у старых. Пусть координаты нового начала в старой системе будут и . Подставим в уравнение (5) вместо и их выражения через новые координаты: , .Получим . Разрешив это уравнение относительно , будем иметь
Координаты нового начала находятся в нашем распоряжении, поэтому их можно выбрать так, чтобы выполнялись условия
В этих уравнениях два неизвестных: и . Найдем их:
Если взять новое начало в точке ,то в уравнении (2) скобки и сделаются равными нулю, т. е. уравнение (2) примет вид
Полученное уравнение имеет вид, рассмотренный выше. Таким образом, уравнение относительно новой системы координат определяет ту же параболу, что и уравнение *. Приходим к выводу:
Уравнение определяет параболу, вершина которой находится в точке и ветви которой направлены вверх, если , и вниз, если .
Тот же вывод можно высказать по-другому:
График квадратической функции есть парабола с вершиной в точке , ветви которой направлены вверх, если , и вниз, если .
Пример №51
Выяснить вид и расположение параболы, заданной уравнением
Решение:
Переносим начало координат в точку , координаты которой пока неизвестны. Старые координаты выражаются через новые по формулам
Подставляя эти выражения в уравнение (4), получим:
Выберем координаты нового начала так, чтобы соблюдались равенства
Решая полученную систему уравнений, будем иметь:
Следовательно, перенося начало координат в точку , преобразуем уравнение (4) в новое уравнение, которое имеет вид
Следовательно, уравнение (4) определяет параболу, имеющую вершину в точке , ветви параболы направлены вверх (рис. 24).
Приведем пример применения квадратичной функции в механике.
Пример №52
Найти траекторию тела, брошенного под углом к горизонту. Угол бросания , скорость бросания .Сопротивлением воздуха пренебрегаем.
Решение:
Выберем оси координат так: ось —вертикальная прямая, проведенная в точке бросания, ось — горизонтальная прямая, начало координат—точка бросания (рис. 25).
Если бы не действовала сила притяжения Земли, то тело, брошенное под углом к горизонту, по инерции двигалось бы по прямой . За сек оно прошло бы расстояние и, стало быть, находилось бы в точке . Но под действием силы притяжения Земли это тело, как свободно падающее, за сек пройдет вниз путь , следовательно, тело фактически будет в точке .
Вычислим координаты точки .
Найдем уравнение, связывающее с . Для этого из уравнения найдем и подставим это выражение в уравнение : и, следовательно,
или
Мы получили уравнение траектории тела. Как мы видим, это есть квадратичная функция рассмотренного вида, следовательно, тело, брошенное под углом к горизонту, движется в безвоздушном пространстве по параболе, расположенной вершиной вверх, поскольку коэффициент при отрицателен.
Какова наибольшая высота подъема тела над Землей? Чтобы ответить на этот вопрос, нужно найти вершину параболы. Как было выведено, вершина параболы имеет координаты
В нашей задаче поэтому координаты вершины равны
Найдем теперь дальность полета тела, т. е. абсциссу точки падения. Для этого приравняем в уравнении нулю, получим уравнение
решая которое найдем два значения и ; первое из них дает точку бросания, а второе—искомую абсциссу точки падения. Все эти рассуждения относятся к безвоздушному пространству; в воздухе и высота и дальность будут значительно меньше.
Квадратичная функция в высшей математике
При любом функция вида называется квадратичной функцией. Графиком квадратичной функции является парабола. Если квадратичная функция принимает вид Ее график показан на рисунке.
График функции y=ya2
График функции
Пример 1. Исследуйте таблицу значений для функции , , ,. Определите, к какой функции относится каждый график на рисунке.
Если увеличить ординату каждой точки параболы в 2 раза, не меняя абсциссу, то получатся точки графика функции
То есть, график функции получается растяжением параболы от оси абсцисс в два раза.
График функции получается сжатием параболы к оси абсцисс в два раза.
Парабола «шире» параболы, соответствующей функции . Парабола получается от параболы преобразованием симметрии относительно оси абсцисс. Подобным образом параболы и симметричны относительно оси абсцисс.
График квадратичной функции
Графиком функции является парабола с вершиной в начале координат и осью симметрии
• При ветви параболы направлены вверх, а при ветви параболы направлены вниз.
• При парабола, растягиваясь от оси абсцисс в вертикальном направлении, становится «уже» параболы .
• При парабола, сжимаясь к оси абсцисс в вертикальном направлении, становится «шире» параболы .
График функции y=x2+n
График функции
Пример 2.
Функции , , представлены в виде таблицы и графика. Начертите таблицу и график в тетради. Выясните, как изменится график функции в зависимости от значения .
Построим параболу и сдвинем ее на 1 единицу вверх вдоль оси . Вершиной параболы будет точка , а останется осью симметрии. Абсцисса каждой точки останется прежней, а ордината увеличится на одну единицу. То есть, ордината точки с абсциссой новой параболы будет
Парабола, соответствующая функции получается сдвигом параболы на 1 единицу вверх вдоль оси . Вершина параболы
Сравним параболы, соответствующие функциям и . Парабола, соответствующая функции , получается сдвигом параболы вдоль оси на 2 единицы вниз. Вершина параболы
Следовательно, расположение параболы по отношению к меняется но вертикали вдоль оси . Важно правильно отметить точку вершины параболы.
График функции получается сдвигом параболы вдоль оси .
• Парабола сдвигается на единиц вниз вдоль оси , если , а вверх если .
• Вершина параболы находится в точке .
Пример 3. Функции представлены в виде таблицы и графика. Начертите таблицу и график в тетради. Исследуйте, как изменится график функции в зависимости от значения .
График функции y=(x m)+2
График функции
Сдвинем параболу на 3 единицы влево. Точкой вершины параболы будет . Точка на сдвиженной параболе получается сдвигом на три единицы точки на данной параболе. Поэтому абсцисса точки будет , а ордината будет такой же как и ордината точки Так как ордината произвольной точки на данной параболе равна квадрату абсциссы, то получим То есть, для точки на сдвиженной параболе будет
Если параболу сдвинем на 3 единицы влево, то получится парабола
Если параболу сдвинем на 2 единицы вправо, то получится парабола,
Число меняет положение параболы вдоль оси (по горизонтали).
График функции получается сдвигом параболы на единиц вдоль оси абсцисс.
• Если , парабола сдвигается вдоль оси вправо, если -влево.
• соответствует абсциссе точки вершины параболы. Точкой вершины параболы будет
• Прямая является осью симметрии параболы.
График функции y=a(x-m)2+n
График функции
Обобщив рассмотренные построения, покажем построение параболы по графику функции Сначала рассмотрим примеры.
Пример 4. Исследуйте построение графика функции при помощи сдвига параболы
1. Постройте график функции
2. Так как , направление ветвей параболы не меняется. Поскольку , парабола «расширяется», потому что при одинаковом значении значение будет в 3 раза меньше. Например, точка данная на графике , для данной функции будет
3. Отметьте точку симметричную точке относительно оси
4. Начертите параболу, проходящую через точки , , . Это график функции
5. Так как сдвиньте данную параболу на 5 единиц вправо и 4 единицы вниз. Полученная парабола является графиком функции
Точка с координатами — вершина параболы Осью симметрии этой параболы является прямая .
Пример 5.
• Постройте график функции .
• Так как , ветви параболы функции направлены вниз. График этой функции будет «уже» параболы, соответствующей функции Потому что при соответствующих значениях значение по модулю будет в 2 раза больше. Например:
Отметьте эти точки и постройте график функции , соединив их сплошной кривой.
• Так как и , то при сдвиге параболы на 3 единицы вправо и на 1 единицу вверх получится график функции . Вершина параболы будет в точке .
• Прямая является осью симметрии параболы.
Представление квадратичной функции в разных формах и ее графики
Во всех случаях, если ветви параболы направлены вверх; если ветви параболы направлены вниз.
Точка вершины параболы и точки пересечения с осями координат важные точки параболы.
Шаги построения параболы:
1. Находится точка вершины и отмечается на координатной плоскости.
2. Находятся точки пересечения с осью (если есть) и осью .
3. Определяется ось симметрии
4. Отмечаются несколько точек на параболе относительно оси симметрии.
5. Строится парабола, проходящая через отмеченные точки.
Пример 1. Построим график функции . Так как , ветви параболы направлены вниз.
1. Отметим точку вершины параболы:
2. При то есть, парабола пересекает ось в точке
3. Начертим ось симметрии и отметим точку находящуюся на параболе .
4. Отметим точки симметричные точкам относительно прямой
5. Построим параболу, проходящую через отмеченные точки.
Пример 2. Построим график функции
• — точки пересечения с осью
• Ось симметрии проходит через точку, находящуюся на одинаковом расстоянии от этих точек: .
• Абсцисса вершины параболы , ордината Отметим точку вершины на координатной плоскости.
• Проведем ось симметрии . Отметим две точки, симметричные относительно оси симметрии. Например, при и То есть, отметим точки
• Построим параболу, проходящую через отмеченные точки.
Пример 3. Выразите функцию, заданную графически и по кординатам вершины
1. Как видно из рисунка, вершина параболы находится в точке
2. Так как ветви параболы направлены вверх, то Учитывая значения и , функцию можно записать в виде
3. Записав координаты любой точки графика, например, или , в формулу функции, можно найти . Учтем точку
Формулой функции является
Нули квадратичной функции
Пересечение графика квадратичной функции с осью абсцисс.
В точках графика, которые находятся на оси абсцисс значение функции равно 0. Значения аргумента, при которых функция равна нулю, называются нулями функции. Определим число нулей для функции по значениям и .
• По значению можно определить, направлены ли ветви параболы вверх или вниз.
• По значению можно определить, находится ли точка вершины параболы выше, ниже или на оси абсцисс.
По точке вершины параболы и направлению ее ветвей вниз или вверх определим число точек пересечения графика с осью абсцисс на примерах.
Пример 1.
Пример 2.
Пример 3.
Общий вид квадратичной функции
Любая квадратичная функция вида может быть представлена в виде выделением полного квадрата.
Обозначив , , получим
Осью симметрии параболы является прямая . Точкой вершины будет , , . Здесь, .
Пример 1:
Пример 2:
Если в уравнение вписать значения и , то данная функция примет вид: .
Свойства квадратичной функции можно обобщить нижеследующим образом.
При ветви параболы, являющейся графиком квадратичной функции, направлены вверх, при ветви параболы направлены вниз.
Абсциссой точки вершины параболы будет , а уравнением оси симметрии .
Парабола пересекается с осью ординат в точке .
Значение ординаты (т.е. ) точки вершины графика функции при будет наименьшим значением (НмЗ) функции, а при будет наибольшим значением (НбЗ) функции. Эти значения также называются максимальными и минимальными значениями функции.
Множество значений, принимаемых аргументом , является областью определения функции. Областью определения квадратичной функции является множество всех действительных чисел. Значения, принимаемые функцией , образуют множество значений функции. Множеством значений функции при является множество всех действительных чисел, меньших или равных максимальному значению функции , а при множество всех действительных чисел, больших или равных минимальному значению функции . Если график «поднимается вверх» слева направо, то функция возрастает. Если график «опускается вниз» слева направо, то функция убывает.
Решение задач с применением квадратичной функции
Пример:
Каковы должны быть измерения хлева прямоугольной формы с периметром 200 м, чтобы площадь его была наибольшей?
Решение:
1. Допустим, что длина хлева с периметром 200 м равна . Запишем выражение, определяющее зависимость между шириной и длиной хлева
2. Напишем функцию, определяющую зависимость площади хлева от его длины.
3. Выделим полный квадрат функции :
4. Запишем координаты точки вершины и исследуем задачу.
Вершины находится в точке . Так как , эта точка является максимумом функции . То есть, функция получает максимальное значение при , и это значение равно 2500. Отсюда видно, что площадь прямоугольного хлева с периметром 200 м будет равна , если его длина будет равна 50 м, ширина также равна 50 м (т.е. он должен иметь форму квадрата).
Пример:
Группа студентов открыла компанию по производству компьютерных деталей. Прибыль, полученную от производства, можно выразить функцией . Здесь показывает число деталей, произведенных за неделю.
a) Найдите координаты точек пересечения графика данной функции с осью . Какую реальную информацию отражают эти координаты?
b) Найдите координаты точек пересечения графика данной функции с осью . Какую реальную информацию отражают эти координаты?
c) Для функции, выражающей прибыль, найдите координаты точки вершины графика. Какую реальную информацию отражают эти координаты?
d) Представьте в виде графика функцию, выражающую прибыль.
Решение:
а) В точках пересечения графика с осью значение функции
и точки пересечения графика с осью . Ординаты этих точек показывают, что прибыль равна нулю. То есть, если число деталей 10 или 40, то прибыль равна нулю. В экономике эту точку называют точкой «поворота».
b) Точка пересечения с осью :
Точка пересечения с осью То есть, если компания не будет производить никаких деталей, то еженедельные потери будут составлять 800 ман.
c) Абсцисса точки вершины графика функции:
Ордината: . Координаты точки вершины: Эти данные показывают, что компания может получать максимальный доход 450 ман. в неделю. А это возможно в случае производства 25 деталей.
Пример:
Если цена одной спортивной рубашки 8 руб, то магазин продаст 10 рубашек вдень. Владелец магазина считает, что снижение цены одной рубашки каждый раз на 2 руб может привести к ежедневному увеличению продажи рубашек на 5 штук. Какова должна быть цена рубашки, чтобы поступление от продажи было максимальным?
1. Примем число снижений цен на 2 руб за . Тогда цена одной рубашки будет
2. Количество рубашек, проданных ежедневно будет
3.
Функция выражает поступление от продажи.
Координаты точек вершин этой функции:
координаты точки вершины. Значит, если одна спортивная рубашка продается за руб., то ежедневное поступление от продажи будет максимальным и составит 90 руб (если расчеты владельца магазина верны).
Полезные знания:
Пример:
Трос (провод), поддерживающий вес моста, прикреплен к двум столбам, расстояние между которыми 370 м. Самая нижняя точка провода, являющегося по форме параболой, находится на расстоянии 25 м от земли. Высота каждого столба 50м. На какой высоте от земли находится точка на проводе крепления, расположенная на расстоянии 60 м по горизонтали, от одного из столбов.
Решение:
Нарисуйте схематично соответствующую параболу. Отметьте на ней данные из задачи. Расположите начало координат в точке вершины параболы, в самой низкой точке. Данные, соответствующие расстоянию от начала координат до столбов и высоте столбов:
Форму провода крепления можно выразить формулой По точке найдите .
Точка, находящаяся на расстоянии 60 м от одного из столбов, будет
находится на расстоянии от точки вершины параболы. Так как то указанная точка находится на расстоянии приблизительно 36,4 м от земли.
Функция y=[x] и ее график
Функция и ее график
Исходя из этих графиков, можно подвести нижеследующие обобщения.
Основные свойства функции
• График функции получается сдвигом графика единиц горизонтально (при направо, при налево) и единиц вертикально (при вверх, при вниз).
• — точка вершины графика, симметричного относительно прямой .
• При лучи, образующие график, направлены вверх, а при направлены вниз.
Пример №53
Постройте график функции .
Решение:
1. Отметьте точку вершины графика на координатной плоскости.
2. Отметьте какую-либо другую точку, например, , соответствующую функции.
3. Отметьте точку , симметричную точке относительно оси симметрии
4. Учитывая, что лучи направлены вниз, при , постройте график по трем отмеченным точкам.
Пример №54
Напишите соответствующую функцию по графику и данным точкам.
Решение:
1. Вершина графика находится в точке .
2. В уравнении вместо и напишем соответственно значение 0 и 3:
Запишем координаты точки в формуле:
Функция, соответствующая графику будет:
Проверка: Постройте график функции Обратите внимание на то, что ветви графика направленные вверх, более сжаты к оси ординат, чем у графика
Расстояние между двумя точками
На числовой оси
На координатной плоскости
Расстояние между точками и , то есть длину отрезка , можно найти из , применяя теорему Пифагора. Так как длины катетов и равны соответственно ,то .
Это формула расстояния между двумя точками. При решении задач на расстояние между двумя точками часто используется формула координат средней точки отрезка.
Область определения квадратичной функции
В 7 классе вы начали изучать одно из важнейших математических понятий — понятие функции. Напомним,что функцией (или функциональной зависимостью) называют такую зависимость, при которой каждому значению независимой переменной из некоторого множества соответствует единственное значение зависимой переменной.
Независимую переменную еще называют аргументом, а о зависимой переменной говорят, что она является функцией этого аргумента (или просто функцией). Например, если , то является функцией аргумента .
Зависимость переменной от переменной записывают в виде: (читают: равно от »). Символом обозначают значение функции для значения аргумента, равного .
Пример №55
Рассмотрим функцию . Можно записать, что . Найдем, например, значение функции для , то есть найдем . Имеем: . Найдем значение этой функции в точках, которые равны 0; ; , — 1. Получим:
Отметим, что в записи вместо можно использовать и другие буквы: и т. п.
Все значения, которые принимает независимая переменная (аргумент), образуют область определения функции.
Все значения, которые принимает зависимая переменная, образуют область значений функции.
Наибольшим значением функции называют наибольшее число из области значений функции, а наименьшим значением функции — соответственно наименьшее такое число.
Область определения функции обычно обозначают , а область значений — .
Если функция задана формулой и при этом не указана ее область определения, то будем считать, что эта область состоит из всех значений аргумента, при которых формула функции имеет смысл.
Пример №56
Найти область определения функции:
1)
2)
Решение:
1) Выражение имеет смысл при любом значении , поэтому область определения функции -множество всех чисел, т. е. промежуток .
2) Выражение имеет смысл при любом , кроме числа 8, поэтому областью определения функции является множество .
Ответ. 1); 2) .
Ответ можно было записать еще и так:
1) ; 2) .
Пример №57
Найти область определения и область значений функции: 1) ; 2) .
Решение:
1) Областью определения функции будет промежуток . Чтобы найти область значений функции, оценим выражение для всех значений . Имеем:
Таким образом, при любом значении , то есть областью значений функции будет промежуток .
2) Область определения функции состоит из таких значений , при которых выражения и одновременно принимают неотрицательные значения. Следовательно, чтобы найти эти значения, надо решить систему неравенств:
откуда получим, что
Очевидно, что решением системы является число 2, а значит, область определения функции содержит лишь число 2. Чтобы найти область значений этой функции, достаточно вычислить . Имеем: .
Ответ. 1) ; 2) .
Отметим, что наибольшим значением функции является число 2, а наименьшего значения у нее не существует.
Напомним,что
графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.
Пример №58
Построить график функции . По графику найти наибольшее и наименьшее значения функции.
Решение:
Областью определения функции является множество всех чисел. По определению модуля числа имеем: , если , и , если . Следовательно, функцию можно записать в виде:
График этой функции на промежутке совпадает с графиком функции , а на промежутке — с графиком функции .
График функции изображен на рисунке 34. Очевидно, что наименьшим значением этой функции является число 0, а наибольшего значения не существует.
Ответ. Наименьшее значение функции — 0, наибольшего не существует.
Свойства квадратичной функции
Рассмотрим функцию , график которой изображен на рисунке 37. При или значение функции равно нулю, то есть . В таком случае значения аргумента называют нулями функции.
Значение аргумента, при котором значение функции равно нулю, называют нулем функции.
Очевидно, что нули функции являются абсциссами точек пересечения графика функции с осью абсцисс, а ординаты этих точек равны нулю, так как точки лежат на оси абсцисс.
Следовательно, чтобы найти нули функции , нужно решить уравнение .
Пример №59
Найти нули функции .
Решение:
Решим уравнение , получим: . Следовательно, -2 и 4 — нули функции.
Ответ. -2; 4.
График, изображенный на рисунке 37, пересекает ось абсцисс в точках .
Этот график пересекает также и ось ординат в точке . Абсцисса этой точки равна нулю, ведь точка лежит на оси ординат. Следовательно, ордината точки пересечения графика функции с осью ординат равна числу , то есть значению функции для значения аргумента, равного нулю.
Пример №60
Найти точки пересечения графика функции с осями координат.
Решение:
Так как -2 и 4 — нули функции , то ее график пересекает ось абсцисс в точках и .
Так как , то график функции пересекает ось ординат в точке .
Нули функции (рис. 37) разбивают ее область определения — промежуток — на три промежутка: , и . Для значений из промежутка точки графика лежат выше оси абсцисс, а для значений из промежутков и — ниже оси абсцисс. Следовательно, на промежутке функция принимает положительные значения, то есть при , а на каждом из промежутков и — отрицательные значения, то есть при или .
Промежуток, на котором функция сохраняет свой знак, называют промежутком знакопостоянства функции.
Промежутки , и являются промежутками знакопостоянства функции , график которой изображен на рисунке 37.
Рассмотрим, как меняется (увеличивается или уменьшается) значение этой функции при изменении значений х от -4 до 4.
Из графика видим, что с увеличением значений от -4 до 2 значения увеличиваются (график «стремится» вверх), а с увеличением значений от 2 до 4 значения уменьшаются (график «стремится» вниз). Говорят, что на промежутке функция возрастает (или является возрастающей), а на промежутке функция убывает (или является убывающей).
Функцию называют возрастающей на некотором промежутке, если на этом промежутке большему значению аргумента соответствует большее значение функции. Функцию называют убывающей на некотором промежутке, если на этом промежутке большему значению аргумента соответствует меньшее значение функции.
Следовательно, по определению, функцию называют возрастающей на некотором промежутке, если для любых и из этого промежутка, таких, что имеет место неравенство: .
Нa рисунке 38 изображен график функции , возрастающей на . При этом называют промежутком возрастания функции.
Аналогично, по определению, функцию называют убывающей на некотором промежутке, если для любых и из этого промежутка, таких, что , имеет место неравенство .
Нa рисунке 39 изображен график функции , убывающей на . При этом называют промежутком убывания функции.
Выясним, какими свойствами обладают некоторые из ранее изученных функций.
Пример №61
Рассмотрим свойства функции , где (рис. 40 и 41).
1) Областью определения и областью значений функции является множество всех чисел. 2) Найдем нули функции, решив уравнение , получим, что — единственный нуль функции.
3) Найдем промежутки знакопостоянства функции. Пусть . Решив неравенство , получим: . Следовательно,
Решив неравенство , получим: Следовательно,
Пусть . Решив неравенство , получим:
Следовательно,
Решив неравенство , получим: Следовательно,
4) Проверим функцию на возрастание и убывание. Пусть и , то есть . Тогда
, так как и . Следовательно, при функция на возрастает.
Пусть и , то есть . Тогда , так как и . Следовательно, при функция на убывает.
5) Наибольшего и наименьшего значений у функции нет.
Пример №62
Рассмотрим свойства функции (рис. 42 и 43).
1) Областью определения и областью значений функции является множество всех чисел, за исключением нуля.
2) Поскольку уравнение , решений не имеет, то у функции нет нулей.
3) Пусть . Тогда при и при .
Следовательно, при и при .
Пусть . Тогда при и при . Следовательно, при и при .
4) При функция убывает на каждом из промежутков и . При функция возрастает на каждом из промежутков и .
5) Наибольшего и наименьшего значений функция не имеет.
Пример №63
Рассмотрим свойства функции (рис. 44).
1) Область определения функции — множество всех чисел. Область значений — промежуток .
2) Уравнение имеет единственное решение: . Следовательно, число 0 — единственный нуль функции. 3) при , то есть при или . Отметим, что не существует таких значений , при которых , поскольку неравенство не имеет решений.
4) Функция убывает на промежутке и возрастает на промежутке .
5) Наименьшее значение функции равно нулю, наибольшего — не существует.
Пример №64
Рассмотрим свойства функции (рис. 45).
1) Область определения и область значений функции -промежуток .
2) Уравнение имеет единственное решение — число 0, которое является нулем функции.
3) при , то есть при . Нет таких значений , чтобы имело место неравенство , так как неравенство не имеет решений.
4) Функция возрастает на промежутке .
5) Наименьшее значение функции — число 0, наибольшего — не существует. Систематизируем свойства этих функций в таблицу.
Простейшие преобразования графиков квадратичной функций
Раньше вы строили только графики функций вида .
Рассмотрим некоторые преобразования графика функции , которые значительно расширят перечень функций, графики которых мы сможем построить.
1. Построение графика функции , где .
Пример №65
Построить в одной системе координат графики функций , и .
Решение:
Сначала составим таблицу значений каждой из данных функций для нескольких значений аргумента:
Из таблицы ясно, что для одного и того же значения значение функции на 2 меньше, а значение функции на 3 больше соответствующего значения функции . Поэтому график функции можно построить путем переноса каждой точки графика функции вдоль оси на 2 единицы вниз, а график функции — путем переноса каждой точки графика функции вдоль оси на 3 единицы вверх (рис. 48).
Таким образом,
Замечание. Вместо переноса графика функции вверх (вниз), можно переносить ось на то же расстояние в противоположном направлении.
2. Построение графика функции , где .
Пример №66
Построить в одной системе координат графики функций и .
Решение:
Сначала составим таблицу значений каждой из данных функций для нескольких значений аргумента:
Для каждого значение функции равно значению функции при . В таблице это соответствие показано стрелками для значений функций при и при соответственно.
Следовательно, если все точки графика функции перенести вдоль оси на 2 единицы вправо, то получим график функции (рис. 49).
Пример №67
Построить в одной системе координат графики функций и .
Решение:
Сначала составим таблицу значений каждой из данных функций для нескольких значений аргумента:
Рассуждая, как в примере 2, придем к выводу, что график функции можно получить путем переноса графика функции вдоль оси на 1 единицу влево (рис. 50).
Таким образом,
Замечание. Вместо переноса графика функции влево (вправо) можно перенести ось на то же расстояние в противоположном направлении.
3. Построение графика функции .
Пример №68
Построить в одной системе координат графики функций и .
Решение:
Сначала составим таблицу значений данных функций для нескольких значений аргумента:
Из таблицы видим, что значения функции для одних и тех же значений противоположны соответствующим значениям функции . Графики этих функций изображены на рисунке 51.
Если провести отрезки, соединяющие точки графиков функций и для одного и того же значения (на рис. 51 они показаны пунктиром для , и ), то ось будет их срединным перпендикуляром. В таком случае говорят, что графики симметричны относительно оси .
Точки и называют симметричными относительно прямой , если прямая является срединным перпендикуляром отрезка (рис. 52).
Следовательно, графики функций и симметричны относительно оси .
4. Построение графика функции , где , .
Пример №69
Построить в одной системе координат графики функций , и .
Решение:
Сначала составим таблицу значений каждой из данных функций для нескольких значений аргумента:
При любом значение функции в 2 раза меньше соответствующего значения функции , а значение функции в 2 раза больше соответствующего значения функции . Поэтому график функции можно получить путем сжатия графика функции вдвое вдоль оси (рис. 53), а график функции — путем растяжения графика функции вдвое вдоль оси (рис. 54).
Таким образом, для построения графика функции , где , , достаточно график функции растянуть вдоль оси в раз, если , или сжать его вдоль оси в раз, если .
Выполняя последовательно два и более преобразований, можно строить графики функций , , где , и другие.
Пример №70
Построить график функции .
Решение:
График функции можно получить путем переноса графика функции вдоль оси на 2 единицы вправо, а затем — вдоль оси на 3 единицы вверх. График изображен на рисунке 55.
Пример №71
Построить график функции .
Решение:
Построим график функции . Растянув его вдвое вдоль оси , получим график функции .
Графики функций и симметричны относительно оси . Построение изображено на рисунке 56.
5. Построение графика функции .
По определению модуля числа имеем:
Следовательно, для тех значений , при которых , соответствующие значения функций и равны, а потому для таких значений графики этих функций совпадают. Для тех значений , при которых , соответствующие значения функций и являются противоположными числами, поэтому для таких значений графики этих функций симметричны относительно оси .
Для построения графика функции достаточно построить график функции и ту его часть, которая лежит ниже оси , симметрично отобразить относительно этой оси.
Пример №72
Построить график функции .
Решение:
Построим график функции . Затем ту его часть, которая лежит ниже оси , симметрично отобразим относительно этой оси. График изображен на рисунке 57.
Функция y=ax2+bx+c,a≠0. ее график и свойства
Функция . ее график и свойства
Одной из важнейших функций в курсе математики является квадратичная функция.
Функцию вида , где — переменная, , и — некоторые числа, причем , называют квадратичной функцией.
Математические модели многих реальных процессов в разнообразных сферах деятельности человека являются квадратичными функциями. В первую очередь это касается науки, в частности физики и экономики, а также техники.
Например, тело движется с ускорением и к началу отсчета времени прошло расстояние , имея в этот момент скорость . Тогда зависимость расстояния (в метрах), пройденного телом, от времени (в секундах) при равноускоренном движении задается формулой:
Тогда, если , то .
Пример №73
Зависимость между площадью использованной земли и валовым доходом из расчета на 10 гектаров сельскохозяйственных угодий в фермерском хозяйстве лесостепной полосы можно выразить функцией , где — площадь сельскохозяйственных угодий (в га), — валовой доход на 10 гектаров сельскохозяйственных угодий (в тыс. грн). С какой площади хозяйство будет иметь наибольшую прибыль? Какова будет эта прибыль?
Решение:
В формуле функции выделим полный квадрат:
таким образом, .
Полученное выражение принимает наибольшее значение при . Следовательно, хозяйство получит наибольшую прибыль с площади в 3 гектара.
Размер прибыли — значение функции при , то есть (тыс. грн). Следовательно, наибольшая прибыль составит 22,5 тыс. грн.
Ответ. 3 га; 22,5 тыс. грн.
Рассмотрим свойства квадратичной функции и ее график. Начнем с ее частного случая.
Пусть в формуле квадратичной функции , тогда имеем функцию .
Графиком функции , где , является парабола с вершиной в начале координат, ветви которой направлены вверх, если (рис. 61), и вниз, если (рис. 62). Значение для функции является наименьшим, если , и наибольшим, если .
Систематизируем свойства в виде таблицы.
Теперь рассмотрим функцию . Выделим из трехчлена квадрат двучлена:
Таким образом,
Обозначив , получим, что .
Следовательно, график функции можно получить из графика функции с помощью двух преобразований — переносов вдоль координатных осей.
График функции — парабола с вершиной в точке , где (рис. 63).
Если , ветви параболы направлены вверх, если — вниз. Ветви параболы симметричны относительно прямой . В этом случае говорят, что прямая является осью симметрии параболы (рис. 63).
Отметим, что абсциссу вершины параболы удобно находить по формуле , а ординату — подставив найденное значение вместо в формулу , таким образом .
При построении графика функции следует соблюдать такую последовательность действий:
- найти координаты вершины параболы , и обозначить ее на координатной плоскости;
- построить еще несколько точек параболы и столько же точек, симметричных им относительно прямой ;
- соединить полученные точки плавной линией.
Систематизируем свойства в виде таблицы.
Пример №74
Построить график функции и описать ее свойства.
Решение:
Графиком функции является парабола, ветви которой направлены вверх. Найдем координаты ее вершины:
Таким образом, точка — вершина параболы. Тогда прямая является осью симметрии параболы.
Составим таблицу значений функции для нескольких пар точек параболы, симметричных относительно ее оси симметрии (благодаря симметрии ординаты в каждой такой паре будут одинаковы).
Отметим вершину параболы и точки из таблицы на координатной плоскости. Соединим их плавной линией и получим график функции (рис. 64).
Опишем свойства этой функции:
- ;
- ;
- нули функции: и ;
- 4 при или ; при ;
- функция возрастает на промежутке и убывает на промежутке ;
- наименьшее значение функции: .
Пример №75
Вершиной параболы является точка . Найти коэффициенты и .
Решение:
Мы знаем, что , а по условию , тогда , откуда . Так как график функции проходит через точку , то, подставив координаты точки в формулу функции, получим верное равенство: , откуда .
Ответ. .
Квадратные неравенства
Неравенства вида , , , , где — переменная, и — некоторые числа, причем , называют квадратными неравенствами (или неравенствами второй степени с одной переменной).
Например, квадратными являются неравенства:
Решения квадратных неравенств можно рассматривать как промежутки, на которых квадратичная функция принимает положительные (для неравенств ), неотрицательные (для неравенств ), отрицательные (для неравенств ) и неположительные (для неравенств ) значения. Следовательно, чтобы решить квадратное неравенство, достаточно найти соответствующие промежутки знакопостоянства квадратичной функции.
Пример №76
Решить неравенство .
Решение:
Рассмотрим функцию . Графиком ее будет парабола, ветви которой направлены вверх. Выясним, пересекает ли парабола ось , решив уравнение . Получим: — нули функции, то есть парабола пересекает ось в точках с абсциссами 1 и -4. Строим схематически график данной функции, зная ее нули и направление ветвей (рис. 65). По графику определяем, что функция принимает отрицательные значения при . Следовательно, множеством решений неравенства является промежуток .
Ответ. .
Пример №77
Решить неравенство: 1) ; 2) ; 3) .
Решение:
Рассмотрим схематическое изображение графика функции (рис. 65).
1) Неравенству удовлетворяют те же значения , что и неравенству , а также числа -4 и 1 — нули функции, то есть те значения аргумента, при которых значение функции равно нулю. Значит, множеством решений неравенства является промежуток . 2) Из рисунка 65 видим, что функция принимает положительные значения при или . Множеством решений неравенства является объединение этих промежутков, то есть . 3) Неравенству удовлетворяют те же значения , что и неравенству , включая нули функции , то есть числа -4 и 1. Таким образом, множеством решений неравенства является .
Ответ. 1) ; 2) ;
3) .
Отметим, что для предложенного способа решения ни положение вершины параболы, ни расположение параболы относительно оси значения не имеют. Важно лишь знать абсциссы точек пересечения параболы с осью (нули функции) и направление ее ветвей (вверх или вниз).
Таким образом, решать квадратные неравенства следует в такой последовательности:
- находим корни квадратного трехчлена (если они существуют);
- если у неравенства строгий знак ( или ), то корни квадратного трехчлена отмечаем на оси «выколотыми» точками (они будут исключены из множества решений неравенства); если — нестрогий ( или ), то корни отмечаем закрашенными точками (они будут включены в множество решений неравенства);
- схематически строим график функции , учитывая направление ветвей параболы и точки ее пересечения с осью (если они существуют);
- находим на оси промежутки, на которых функция удовлетворяет данному неравенству;
- записываем ответ.
Пример №78
Найти область определения функции .
Решение:
Областью определения данной функции является множество решений неравенства .
1) Корни квадратного трехчлена — числа 0 и 3.
2) Отмечаем корни на оси закрашенными точками, так как знак неравенства — нестрогий.
3) Схематически строим график функции . Это парабола, пересекающая ось в точках 0 и 3, ветви которой направлены вниз (рис. 66).
4) Неравенство имеет место при .
Ответ. .
Пример №79
Решить неравенство .
Решение:
1) Корень уравнения — число 3.
2) Отмечаем точку 3 на оси «выколотой», потому что знак неравенства — строгий.
3) Схематически строим график функции . Это парабола с вершиной на оси , ее ветви направлены вверх (рис. 67). С осью она имеет единственную общую точку -точку 3 (говорят, что парабола касается оси ).
4) Из рисунка 67 видим, что функция принимает положительные значения при любом значении , кроме . Имеем множество решений неравенства:
Ответ. .
Пример №80
Решить неравенство .
Решение:
Уравнение корней не имеет, так как . Следовательно, парабола не пересекает ось . Ветви параболы направлены вниз (рис. 68).
Так как все точки параболы лежат ниже оси , то множеством решений неравенства является множество всех чисел: .
Ответ. .
Пример №81
Решить неравенство .
Решение:
Из рисунка 68 видим, что ни одна из точек параболы не лежит выше оси и не принадлежит ей, поэтому неравенство не имеет решений.
Ответ. Нет решений.
Пример №82
Решить систему неравенств:
Решение:
Решениями системы неравенств являются общие решения неравенств системы. Следовательно, чтобы найти решения системы, нужно решить отдельно каждое из неравенств и найти их общие решения.
Множеством решений неравенства является . Множеством решений неравенства является (решите эти неравенства самостоятельно).
Изобразим на координатной прямой полученные множества решений (рис. 69). Множеством решений системы будет их пересечение, то есть .
Ответ. .
Решение систем уравнений второй степени с двумя переменными
В 7 классе вы решали системы двух линейных уравнений с двумя переменными, то есть системы, в которых оба уравнения имеют вид, где , , — числа, и — переменные. Таковой, например, является система:
Напомним, что решением системы уравнении с двумя переменными называют такую пару значении переменных. при которых каждое из уравнении системы обращается в верное числовое равенство. Так, решением вышеприведенной системы является пара чисел , то есть ; . Действительно: и — верные числовые равенства.
Уравнение при условии, что хотя бы один из коэффициентов или не равен нулю, называют уравнением первой степени с двумя переменными. Его можно заменить равносильным ему уравнением , левая часть которого — многочлен стандартного вида первой степени с двумя переменными, а правая — равна нулю.
Так можно определить степень любого уравнения с двумя переменными (а также и с большим количеством переменных). Для этого достаточно заменить уравнение равносильным ему уравнением, левая часть которого — многочлен стандартного вида, а правая — нуль. Степень многочлена и будет степенью уравнения.
Так, например, — уравнение второй степени. Уравнение равносильно уравнению и, следовательно, является уравнением третьей степени.
Рассмотрим системы уравнений с двумя переменными, в которых одно или оба уравнения являются уравнениями второй степени, и способы решения таких систем.
Решение систем уравнений второй степени с двумя переменными графически
Системы уравнений второй степени с двумя переменными графически решают так же, как и системы двух линейных уравнений с двумя переменными.
Напомним последовательность действий для решения системы уравнений графически:
- построить графики уравнений в одной системе координат;
- найти координаты их точек пересечения или убедиться, что графики не имеют общих точек;
- если координаты точек пересечения — целые числа, то выполнить проверку; если нет — найти решения системы приближенно;
- записать ответ.
В отличие от линейного уравнения, графиком которого является прямая, графики уравнений второй степени довольно разные. Так, например, график уравнения (или равносильного ему уравнения ) — парабола, график уравнения (или равносильного ему уравнения ) — гипербола, а график уравнения — окружность.
Пример №83
Решить графически систему уравнений:
Решение:
Построим в одной системе координат графики уравнений и (рис. 72). График первого уравнения — окружность с центром в начале координат и радиусом 4. График уравнения — прямая, проходящая через точки и . Графики имеют две общие точки и . Проверкой убеждаемся, что эти пары чисел — решения системы. Ответ. , .
Решение систем уравнений второй степени с двумя переменными способом подстановки
Если в системе уравнений с двумя переменными одно из уравнений является уравнением первой степени, то такую систему легко решить способом подстановки. Напомним последовательность действий этого способа:
- выразить в уравнении первой степени одну переменную через другую;
- подставить полученное выражение во второе уравнение системы вместо соответствующей переменной;
- решить полученное уравнение с одной переменной;
- найти соответствующие значения второй переменной;
- записать ответ.
Пример №84
Решить систему уравнений:
Решение:
Выразим переменную через переменную из второго уравнения: .
Подставим полученное выражение в первое уравнение вместо получим уравнение с переменной :
.
После упрощений получим уравнение , корни которого ; .
По формуле найдем значения , соответствующие полученным значениям :
Таким образом, система имеет два решения:
и
Оформить решение в тетради можно так:
Ответ.
Решение систем уравнений второй степени с двумя переменными способом сложения
Как и для систем двух линейных уравнений с двумя переменными, этот способ используют, если в результате почленного сложения уравнений системы получается уравнение с одной переменной.
Пример №85
Решить систему уравнений:
Решение:
Сложим почленно уравнения системы, получим: , то есть .
Подставив найденное значение , например, в первое уравнение системы, получим: , то есть .
Таким образом, , .
Оформить решение в тетради можно так:
Ответ. .
Пример №86
Решить систему уравнений:
Решение:
Умножим второе уравнение на -2:
Сложим почленно уравнения системы, получим: . Имеем уравнение: , корни которого: . Найдем соответствующие им значения , подставив найденные значения во второе уравнение исходной системы:
1) пусть , тогда , то есть ;
2) пусть , тогда , то есть .
Ответ.
Решение систем уравнений второй степени с двумя переменными с помощью замены переменных
Некоторые системы уравнений второй степени (а также системы, которые содержат уравнение высших степеней) удобно решать, используя замену переменных.
Пример №87
Решить систему уравнений:
Решение:
Введем замену: , . Получим систему уравнений второй степени с переменными и :
Решив эту систему способом подстановки (сделайте это самостоятельно), получим и . Вернемся к переменным и : 1) если то Решив эту систему, получим: ; 2) если то Имеем еще две пары чисел: .
Ответ. .
Пример №88
Площади двух своих квадратов я сложил и получил
Сторона второго квадрата равна стороны первого и еще 5. Найти стороны этих квадратов.
Система уравнений к задаче в современной записи имеет вид:
Чтобы ее решить, автор возводит в квадрат левую и правую части второго уравнения:
и подставляет найденное значение выражения в первое уравнение: Далее автор решает это уравнение, находя , а затем .
Диофант, не имея обозначений для нескольких неизвестных, при решении задачи выбирал неизвестную величину так, чтобы привести решение системы к решению единственного уравнения.
Пример №89
Записать два числа, если известно, что их сумма равна 20, а сумма их квадратов — 208.
Современные математики свели бы эту задачу к системе:
Но Диофант в качестве неизвестной величины выбирал половину разности искомых чисел и получал (в современных обозначениях) систему:
Сначала складывая эти уравнения, а затем вычитая первое из второго, Диофант получал, что , и подставлял найденные выражения во второе уравнение исходной системы: чтобы получить уравнение с одной переменной: , откуда . (Диофант рассматривал лишь неотрицательные числа, поэтому корня не получил).
Тогда
В XVII—XVIII вв. приемы решения систем линейных уравнений в общем виде с помощью метода исключения неизвестных рассматривали математики Ферма, Ньютон, Лейбниц, Эйлер, Безу, Лагранж и другие.
Благодаря методу координат, который предложили в XVII в. Ферма и Декарт, появилась возможность решать системы уравнений графически.
Система двух уравнений с двумя переменными как математическая модель текстовых и прикладных задач
Напомним, что в 7 классе вы решали текстовые задачи с помощью систем линейных уравнений в такой последовательности, которую можно использовать и для решения более сложных задач:
- обозначить некоторые две неизвестные величины переменными (например, и );
- в соответствии с условием задачи составить систему уравнений;
- решить полученную систему;
- проверить соответствие найденных значений переменных условию задачи, ответить на вопрос задачи;
- записать ответ.
Рассмотрим один из самых простых примеров, в котором система уравнений с двумя переменными является математической моделью текстовой задачи.
Пример №90
Сумма двух чисел равна 8, а их произведение равно 15. Найти эти числа.
Решение:
Обозначим неизвестные числа через и . Тогда . Имеем систему уравнений:
Решив систему (сделайте это самостоятельно), получим: или .
Следовательно, искомые числа — это 3 и 5.
Ответ. 3 и 5.
Отметим, что эту задачу, как и некоторые последующие в этом параграфе, можно решить и с помощью уравнения с одной переменной.
Система уравнений с двумя переменными может служить математической моделью прикладной задачи. Напомним, что прикладные задачи — это задачи, которые содержат нематематические понятия, но могут быть решены методами математики.
Напомним также, что прикладную задачу целесообразно решать в такой последовательности:
- сформулировать задачу языком математики, то есть построить математическую модель задачи;
- решить полученную математическую задачу;
- проанализировать ответ и сформулировать его на языке исходной прикладной задачи.
Пример №91
Площадь земельного участка прямоугольной формы равна 60 . Если длину этого участка уменьшить на 1 , а ширину увеличить на 2 , то получим земельный участок площадью 72 . Найти длину ограждения данного участка.
Решение:
Пусть длина данного участка равна м, а ширина — м. Тогда по условию . После уменьшения длины на 1 м она станет равна м, а после увеличения ширины на 2 м она станет равна м. По условию: . Составим систему уравнений:
Преобразуем второе уравнение системы:
Так как из первого уравнения системы известно, что , то во второе уравнение вместо подставим число 60. Получим:
Упростим первое уравнение системы: . Его корни: . Число -3 не удовлетворяет условию задачи, так как длина участка не может быть отрицательной. Таким образом, длина участка равна 10 м, и можем найти его ширину: 2 • 10 — 14 = 6 (м). Теперь найдем длину ограждения: .
Ответ. 32 м.
Пример №92
Из пункта вышел пешеход. Через 50 мин после этого оттуда же в том же направлении выехал велосипедист и догнал пешехода на расстоянии 6 км от пункта . Найти скорость пешехода и скорость велосипедиста, если велосипедист за 1 ч преодолевает на 1 км больше, чем пешеход за 2 ч.
Решение:
Пусть км/ч — скорость пешехода, км/ч -велосипедиста. Тогда пешеход преодолел 6 км за ч, а велосипедист — за ч. По условию пешеход был в дороге на больше, чем велосипедист, поэтому .
Велосипедист за 1 ч преодолевает км, а пешеход за 2 ч — км. По условию . Получаем систему уравнений:
Решив ее (сделайте это самостоятельно) и учтя, что по смыслу задачи и , получим: .
Ответ. Скорость пешехода — 4 км/ч, велосипедиста — 9 км/ч.
- Тригонометрические функции
- Производные тригонометрических функции
- Производная сложной функции
- Пределы в математике
- Комплексные числ
- Координаты на прямой
- Координаты на плоскости
- Линейная функция
Квадратичная функция — целая рациональная функция второй степени вида . Уравнение квадратичной функции содержит квадратный трёхчлен. Графиком квадратичной функции является парабола. Многие свойства графика квадратичной функции так или иначе связаны с вершиной параболы, которая во многом определяет положение и внешний вид графика.
Формула корней квадратного уравнения
В первой части курса были выведены следующие формулы для определения корней неполного и полного квадратных уравнений:
1) αx²=0; очевидно, оба корня уравнения равны нулю.
2) αx²+с=0; формула для корней будет:
3) αx² +bx=0; тогда x₁ =0; х₂ =
4) x² + +q=0; формула корней даёт:
или: .
5) Наконец, общая формула для корней полного квадратного уравнения вида αx²+bx+c=0 будет:
Последняя формула является наиболее общей; из неё как частные случаи получаются все остальные. Так, полагая в этой формуле α=l, получаем случай (4) (в этом случае b=p и c=q); полагая с=0, получаем случай (3); при b=0 будем иметь случай (2) и, наконец, первый случай получим, давая в общей формуле значения b=c=0.
Дискриминант
Рассмотрим различные случаи, которые могут встретиться при решении квадратного уравнения в зависимости от числового значения коэффициентов.
1. b² — 4αc>0. В этом случае выражение под корнем положительно. Квадратный корень из него имеет два значения, и, следовательно, уравнение имеет два различных вещественных корня:
и .
2. b² — 4αc=0. В этом случае второй член числителя равен нулю, и уравнение имеет два равных корня:
3. b² — 4αc<0. Оба корня — мнимые.
Мы видим, таким образом, что квадратное уравнение имеет вещественные (различные или равные) или мнимые корни, в зависимости от того, будет ли составленное из коэффициентов уравнения подкоренное выражение b² — 4αc больше, равно или меньше нуля. Ввиду особого значения этого выражения оно носит специальное название дискриминанта уравнения. (Дискриминант — значит в переводе р а з л и ч и т е л ь.)
Свойства корней квадратного уравнения (теорема Виета)
Возьмём формулу корней квадратного уравнения, у которого коэффициент при x² равен единице, т. е. уравнения вида x²+ +q=0:
Если сложим почленно эти равенства, то радикалы взаимно уничтожатся, и мы получим:
Если те же равенства почленно перемножим, то получим (произведение суммы двух чисел на их разность равно разности квадратов этих чисел):
Каково бы ни было подкоренное число, всегда
Следовательно:
Таким образом:
Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение этих корней равно свободному члену.
Теперь возьмём квадратное уравнение общего вида αx²+bx+c=0. Разделив все его члены на а, мы приведём это уравнение к только что рассмотренному виду:
следовательно, для неприведённого полного уравнения мы должны иметь:
и .
Следствия:
1) Пользуясь этими свойствами, мы легко можем составить квадратное уравнение, у которого корнями были бы данные числа.
Пусть, например, надо составить уравнение, у которого корни были бы числа 2 и 3. Тогда из равенства 2+3= — р и 2∙3 = q находим: р = — 5 и q=6; следовательно, уравнение будет: x²-5x+6=0.
Подобно этому найдём,что 3 и -7 будут корни уравнения x²- [3+(- 7)]x+3( -7) = 0, т. е. x²+4x-21=0; числа 3 и 0 будут корни уравнения x²— 3x=0.
2) При помощи тех же свойств мы можем, не решая квадратного уравнения, определить знаки его корней, если эти корни вещественные. Пусть, например, имеем уравнение x²+8x+12=0. Так как в этом примере выражение , т. е. 4² -12, есть число положительное, то оба корня вещественные. Обращая внимание на свободный член, видим, что он имеет знак +; значит, произведение корней должно быть положительное число, т. е. оба корня имеют одинаковые знаки. Эти знаки должны быть минусы, так как сумма корней отрицательна (она равна — 8). Уравнение x² +8x-12=0 имеет корни с разными знаками (потому что их произведение отрицательно), причём отрицательный корень имеет большую абсолютную величину (потому что их сумма отрицательна) и т. п.
Трёхчлен второй степени
Выражение αx²+bx+c, в котором х означает независимое переменное, а α, b и с — какие-нибудь данные, постоянные числа, называется квадратной функцией, или трёхчленом второй степени. Различие между таким трёхчленом и левой частью уравнения αx²+bx+c=0 состоит в том, что в уравнении буква х означает только те числа, которые удовлетворяют уравнению, тогда как в трёхчлене она означает какое угодно число. Значения х, обращающие трёхчлен в нуль, называются его корнями; значит, корни трёхчлена-это корни квадратного уравнения:
αx² +6x+c=0.
В частном случае при α=1 трёхчлен принимает вид: x²+ +q; при b=0 или при с=0 трёхчлен обращается в двучлен αx²+c или αx²+bx.
Разложение трёхчлена второй степени
Сначала возьмём трёхчлен x²+ +q, в котором коэффициент при x² есть 1. Решив приведённое уравнение x²+ +q=0, мы найдём корни его х₁ и х₂ . Как мы сейчас видели: х₁+х₂ =-p и х₁х₂ =q.
Из этих равенств находим: р=- ( х₁+х₂) и q=х₁х₂
Подставим в трёхчлен на место р и q эти выражения и затем преобразуем полученный многочлен:
x²+ +q= x² — (х₁+ х₂)x+х₁х₂ = x²— х₁x — х₂x+ х₁х₂ =
= ( x²— х₁x) — (х₂x — х₁х₂) = х( x— х₁) — х₂ (x— х₁ ) = ( x— х₁)(x — х₂).
Таким образом:
Трёхчлен x² +q разлагается на два множителя, из которых первый равен разности между х и одним корнем трёхчлена, а второй равен разности между х и другим корнем трёхчлена.
Примеры:
Теперь возьмём трёхчлен αx²+bx+c, в котором коэффициент при x² есть какое угодно число. Этот трёхчлен можно представить так:
Выражение, стоящее внутри скобок, есть трёхчлен вида x²+ +q . Его корни х₁ и х₂ будут те же самые, что трёхчлена αx²+bx+c. Найдя их, мы можем, по доказанному, разложить этот трёхчлен так:
Следовательно: αx²+bx+c =α(x — х₁) (х — х₂).
Таким образом, разложение трёхчлена αx²+bx+c отличается от разложения трёхчлена x²+ +q только дополнительным множителем α.
Примеры:
1) Трёхчлен 2x² — 2х -12, корни которого 3 и — 2, можно разложить так: 2(x — 3)(x+2).
2) Трёхчлен 3x² + х +1, корни которого следующие:
разлагается так:
3) 6abx² — ( 3b³ +2α³)x+a²b² .
Корни этого трёхчлена следующие:
Поэтому:
4) Сократить дробь:
Разложим числитель и знаменатель на множители и затем, если можно, сократим дробь. Так как корни числителя 3 и —2, а корни знаменателя и — 2, то дробь представится так:
Следствие:
По данным корням можно составить квадратное уравнение. Так, уравнение, имеющее корни З и -2, будет:
(x-3)[x-( — 2)] =0, т. е. (х — 3)(x+2)=0,
что по раскрытии скобок даёт: x² — х — 6 = 0. Конечно, все члены этого уравнения можно умножить на произвольное число, не зависящее от х (например, на 2), отчего корни не изменятся.
Сократить следующие дроби (предварительно разложив числитель и знаменатель каждой дроби на множители):
Разложив на множители следующие трёхчлены, определить, для каких значений х эти трёхчлены будут давать положительные числа и для каких — отрицательные:
График квадратной функции
Графиком квадратичной функции является парабола.
График функции у=x²
Обратим внимание на следующие особенности функции y=x²;
а) При всяком значении аргумента х функция определена и получает только одно значение. Например, при x = — 10 значение функции будет (-10)² = 100, при x = 1000 значение функции будет 1000² = 1 000 000 и т. п.
б) Так как (—x)² =x² , то при двух значениях х, отличающихся только знаками, получаются два одинаковых положительных значения у; например, при х = — 2 и при x =+2 значение у будет одно и то же, именно 4. Отрицательных значений для у никогда не получается.
в) Если абсолютная величина х неограниченно увеличивается, то и у неограниченно увеличивается. Так, если для х будем давать ряд неограниченно возрастающих положительных значений: 1, 2, 3, 4,… или ряд неограниченно убывающих отрицательных значений: -1, -2, -3, -4, … ,то для у получим ряд неограниченно возрастающих значений: 1, 4, 9, 16, 25, … .
Заметив эти свойства, составим таблицу значений функции у= x²; например, такую:
x | … | -2 | -1,5 | -1 | -0,5 | 0 | 0,5 | 1 | 1,5 | 2 | … |
у | … | 4 | 2,25 | 1 | 0,25 | 0 | 0,25 | 1 | 2,25 | 4 | … |
Изобразим теперь эти значения на чертеже 16 в виде точек, абсциссы которых будут выписанные значения х, а ординаты — соответствующие значения у (на чертеже за единицу длины мы приняли отрезок O1); полученные точки соединим кривой. Кривая эта называется параболой. Рассмотрим некоторые её свойства:
а) Вся кривая расположена по одну сторону от оси х-ов, именно — по ту сторону, по какую лежат положительные значения ординат.
б) Парабола разделяется осью у-ов на две части (ветви). Точка О, в которой эти ветви сходятся, называется вершиной параболы. Эта точка есть единственная общая точка параболы и оси х-ов.
в) Обе ветви бесконечны, так как х и у могут увеличиваться беспредельно. Ветви поднимаются от оси х-ов неограниченно вверх, удаляясь в то же время неограниченно от оси у-ов вправо и влево.
г) Ось у-ов служит для параболы осью симметрии, так что если перегнуть чертёж по этой оси так, чтобы левая половина чертежа упала на правую, то обе ветви совместятся; например, точка с абсциссой — 2 и с ординатой 4 совместится с точкой, имеющей абсциссу +2 и ту же ординату 4.
График функции у= x²
Предположим сначала, что а есть число положительное. Возьмём, например, такие две функции:
Составим таблицы значений этих функций, например такие:
1)
x | -2 | -1 | 0 | 1 | 2 | … |
у | 6 | 0 | 6 | … |
Нанесём все эти значения на чертёж 17 и проведём кривые. Для сравнения мы поместили на том же чертеже (прерывистой линией) ещё график функции: 3) y=x² .
3)
x | -2 | -1 | 0 | 1 | 2 | … |
y | 4 | 1 | 0 | 1 | 4 | … |
Из чертежа видно, что при одной и той же абсциссе ордината первой кривой в раза больше, а ордината второй кривой в 3 раза меньше, чем ордината третьей кривой. Эти кривые имеют общий характер: бесконечные ветви, ось симметрии и пр., только при α>1 ветви кривой более приподняты вверх, а при α<1 они более отогнуты книзу, чем у кривой y=x². Все такие кривые называются также параболами.
Предположим теперь, что коэффициент α будет число отрицательное. Пусть, например, . Сравнивая эту функцию с функцией , замечаем, что при одном и том же значении х обе функции имеют одну и ту же абсолютную величину, но противоположны по знаку. Поэтому на чертеже 18 для функции получится такая же парабола, как и для функции , только расположенная под осью х-ов симметрично с параболой . В этом случае все значения функции отрицательны, кроме одного, равного нулю при х=0.
Замечание:
Если зависимость между двумя переменными величинами у и х выражается равенством y=ax² , где a — какое-нибудь постоянное число, то можно сказать, что величина у пропорциональна квадрату величины х, так как с увеличением или уменьшением х в 2 раза, в 3 раза и т. д. величина у увеличивается или уменьшается в 4 раза, в 9 раз, в 16 раз и т. д.
Например, площадь круга равна πR² , где R есть радиус круга и π — постоянное число; поэтому можно сказать, что площадь круга пропорциональна квадрату его радиуса.
График функции y=ax²+b
Пусть мы имеем следующие три функции:
Очевидно, что при одном и том же значении аргумента х ордината второй функции больше, а ордината третьей функции меньше на 2 единицы, чем соответствующая ордината первой функции. Поэтому вторая и третья функции изобразятся на чертеже той же параболой, что и первая функция, только парабола эта должна быть поднята вверх (для второй функции) и опущена вниз (для третьей функции) на 2 единицы длины.
Вообще график функции y=ax²+b есть та же парабола, которая изображает функцию у=ax², только парабола эта должна быть поднята вверх, если b>0, опущена вниз, если b<0, на b единиц длины.
График трёхчлена второй степени
Сначала мы рассмотрим график такого трёхчлена, который может быть представлен в виде произведения a (x+m)² . Например, возьмём такие две функции:
и
Для сравнения изобразим на том же чертеже ещё параболу:
Предварительно составим таблицу частных значений этих трёх функций; например, такую:
x= | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 0 | 1 | 4 | 9 | 16 | |||||||
9 | 4 | 1 | 0 | 1 | 4 | |||||||
4 | 1 | 0 | 1 | 4 | 9 |
Нанеся все эти значения на чертёж, получим три графика, изображённые на чертеже 19.
Рассматривая этот чертёж, мы замечаем, что кривая 1 есть та же парабола 3, только перенесённая на 2 единицы влево, а кривая 2 есть та же парабола 3, но перенесённая на 2 единицы вправо.
Обобщая этот вывод, мы можем сказать, что график функции y=a(x+m)² есть парабола, изображающая функцию y=ax² , только парабола эта перенесена влево, если m>0, и в правд, если m<0, на столько единиц, сколько их заключается в абсолютной величине числа m. Ветви этой параболы направлены вверх, если α>0, как в наших примерах, и вниз, если α< 0, например как у параболы:
Теперь возьмём трёхчлен вида: y=ax²+bx+c. Рассмотрим, например, такой трёхчлен:
x | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | … |
y | 0 | -2 | 0 | 6 | … |
Построив точки, изображающие помещённые в таблице значения, и проведя через них кривую (кривая 3-я, черт. 20), мы получим искомый график. Покажем теперь, что этот график есть та же парабола, которая изображает функцию (полученную отбрасыванием в данном трёхчлене второго и третьего членов), только парабола эта перенесена в другое место. Для этого преобразуем данный трёхчлен следующим образом: во-первых, вынесем за скобки коэффициент при x²:
во-вторых, к трёхчлену, стоящему в скобках, добавим два взаимно уничтожающихся члена 9 и — 9:
и, в-третьих, сгруппируем члены многочлена в две группы, получим:
Принимая теперь во внимание примеры, разобранные выше, мы можем поступить так.
Построим параболу, изображающую функцию (кривая 1-я, черт. 20), затем перенесём её на 3 единицы влево, тогда получим 2-ю параболу, изображающую функцию . Эту параболу перенесём теперь на 2 единицы вниз, тогда получим 3-ю параболу, изображающую данную функцию.
Графический способ решения квадратного уравнения
Квадратное уравнение можно графически решить таким способом:
построив на миллиметровой бумаге параболу, изображающую трёхчлен, стоящий в левой части уравнения, находим точки пересечения этой параболы с осью х-ов. Абсциссы этих точек и будут корни уравнения, так как при этих абсциссах ординаты, изображающие соответствующие значения трёхчлена, равны нулю.
Примеры:
График левой части этого уравнения изображён кривой 3 (черт. 20). На нём мы видим, что парабола пересекается с осью х-ов в двух точках, абсциссы которых —1 и —5. Это и будут корни уравнения.
Это можно проверить, решив уравнение посредством общей формулы или путём подстановки.
Составив таблицу частных значений трёхчлена
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | 8 | 2 | 0 | 2 | 8 | … |
мы построим параболу (черт. 21). Эта парабола не пересекается с осью х-ов, а только её касается в точке с абсциссой 2. Уравнение в этом случае имеет только один корень 2 (точнее, два равных корня).
3) x² -x+2=0
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | 14 | 8 | 4 | 2 | 2 | 4 | 8 | 14 | … |
Парабола (черт. 22) не пересекается и не касается оси х-ов; уравнение не имеет вещественных корней.
Укажем ещё следующий приём графического решения квадратного уравнения. Пусть требуется решить уравнение:
x² — 1,5х — 2=0.
Представим его так:
x² =1,5x+2.
Каждая часть этого уравнения, рассматриваемая отдельно, есть некоторая функция от х. Обозначим функцию, выражаемую левой частью уравнения, буквой y₁ , а функцию, выражаемую правой частью уравнения, буквой у₂ . Первая функция на чертеже 23 изобразится параболой, а вторая — прямой. Построив на одном и том же чертеже графики этих двух функций, мы найдём, что прямая и парабола пересекаются в двух точках, абсциссы которых приблизительно выражаются числами 2,35 и — 0,85. Это и будут приближённые значения корней данного уравнения, так как при каждой из этих абсцисс ординаты y₁, у₂ равны между собой, и, следовательно, x² =l,5x+2.
Если случится, что прямая с параболой не пересекается, то уравнение не имеет вещественных корней; если же прямая коснётся параболы, то уравнение имеет один корень, равный абсциссе точки касания.
Биквадратное уравнение
Уравнение четвёртой степени, например такое:
x⁴ — 13x² + 36=0,
в которое входят только чётные степени неизвестного, называется биквадратным. Оно приводится к квадратному, если заменим х² через у и, следовательно, x⁴ через у² ; тогда уравнение обратится в квадратное:
у² — 13y+36=0.
Решим его:
Но из равенства x²=y видно, что x=± √y. Подставляя сюда на место у найденные числа 9 и 4, получим следующие четыре решения данного уравнения:
x₁ = +√ 9 = 3;
x₂ = -√ 9 = -3;
x₃ = + √4 =2;
x₃ = — √4 = -2.
Составим формулы для решения биквадратного уравнения общего вида:
ax⁴ +bx² + c=0.
Положив x²=y, получим уравнение ay² + by + c=0, из которого находим:
Но так как x=± √y , то для биквадратного уравнения мы получим следующие четыре решения:
Отсюда видно, что если b² — 4ac < 0, то все четыре корня мнимы; если же b² —4ac>0, то могут быть три случая (мы полагаем a > 0):
1) все корни вещественные (как в приведённом выше численном примере), если и
2) все корни мнимые, если оба эти выражения дадут отрицательные числа, и 3) два корня вещественные и два мнимые, если , . Наконец, если b² — 4ac = 0 , то четыре корня попарно равны.
Уравнения, левая часть которых разлагается на множители, а правая есть нуль
Решение таких уравнений сводится к решению уравнений более низких степеней. Так, мы видели, что для решения неполного квадратного уравнения вида ax² + bx=0 достаточно его левую часть разложить на два множителя: x(ax + b) = 0 и затем, приняв во внимание, что произведение равно нулю только тогда, когда какой-нибудь сомножитель равен нулю, свести решение этого уравнения к решению двух уравнений первой степени: x=0 и ax + b=0.
Подобно этому можно решить неполное кубическое уравнение, не содержащее свободного члена; например, такое:
x³ + 3x² — 10x = 0.
Вынеся х за скобки, мы представим уравнение так:
x (x² +3x — 10) = 0,
из которых находим три решения:
Пусть некоторое уравнение приведено к такому виду:
x(x+4)(x²-5x+6)=0.
Тогда оно распадается на три уравнения:
x = 0; x + 4 = 0; x² — 5x + 6 = 0
Уравнения эти дают:
х₁ = 0; x₂ = — 4; x₃ =2; x₄ = 3.
Двучленное уравнение
Двучленным уравнением называется уравнение вида , или, что то же самое, вида . Обозначив абсолютную величину числа через q, мы можем двучленное уравнение записать или , или . При помощи вспомогательного неизвестного эти уравнения всегда можно упростить так, что свободный член у первого обратится в +1, а у второго в — 1. Действительно, положим, что , где есть арифметический корень m-й степени из q; тогда , и уравнения примут вид:
т.е. откуда
или
т.е. откуда
Итак, решение двучленных уравнений приводится к решению уравнений вида . Решение таких уравнений элементарными способами может быть выполнено только при некоторых частных значениях показателя m. Общий приём, употребляемый при этом, состоит в разложении левой части уравнения на множители, после чего уравнение приводится к виду, рассмотренному нами раньше.
Решение двучленных уравнений третьей степени
Эти уравнения следующие: х³ —1=0 и х³ + l=0.
Заметив, что
х³ — 1 = х³ — 1³ = (х -1)(x²+ х +1)
и
х³ + 1 = х³ + 1³ = (х +1)(x²- х +1)
мы можем предложенные уравнения записать так:
(х -1)(x² + х +1) = 0 и ( х +1 ) ( x² — х +1)=0.
Значит, первое из них имеет своими корнями корни уравнений: x-1=0 и x²+ x +1=0, а второе — корни уравнений: x+1=0 и x²- x +1=0.
Решив их, находим, что уравнение х³ — 1=0 имеет следующие три корня:
из которых один вещественный, а два мнимых; уравнение х³ + 1 = 0 имеет три корня:
из которых также один вещественный и два мнимых.
Различные значения корня
Решение двучленных уравнений имеет тесную связь с нахождением всех значений корня (радикала) из данного числа. В самом деле, найти , очевидно, всё равно, что решить уравнение , , и потому, сколько это уравнение имеет различных решений, столько имеет различных решений.
Основываясь на этом замечании, покажем, например, что корень кубичный из всякого вещественного числа (не равного нулю) имеет три различных значения.
Рассмотрим сначала случай положительного числа А. Пусть требуется найти , т. е., другими словами, требуется решить уравнение х³-А=0. Обозначив арифметическое значение буквой q, положим, что x=qy. Тогда уравнение х³ — А=0 можно представить так: q³y³ — А = 0. Но q³=A, поэтому q³y³ — A=A( y³ — 1), и уравнение примет вид: y³ — 1=0.
Мы видели, что это уравнение имеет три
корня:
Каждое из этих значений, удовлетворяя уравнению y³ = l, представляет собой кубичный корень из 1. Так как x=qy, то
Это и будут три значения ; одно из них вещественное (арифметическое), а два — мнимые. Все они получатся, если арифметическое значение умножим на каждое из трёх значений .
Например, кубичный корень из 8 имеет три следующих значения:
Если A<0, то предыдущее рассуждение остаётся в силе, только следует обозначить через q действительное значение и положить x= — qy.
Трёхчленное уравнение
Так называется уравнение вида:
(частный случай такого вида при n=2 есть биквадратное уравнение). Оно приводится к квадратному, если введём вспомогательное неизвестное . Тогда уравнение примет вид:
ay²+by+c=0,
откуда:
Следовательно:
Решив, если возможно, это двучленное уравнение, найдём все значения х.
Пример:
x⁶- 9x³ + 8=0.
y₁=8; y₂=1;
следовательно:
x³=8 и x³=1.
Решив эти двучленные уравнения третьей степени, получим шесть значений для х:
Системы уравнений второй степени
Степень уравнения с несколькими неизвестными: Чтобы определить степень уравнения, в которое входят несколько неизвестных, надо предварительно это уравнение упростить (раскрыть скобки, освободить от радикалов и знаменателей, которые содержат неизвестные, и сделать приведение подобных членов). Тогда степенью уравнения называется сумма показателей при неизвестных в том члене уравнения, в котором эта сумма наибольшая.
Например, три уравнения: x²+2xy—x+2=0, 3xy=4, 2x+y² — у=0 будут уравнениями второй степени с двумя неизвестными; уравнение 3x²y—y² + x+10 = 0 есть уравнение третьей степени (с двумя неизвестными) и т. п.
Заметим, что сумма показателей при неизвестных в каком-нибудь члене уравнения называется его измерением. Так, члены 2xy, 5x² , Зу² — второго измерения, члены 0,2x²y, 10xy² , xyz — третьего измерения и т. п. Член, не содержащий неизвестных, называется членом нулевого измерения.
Заметим ещё, что уравнение называется однородным, если все его члены — одного и того же измерения. Так, 3x² + xy — 2y²=0 есть однородное уравнение второй степени с двумя неизвестными.
Мы рассмотрим сейчас, как решаются некоторые простейшие системы уравнений второй степени с двумя неизвестными.
Общий вид полного уравнения второй степени с двумя неизвестными есть следующий:
ax² +bxy+cy² +dx+ey+j=0.
В нём первые три члена — второго измерения, следующие два члена — первого и последний (свободный) член — нулевого. Коэффициенты а, b, с, … могут быть числами положительными, отрицательными, а также равными нулю (конечно, три коэффициента а, b и с не предполагаются одновременно равными нулю, так как в противном случае уравнение было бы не второй, а первой степени).
Мы рассмотрим сейчас, как решаются простейшие системы двух уравнений второй степени с двумя неизвестными.
Системы двух уравнений, из которых одно первой степени, а другое—второй
Пусть дана система:
Всего удобнее такую систему решить способом подстановки следующим путём. Из уравнения первой степени определяем одно какое-нибудь неизвестное как функцию от другого неизвестного; например, определяем у как функцию от х:
y=2x — 1.
Тогда уравнение второй степени после подстановки даёт уравнение с одним неизвестным х:
x² — 4(2x — l)² + x +3(2x — 1) = 1;
x² — 4(4x² — 4x + l)+x+6x— 3=1;
x² — 16x² +16x — 4 + x + 6x — 3 — 1=0;
— 15 x² — 23x-8=0; 15x² — 23x + 8=0;
После этого из уравнения у=2х — 1 находим:
Таким образом, данная система имеет два решения:
Искусственные приёмы:
Указанный приём применим в тех случаях, когда одно уравнение первой степени; в некоторых случаях можно пользоваться искусственными приёмами, для которых нельзя указать общего правила. Приведём примеры.
Пример:
x + y=α; xy=b.
Первый способ. Так как даны сумма и произведение неизвестных, то х и у должны быть корнями квадратного уравнения:
z² — az + b =0.
Следовательно:
Второй способ. Возвысим первое уравнение в квадрат и вычтем из них учетверённое второе:
x²+ 2xy + y² = a²
т.е.
(x-y)² =a²— 4b, откуда
Теперь мы имеем систему:
Складывая и вычитая эти уравнения, получим:
Так как одно из данных уравнений мы возвышали в квадрат, то проверяем подстановкой, нет ли посторонних корней в числе найденных.
Таким образом находим, что данная система имеет два решения:
и
Второе решение отличается от первого только тем, что значение х в первом решении служит значением у во втором решении, и наоборот. Это можно было предвидеть, так как данные уравнения не изменяются от замены х на у, а у на х. Заметим, что такие уравнения называются симметричными.
Пример:
х — y= a, xy=b.
Первый способ. Представив уравнения в виде:
x +( —y)=а, x (-y)=-b,
замечаем, что х и —у это корни квадратного уравнения:
z² -az-b=0,
следовательно:
Второй способ. Возвысив первое уравнение в квадрат и сложив его с учетверённым вторым, получим:
(x + y)² = α² + 4b, откуда
Теперь имеем систему:
Пример:
x+y=cz, x² + y² = 6.
Возвысив первое уравнение в квадрат и вычтя из него второе, получим:
2xy= a² — b, откуда
Теперь вопрос приводится к решению системы:
x + y= a,
которую мы уже рассмотрели в первом примере.
Система двух уравнений, из которых каждое второй степени
Такая система в общем виде не разрешается элементарно, так как она приводится к полному уравнению четвёртой степени.
Рассмотрим некоторые частные виды уравнений, которые можно решить элементарным путём.
Пример:
x² +y² =α, ху=b.
Первый способ (способ подстановки). Из второго уравнения определяем одно неизвестное в зависимости от другого; например, . Подставим это значение в первое уравнение и освободимся от знаменателя; тогда получим биквадратное уравнение:
у⁴ — αy² + b² =0.
Решив его, найдём для у четыре значения. Подставив каждое из них в формулу, выведенную ранее для х, найдём четыре соответствующих значения для х.
Второй способ. Сложив первое уравнение с удвоенным вторым, получим:
x² +y² +2xy=α+2b, т. е. (x + y)² =a + 2b,
откуда:
Вычтя из первого уравнения удвоенное второе, найдём:
x² +y² — 2xy=a — 2b, т. е. (х — у)² —а — 2b,
откуда:
Таким образом, вопрос приводится к решению следующих четырёх систем первой степени:
Каждая из них решается весьма просто посредством алгебраического сложения уравнений.
Третий способ. Возвысив второе уравнение в квадрат, получим следующую систему:
x² + y² =α, x²y² =b².
Отсюда видно, что x² и y² — корни квадратного уравнения:
z² + az+b² =0.
Следовательно:
Пример:
x² — y² = a, xy=b.
Способом подстановки легко приведём эту систему к биквадратному уравнению. Вот ещё искусственный’приём решения этой системы.
Возвысив второе уравнение в квадрат, будем иметь систему:
x² — y² = a, x²y² = b².
или
x² +( — y²) = a , x² (- y²)=- b².
Отсюда видно, что x² и — y² будут корнями уравнения:
z² — az — b² = 0.
Следовательно:
Отсюда найдём х и у.
Замечание:
Во всех случаях, когда приходится возводить уравнения в степень, необходима проверка корней.
Графический способ решения систем уравнений второй степени
Начертив графики каждого из данных уравнений, находим величины координат точек пересечения этих графиков; это и будут корни уравнений.
Пример:
Решить графически систему:
1) y=x² — 3x+2, 2)x = 2y² — 3.
Составим таблицу частных значений х и у для первого уравнения:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 20 | 12 | 6 | 2 | 0 | 0 | 2 | 6 | 12 | … |
и таблицу частных значений х и у для второго уравнения:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 15 | 5 | -1 | -3 | -1 | 5 | 15 | 29 | … |
По этим значениям построим графики (эти графики будут параболы, черт. 24).
Графики пересекаются в двух точках, координаты которых приблизительно будут: х=0,3; y=1,3 и x=2,8; y=l,6.
Можно найти координаты точек пересечения точнее, если начертим в более крупном масштабе те части графиков, которые лежат около точек пересечения.
Квадратичная функция — основные понятия и определения
Функция — одно из важнейших математических понятий. Напомним, что функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение переменной у.
Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Говорят также, что переменная у является функцией от переменной х. Значения зависимой переменной называют значениями функции.
Если зависимость переменной у от переменной х является функцией, то коротко это записывают так: y = f(x). (Читают: у равно / от х.) Символом / (х) обозначают значение функции, соответствующее значению аргумента, равному х.
Пусть, например, функция задается формулой Тогда можно записать, что Найдем значения функции для значений х, равных, например, 1, 2,5, —3, т. е. найдем /(1), /(2,5), /(-3):
Заметим, что в записи вида y = f(x) вместо f употребляют и другие буквы: , и т. п.
Все значения независимой переменной образуют область onределения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.
Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл. Например, областью определения функции является множество всех чисел; областью определения функции служит множество всех чисел, кроме — 3.
Область определения функции, описывающей реальный процесс, зависит от конкретных условий его протекания. Например, зависимость длины l железного стержня от температуры нагревания t выражается формулой где — начальная длина стержня, а — коэффициент линейного расширения. Указанная формула имеет смысл при любых значениях t. Однако областью определения функции l = f (t) является промежуток в несколько десятков градусов, для которого справедлив закон линейного расширения.
Напомним, что графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.
На рисунке 1 изображен график функции y = f(x), областью определения которой является промежуток [ — 3; 7]. С помощью графика можно найти, например, что f(— 3) = — 2, f(0) = 2,5, f(2) = 4, f(5) = 2. Наименьшее значение функции равно —2, а наибольшее равно 4; при этом любое число от —2 до 4 является значением данной функции. Таким образом, областью значений функции y = f(x) служит промежуток [-2; 4].
Мы изучили некоторые важные виды функций: линейную функцию, т. е. функцию, задаваемую формулой где k и b — некоторые числа; прямую пропорциональность — это частный случай линейной функции, она задается формулой обратную пропорциональность — функцию
Графиком функции служит прямая (рис. 2). Ее областью определения является множество всех чисел. Область значений этой функции при есть множество всех чисел, а при ее область значений состоит из одного числа b.
График функции — называется гиперболой. На рисунке 3 изображен график функции для Область определения этой функции есть множество всех чисел, кроме нуля. Это множество является и областью ее значений.
Функциями такого вида описываются многие реальные процессы и закономерности. Например, прямой пропорциональностью является зависимость массы тела m от его объема V при постоянной плотности зависимость длины окружности С от ее радиуса Обратной пропорциональностью является зависимость силы тока I на участке цепи от сопротивления проводника R при постоянном напряжении зависимость времени t, которое затрачивает равномерно движущееся тело на прохождение заданного пути s, от скорости движения
Мы рассматривали также функции, заданные формулами Их графики изображены на рисунке 4.
Рассмотрим еще одну функцию, а именно функцию, заданную формулой
Так как выражение |х| имеет смысл при любом х, то областью определения этой функции является множество всех чисел. По определению |х| = х, если если x < 0. Поэтому функцию можно задать следующим образом:
График рассматриваемой функции в промежутке
совпадает с графиком функции у = х, а в промежутке — с графиком функции у = -х. График функции изображен на рисунке 5. Он состоит из двух лучей, исходящих из начала координат и являющихся биссектрисами I и II координатных углов.
Свойства функции
На рисунке 9 изображен график зависимости температуры воздуха р (в °С) от времени суток t (в часах). Мы видим, что в 2 ч и в 8 ч температура равнялась нулю, от 0 до 2 ч и от 8 до 24 ч она была выше нуля, а от 2 до 8 ч — ниже нуля. Из графика ясно также, что в течение первых пяти часов температура понижалась, затем в промежутке от 5 до 14 ч она повышалась, а потом опять понижалась.
С помощью графика мы выяснили некоторые свойства функции p=f(t), где t — время суток в часах, а р — температура воздуха в градусах Цельсия.
Рассмотрим теперь свойства функции y = f (х), график которой изображен на рисунке 10. Выясним сначала, при каких значениях х функция обращается в нуль, принимает положительные и отрицательные значения.
Найдем абсциссы точек пересечения графика с осью х. Получим х = — 3 и х = 7. Значит, функция принимает значение, равное нулю, при х = — 3 и х = 7. Значения аргумента, при которых функция обращается в нуль, называют нулями функции, т. е. числа -3 и 7 — нули рассматриваемой функции.
Нули функции разбивают ее область определения — промежуток [- 5; 9] на три промежутка: [-5; -3), (-3; 7) и (7; 9]. Для значений х из промежутка (-3; 7) точки графика расположены выше оси х, а для значений х из промежутков [- 5; — 3) и (7; 9] — ниже оси х. Значит, в промежутке ( — 3; 7) функция принимает положительные значения, а в каждом из промежутков [-5; -3) и (7; 9] — отрицательные.
Выясним теперь, как изменяются (увеличиваются или уменьшаются) значения данной функции с изменением х от — 5 до 9.
Из графика видно, что с увеличением х от -5 до 3 значения у увеличиваются, а с увеличением х от 3 до 9 значения у уменьшаются. Говорят, что в промежутке [-5; 3] функция y = f(x) является возрастающей, а в промежутке [3; 9] эта функция является убывающей.
Определение:
Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции;
функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Иными словами, функцию y = f (х) называют возрастающей в некотором промежутке, если для любых из этого промежутка, таких, что выполняется неравенство
функцию y = f(x) называют убывающей в некотором промежутке, если для любых из этого промежутка, таких, что выполняется неравенство
Если функция возрастает на всей области определения, то ее называют возрастающей функцией, а если убывает, то убывающей функцией. На рисунке 11 изображены графики возрастающей функции и убывающей функции.
Выясним, какими свойствами обладают некоторые изученные ранее функции.
Пример 1. Рассмотрим свойства функции где (рис. 12).
- Решив уравнение найдем, что Значит, у=0, при
- Выясним, при каких значениях х функция принимает положительные значения и при каких — отрицательные. Рассмотрим два случая:
Пусть Решив неравенство найдем, что Из неравенства получим, что значит, (см. рис. 12, а).
Пусть Тогда, решив неравенства и найдем, что (см. рис. 12, б).
3. При функция является возрастающей, а при — убывающей.
Докажем это. Пусть — произвольные значения аргумента, причем обозначим через соответствующие им значения функции:
Рассмотрим разность
Множитель положителен, так как Поэтому знак произведения определяется знаком коэффициента k.
Если Значит, при функция является возрастающей.
Если Значит, при функция является убывающей.
Пример:
Рассмотрим свойства функции где (рис. 13).
1.Так как дробь ни при каком значении х в нуль не обращается, то функция нулей не имеет.
2. Если , то дробь положительна при и отрицательна при
Если то дробь положительна при и отрицательна при
3. При функция является убывающей в каждом
из промежутков — возрастающей в каждом из этих промежутков (см. рис. 13, а, б).
Доказательство этого свойства проводится аналогично тому, как это было сделано для линейной функции.
Заметим, что, хотя функция убывает (или возрастает) в каждом из промежутков она не является убывающей (возрастающей) функцией на всей области определения.
Квадратный трехчлен
Квадратный трехчлен и его корни
Выражение является многочленом второй степени с одной переменной. Такие многочлены называют квадратными трехчленами.
Определение:
Квадратным трехчленом называется многочлен вида — переменная, а, b и с — некоторые числа, причем
Значение квадратного трехчлена зависит от значения х. Так, например:
Мы видим, что при х = -1 квадратный трехчлен обращается в нуль. Говорят, что число — 1 является корнем этого трехчлена.
Корнем квадратного трехчлена называется значение переменной, при котором значение этого трехчлена равно нулю.
Для того чтобы найти корни квадратного трехчлена , надо решить квадратное уравнение = 0.
Пример:
Найдем корни квадратного трехчлена ..
Решим уравнение
Имеем:
Значит, квадратный трехчлен имеет два корня:
Так как квадратный трехчлен имеет те же корни, что и квадратное уравнение = 0, то он может, как и квадратное уравнение, иметь два корня, один корень или не иметь корней. Это зависит от знака дискриминанта квадратного уравнения который называют также дискриминантом квадратного трехчлена. Если D > 0, то квадратный трехчлен имеет два корня; если D = 0, то квадратный трехчлен имеет один корень; если D < 0, то квадратный трехчлен не имеет корней.
При решении задач иногда бывает удобно представлять квадратный трехчлен в виде где m и n — некоторые числа. Такое преобразование называется выделением квадрата двучлена из квадратного трехчлена. Покажем на примере, как выполняется это преобразование.
Пример:
Выделим из трехчлена квадрат двучлена.
Вынесем за скобки множитель 3:
Преобразуем выражение в скобках. Для этого представим 12х в виде произведения а затем прибавим и вычтем Получим:
Значит,
Рассмотрим задачу, при решении которой применяется выделение квадрата двучлена из квадратного трехчлена.
Пример:
Докажем, что из всех прямоугольников с периметром 20 см наибольшую площадь имеет квадрат.
Пусть одна сторона прямоугольника равна х см. Тогда другая сторона равна 10 — х см, а площадь прямоугольника равна
Раскрыв скобки в выражении х (10 — х), получим Выражение представляет собой квадратный трехчлен, в котором а = -1, b = 10, с = 0. Выделим квадрат двучлена:
Так как выражение при любом отрицательно, то сумма принимает наибольшее значение при x = 5. Значит, площадь будет наибольшей, когда одна из сторон прямоугольника равна 5 см. В этом случае вторая сторона также равна 5 см, т. е. прямоугольник является квадратом.
Разложение квадратного трехчлена на множители
Пусть требуется разложить на множители квадратный трехчлен Вынесем сначала за скобки множитель 3. Получим:
Для того чтобы разложить на множители трехчлен представим — 7х в виде суммы одночленов — 2х и — 5х и применим способ группировки:
Значит,
При х = 2 и х = 5 произведение 3 (х — 2) (х — 5), а следовательно, и трехчлен обращаются в нуль. Значит, числа 2 и 5 являются его корнями.
Мы представили квадратный трехчлен в виде произведения числа 3, т. е. коэффициента при и двух линейных множителей. Первый из них представляет собой разность между переменной х и одним корнем трехчлена, а второй — разность между переменной х и другим корнем.
Такое разложение можно получить для любого квадратного трехчлена, имеющего корни. При этом считают, что если дискриминант квадратного трехчлена равен нулю, то этот трехчлен имеет два равных корня.
Теорема:
Если — корни квадратного трехчлена , то
Доказательство.
Вынесем за скобки в многочлене множитель а. Получим:
Так как корни квадратного трехчлена являются также корнями квадратного уравнения = 0, то по теореме Виета
Отсюда
Поэтому
Итак,
Заметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители, являющиеся многочленами первой степени.
Докажем это. Пусть трехчлен не имеет корней. Предположим, что его можно представить в виде произведения многочленов первой степени:
где — некоторые числа, причем
Произведение (kx+m) ( +q) обращается в нуль при
Следовательно, при этих значениях х обращается в нуль и трехчлен
, т. е. числа являются его корнями. Мы пришли к противоречию, так как по условию этот трехчлен корней не имеет.
Пример:
Разложим на множители квадратный трехчлен
Решив уравнение найдем корни трехчлена:
По теореме о разложении квадратного трехчлена на множители имеем:
Полученный результат можно записать иначе, умножив число 2 на двучлен Получим:
Пример:
Разложим на множители квадратный трехчлен
Решив уравнение найдем корни трехчлена:
Значит,
или иначе:
Пример:
Сократим дробь
Разложим на множители квадратный трехчлен 10. Его корни равны Поэтому
Значит,
Квадратичная функция и ее график
Функция ее график и свойства
Одной из важных функций, которую мы будем рассматривать в дальнейшем, является квадратичная функция.
Определение:
Квадратичной функцией называется функция, которую можно задать формулой вида у = , где х — независимая переменная, а, b и с — некоторые числа, причем
Примером квадратичной функции является зависимость пути от времени при равноускоренном движении. Если тело движется с ускорением и к началу отсчета времени t прошло путь имея в этот момент скорость то зависимость пройденного пути s (в метрах) от времени t (в секундах) выражается формулой
Если, например, а = 6, то формула примет вид:
Изучение квадратичной функции мы начнем с частного случая — функции
При а = 1 формула принимает вид С этой функцией мы уже встречались. Ее графиком является парабола.
Построим график функции Составим таблицу значений этой функции:
Построим точки, координаты которых указаны в таблице. Соединив их плавной линией, получим график функции (рис. 20, а).
При любом значение функции больше соответствующего значения функции в 2 раза. Если переместить каждую точку графика функции вверх так, чтобы расстояние от этой точки до оси х увеличилось в 2 раза, то она перейдет в точку графика функции при этом каждая точка этого графика может быть получена из некоторой точки графика функции . Иными словами, график функции можно получить из параболы растяжением от оси х в 2 раза (рис. 20, б).
Построим теперь график функции . Для этого составим таблицу ее значений:
Построив точки, координаты которых указаны в таблице, и соединив их плавной линией, получим график функции (рис. 21, а).
При любом значение функции меньше соответствующего значения функции в 2 раза. Если переместить каждую точку графика функции вниз так, чтобы расстояние от этой точки до оси х уменьшилось в 2 раза, то она
перейдет в точку графика функции причем каждая точка этого графика может быть получена из некоторой точки графика функции (рис. 21,6). Таким образом, график функции можно получить из параболы сжатием к оси х в 2 раза.
Вообще график функции можно получить из параболы растяжением от оси х в а раз, если а > 1, и сжатием к оси х в
Рассмотрим теперь функцию при а < 0.
Построим график функции для чего составим таблицу значений этой функции:
Воспользовавшись этой таблицей, построим график функции (рис. 22, а).
Сравним графики функций (рис. 22, б).
При любом х значения этих функций являются противоположными числами. Значит, соответствующие точки графиков симметричны относительно оси х. Иными словами, график функции
может быть получен из графика функции с помощью симметрии относительно оси х.
Вообще графики функций (при ) симметричны относительно оси х.
График функции , где как и график функции , называют параболой.
Сформулируем свойства функции при а > 0.
1.Если х = 0, то у = 0. График функции проходит через начало координат.
2. Если , то у > 0. График функции расположен в верхней полуплоскости.
3. Противоположным значениям аргумента соответствуют равные значения функции. График функции симметричен относительно оси у.
4. Функция убывает в промежутке и возрастает в промежутке
5. Наименьшее значение, равное нулю, функция принимает при х = 0, наибольшего значения функция не имеет. Областью значений функции является промежуток
Докажем свойство 4. Пусть — два значения аргумента, причем — соответствующие им значения функции. Составим разность и преобразуем ее:
Так как то произведение имеет тот же знак, что и множитель Если числа принадлежат промежутку то этот множитель отрицателен. Если числа принадлежат промежутку то множитель положителен. В первом случае т. е. во втором случае Значит, в промежутке функция убывает, а в промежутке — возрастает.
Теперь сформулируем свойства функции при а < 0.
- Если х = 0, то у = 0. График функции проходит через начало координат.
- Если , то у < 0. График функции расположен в нижней полуплоскости.
- Противоположным значениям аргумента соответствуют равные значения функции. График функции симметричен относительно оси у.
- Функция возрастает в промежутке и убывает в промежутке
- Наибольшее значение, равное нулю, функция принимает при я = 0, наименьшего значения функция не имеет. Областью значений функции является промежуток
Доказательство свойства 4 проводится аналогично тому, как это было сделано для функции у=ах2 при а>0.
Из перечисленных свойств следует, что при а > 0 ветви параболы направлены вверх, а при а < 0 — вниз. Ось у является осью симметрии параболы. Точку пересечения параболы с ее осью симметрии называют вершиной параболы. Вершиной параболы является начало координат.
Построение графика, симметричного данному относительно оси х, растяжение графика от оси х или сжатие к оси х — различные виды преобразования графиков функций. Преобразования графиков, рассмотренные нами для функции применимы к любой функции.
График функции y = -f(x) можно получить из графика функции y = f(х) с помощью симметрии относительно оси х.
График функции y = af (х) можно получить из графика функции y = f(x) с помощью растяжения от оси х в а раз, если а > 1, и с помощью сжатия к оси х в раз, если 0 < а < 1.
Графики функции
Рассмотрим другие частные случаи квадратичной функции. Пример 1. Выясним, что представляет собой график функции
С этой целью в одной системе координат построим графики функций .
Составим таблицу значений функции
График функции изображен на рисунке 23, а.
Чтобы получить таблицу значений функции для тех же значений аргумента, достаточно к найденным | значениям функции прибавить 3:
Построим точки, координаты которых указаны в таблице (2), и соединим их плавной линией. Получим график функции (рис. 23, б).
Легко понять, что каждой точке графика функции соответствует единственная точка графика функции и наоборот. Значит, если переместить каждую точку графика функции на 3 единицы вверх, то получим соответствующую точку графика функции Иначе говоря, каждую точку второго графика можно получить из некоторой точки первого графика р помощью параллельного переноса на 3 единицы вверх вдоль оси у.
График функции — парабола, полученная в результате сдвига вверх графика функции .
Вообще график функции является параболой, которую можно получить из графика функции с помощью параллельного переноса вдоль оси у на п единиц вверх, если n > 0, или на -n единиц вниз, если
Пример:
Рассмотрим теперь функцию и выясним, что представляет собой ее график.
Для этого в одной системе координат построим графики функций
Для построения графика функции воспользуемся таблицей (1). Составим теперь таблицу значений функции . При этом в качестве значений аргумента выберем те, которые на 5 больше соответствующих значений аргумента в таблице (1). Тогда соответствующие им значения функции будут те же, которые записаны во второй строке таблицы (1):
Построим график функции , отметив точки, координаты которых указаны в таблице (3) (рис. 24). Нетрудно заметить, что каждой точке графика функции
соответствует единственная точка графика функции И наоборот.
Значит, если переместить каждую точку графика функции на 5 единиц вправо, то получим соответствующую точку графика функции . Иначе говоря, каждую точку второго графика можно получить из некоторой точки первого графика с помощью параллельного переноса на 5 единиц вправо вдоль оси х.
График функции — парабола, полученная в результате сдвига вправо графика функции .
Вообще график функции является параболой, которую можно получить из графика функции с помощью параллельного переноса вдоль оси х на m единиц вправо, если m > 0, или на -m единиц влево, если то m < 0.
Полученные выводы позволяют понять, что представляет собой график функции Рассмотрим, например, функцию Ее график можно получить из графика функции с помощью двух параллельных переносов — сдвига параболы на 3 единицы вправо и на 2 единицы вверх (рис. 25).
Вообще график функции является параболой, которую можно получить из графика функции с помощью двух параллельных переносов: сдвига вдоль оси х на то единиц вправо, если m > 0, или на -m единиц влево, если m < 0, и сдвига вдоль оси у на n единиц вверх, если n > 0, или на -n единиц вниз, если n < 0.
Заметим, что производить параллельные переносы можно в любом порядке: сначала выполнить параллельный перенос вдоль оси х, а затем вдоль оси у или наоборот.
Полученные нами выводы о преобразованиях графиков применимы к любым функциям.
График функции y=f(x) + n можно получить из графика функции у = f(x) с помощью параллельного переноса вдоль оси у на n единиц вверх, если n > 0, или на — n единиц вниз, если n < 0.
График функции y = f(x—m) можно получить из графика функции у = f(х) с помощью параллельного переноса вдоль оси х на m единиц вправо, если m > 0, или на —m единиц влево, если m < 0.
График функции y = f (х — m) + n можно получить из графика функции y = f(x) с помощью двух соответствующих параллельных переносов.
Построение графика квадратичной функции
Рассмотрим квадратичную функцию у = . Выделим из трехчлена квадрат двучлена:
Отсюда
Мы получили формулу вида
Значит, график функции есть парабола, которую можно получить из графика функции с помощью двух параллельных переносов — сдвига вдоль оси х и сдвига вдоль оси у. Отсюда следует, что график функции есть парабола, вершиной которой является точка Осью симметрии параболы служит прямая х = m, параллельная оси у. При а > 0 ветви параболы направлены вверх, при а < 0 — вниз.
Чтобы построить график квадратичной функции, нужно:
1) найти координаты вершины параболы и отметить ее в координатной плоскости;
2) построить еще несколько точек, принадлежащих параболе;
3) соединить отмеченные точки плавной линией.
Заметим, что абсциссу т вершины удобно находить по формуле Ординату п можно находить, подставив найденное значение абсциссы в формулу , так как при х = m
Приведем примеры построения графиков квадратичных функций.
Пример:
Построим график функции 0,5.
Графиком функции является парабола, ветви которой направлены вверх. Найдем координаты тип , вершины этой параболы:
Значит, вершиной параболы является точка ( — 3; —4). Составим таблицу значений функции:
Построив точки, координаты которых указаны в таблице, и соединив их плавной линией, получим график функции (рис. 27).
При составлении таблицы и построении графика учитывалось, что прямая х = — 3 является осью симметрии параболы. Поэтому мы брали точки с абсциссами — 4 и — 2, — 5 и — 1, — 6 и 0, симметричные относительно прямой х = — 3 (эти точки имеют одинаковые ординаты).
Пример:
Построим график функции 19.
Графиком этой функции является парабола, ветви которой направлены вниз. Найдем координаты ее вершины:
Вычислив координаты еще нескольких точек, получим таблицу:
Соединив плавной линией точки, координаты которых указаны в таблице, получим график функции (рис. 28).
Пример:
Построим график функции
Графиком функции является парабола, ветви которой направлены вверх. Найдем координаты ее вершины:
Вычислив координаты еще нескольких точек, получим таблицу:
График функции изображен на рисунке 29.
Решение неравенств второй степени с одной переменной
Неравенства вида — переменная, a, b и с — некоторые числа, причем называют неравенствами второй степени с одной переменной.
Решение неравенства второй степени с одной переменной можно рассматривать как нахождение промежутков, в которых соответствующая квадратичная функция принимает положительные или отрицательные значения.
Пример:
Решим неравенство
Рассмотрим функцию Графиком этой функции является-парабола, ветви которой направлены вверх.
Выясним, как расположена эта парабола относительно оси х. Для этого решим уравнение
Получим:
Значит, парабола пересекает ось х в двух точках, абсциссы которых равны
Покажем схематически, как расположена парабола в координатной плоскости (рис. 31). Из рисунка видно, что функция принимает отрицательные значения, когда
Следовательно, множеством решений неравенства 2 < 0 является числовой промежуток
Заметим, что при рассмотренном способе решения неравенства нас не интересовала вершина параболы. Важно лишь было знать, куда направлены ветви параболы — вверх или вниз и каковы абсциссы точек ее пересечения с осью х.
Пример:
Решим неравенство
График функции — парабола, ветви которой направлены вверх.
Для того чтобы выяснить, пересекает ли парабола ось х и в каких точках, решим уравнение Получим, что
Покажем схематически, как расположена парабола в координатной плоскости (рис. 32). Из рисунка видно, что данное неравенство верно, если х принадлежит промежутку или промежутку т. е. множеством решений неравенства
является объединение промежутков
Ответ можно записать так:
Пример:
Решим неравенство
Рассмотрим функцию Ее графиком является парабола, ветви которой направлены вниз.
Выясним, как расположен график относительно оси х. Решим для этого уравнение Получим, что х = 4. Уравнение имеет единственный корень. Значит, парабола касается оси х.
Изобразив схематически параболу (рис. 33), найдем, что функция принимает отрицательные значения при любом х, кроме 4.
Ответ можно записать так: х — любое число, не равное 4.
Пример:
Решим неравенство
График функции — парабола, ветви которой направлены вверх.
Чтобы выяснить, как расположена парабола относительно оси х, решим уравнение Находим, что D = -7 < 0, т. е. это уравнение не имеет корней. Значит, парабола не имеет общих точек с осью х.
Показав схематически расположение параболы в координатной плоскости (рис. 34), найдем, что функция принимает положительные значения при любом х.
Ответ: х — любое число.
Итак, для решения неравенств вида и поступают следующим образом:
1) находят дискриминант квадратного трехчлена и выясняют, имеет ли трехчлен корни
2) если трехчлен имеет корни, то отмечают их на оси х и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при а > 0 или вниз при а < 0;
если трехчлен не имеет корней, то схематически изображают параболу, расположенную в верхней полуплоскости при а > 0 или в нижней при а < 0;
3) находят на оси х промежутки, для которых точки параболы расположены выше оси х (если решают неравенство или ниже оси х (если решают неравенство
Решение неравенств методом интервалов
Рассмотрим функцию
Областью определения этой функции является множество всех чисел. Нулями функции служат числа — 2, 3, 5. Они разбивают область определения функции на промежутки
Выражение (х + 2) (х — 3) (х — 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
Отсюда ясно, что:
Мы видим, что в каждом из промежутков функция сохраняет знак, а при переходе через точки — 2, 3 и 5 ее знак изменяется (рис. 35,6). Вообще, пусть функция задана формулой вида
где х — переменная, а не равные друг другу числа. Числа являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
Это свойство используется для решения неравенств вида
где не равные друг другу числа.
Пример:
Решим неравенство
Данное неравенство является неравенством вида (1), так как в левой части записано произведение где Для его решения удобно воспользоваться рассмотренным выше свойством чередования знаков функции.
Отметим на координатной прямой нули функции
Найдем знаки этой функции в каждом из промежутков Для этого достаточно знать, какой знак имеет функция в одном из этих промежутков, и, пользуясь свойством чередования знаков, определить знаки во всех остальных промежутках. При этом удобно начинать с крайнего справа промежутка так как в нем значение функции заведомо положительно. Это объясняется тем, что при значениях х, расположенных правее всех нулей функции, каждый из множителей положителен. Используя свойство чередования знаков, определим, двигаясь по координатной прямой справа налево, знаки данной функции в каждом из остальных промежутков (рис. 36, б).
Из рисунка видно, что множеством решений неравенства является объединение промежутков
Ответ:
Рассмотренный способ решения неравенств называют методом интервалов.
Рассмотрим теперь примеры решения неравенств, которые сводятся к неравенствам вида (1).
Пример:
Решим неравенство
Приведем данное неравенство к виду (1). Для этого в двучлене 0,5 — х вынесем за скобку множитель -1. Получим:
отсюда
Мы получили неравенство вида (1), равносильное данному.
Отметим на координатной прямой нули функции f (х) = х (х — 0,5)(х + 4) (рис. 37, а). Покажем знаком «плюс», что в крайнем справа промежутке функция принимает положительное значение, а затем, двигаясь справа налево, укажем знак функции в каждом из промежутков (рис. 37, б). Получим, что множеством решений неравенства является объединение промежутков
Ответ:
Пример:
Решим неравенство
Приведем неравенство к виду (1). Для этого в первом двучлене вынесем за скобки множитель 5, а во втором —1, получим:
Разделив обе части неравенства на -5, будем иметь:
Отметим на координатной прямой нули функции f(x) и укажем знаки функции в образовавшихся промежутках (рис. 38). Мы видим, что множество решении неравенства состоит из чисел и чисел, заключенных между ними, т. е. представляет собой промежуток
Ответ:
Заметим, что данное неравенство можно решить иначе, воспользовавшись свойствами графика квадратичной функции.
7_у
Пример:
Решим неравенство
Так как знак дроби совпадает со знаком произведения (7—х)(х+2), то данное неравенство равносильно неравенству
Приведя неравенство к виду (1) и используя метод интервалов, найдем, что множеством решений этого неравенства, а значит, и данного неравенства является объединение промежутков
Ответ:
Квадратичная функция и её построение
Парабола
Рассмотрим уравнение
Если х и у рассматривать как координаты точки, то уравнение (1) определит некоторое геометрическое место точек. Исследуем вид этого геометрического места. Заметим, что наше исследование будет неполным, так как останутся вопросы, которые нами пока не будут выяснены. Чем дальше мы будем продвигаться в изучении математики, тем полнее будут проводиться исследования.
1) Так как при любом значении х всегда неотрицательно, то у, определяемое уравнением всегда неотрицательно. Значит, любая точка, принадлежащая изучаемому геометрическому месту, не будет лежать ниже оси Ох (рис. 18).
2) Так как и для —х и для х после возведения в квадрат получается одно и то же число, то точки, принадлежащие геометрическому месту и соответствующие значениям — х и х, имеют одну и ту же ординату и поэтому расположены симметрично относительно оси Оу (рис. 19).
3) Если х положительно, то, чем больше х, тем больше и . Поэтому по мере возрастания абсолютной величины абсциссы величина ординаты тоже возрастает. Следовательно точки геометрического места удаляются от начала координат вправо вверх и влево вверх.
Геометрическое место, определяемое уравнением называется параболой и имеет вид, изображенный на рис. 20. Эту кривую линию называют также графиком функции Точка (0, 0) принадлежит геометрическому месту, поэтому можно сказать, что парабола проходит через начало координат. Эту точку называют вершиной параболы. Часть параболы, расположенная в первой четверти, и часть параболы, расположенная во второй четверти, называются ее ветвями.
Теперь рассмотрим уравнение
Оно определяет геометрическое место точек. Сравнивая уравнения (1) и (2), замечаем, что при одном и том же х значения у отличаются только знаками, именно у, полученный из уравнения (2), всегда неположителен. Поэтому уравнение (2) тоже определяет параболу, вершина которой также находится в точке (0, 0), но ветви этой которой также находится в точке (0, 0), но ветви этой параболы идут от начала координат вниз вправо и вниз влево. График функции (2) изображен на рис. 21
Перейдем к рассмотрению уравнения
Сравним его с уравнением (1),
Если а положительно и больше единицы, то очевидно, что при одном и том же значении х величина у из уравнения (3) будет больше, чем величина у, взятая из уравнения (1). Отсюда можно заключить, что кривая, определяемая уравнением (3), отличается от параболы (1) только тем, что ординаты ее точек растянуты в а раз. Таким образом, кривая, определяемая уравнением (3), является более сжатой, чем парабола . Эту кривую тоже называют параболой.
Если то получим параболу более раскрытую, чем парабола . Для а отрицательного получаем аналогичные выводы, которые ясны из рис. 22.
Теперь покажем, что кривая, определяемая уравнением
является параболой, только ее расположение относительно координатных осей другое, чем в разобранных случаях. Предварительно рассмотрим параллельный перенос осей координат.
Параллельный перенос осей координат
Пусть на плоскости дана система координат хОу (рис. 23). Рассмотрим новую систему координат .Предположим, что новая ось параллельна старой оси Ох и новая ось параллельна старой оси Оу. Начало координат новой системы — точка . Масштаб и направление осей одинаковы в старой и новой системах координат.
Обозначим координаты нового начала относительно старой системы координат через х0 и у0, так что
Возьмем произвольную точку М на плоскости; пусть ее координаты в старой системе будут х и у, а в новой и . Тогда
и (на основании формулы (2) из § 1 гл. I)
Таким образом,
Переход от старой системы координат к указанной новой называется параллельным переносом или параллельным сдвигом осей координат. Приходим к выводу:
При параллельном сдвиге осей координат старая координата точки равна новой координате той же точки плюс координата нового начала в старой системе.
Исследование функции
Функция, определенная уравнением
называется квадратичной функцией. Функция рассмотренная выше, является частным случаем квадратичной функции. Поставим перед собой цель—выяснить, как изменится уравнение (1), если перейти к новым координатам. Возьмем новые оси координат так, чтобы они были параллельны старым, т. е. ось будет параллельна оси Ох,
а ось — оси Оу. Масштаб и направление осей такие же, как и у старых. Пусть координаты нового начала в старой системе будут х0 и у0. Подставим в уравнение (5) вместо х и у их выражения через новые координаты: , . Получим
Разрешив это уравнение относительно , будем иметь
Координаты нового начала находятся в нашем распоряжении, поэтому их можно выбрать так, чтобы выполнялись условия
В этих уравнениях два неизвестных: х0 и у0. Найдем их:
Если взять новое начало в точке
то в уравнении (2) скобки
сделаются равными нулю, т. е. уравнение (2) примет вид
Полученное уравнение имеет вид, рассмотренный выше. Таким образом, уравнение относительно новой системы координат определяет ту же параболу, что и уравнение .Приходим к выводу:
Уравнение определяет параболу, вершина которой находится в точке и ветви которой направлены вверх, если а > 0, и вниз, если а < 0. Тот же вывод можно высказать по-другому: График квадратической функции есть парабола с вершиной в точке ветви которой направлены вверх, если а > 0, и вниз, если а < 0.
Пример:
Выяснить вид и расположение параболы, заданной уравнением
Переносим начало координат в точку (х0, у0), координаты которой пока неизвестны. Старые координаты я, у выражаются через новые , по формулам
Подставляя эти выражения в уравнение (4), получим:
Выберем координаты нового начала так, чтобы соблюдались равенства
Решая полученную систему уравнений, будем иметь:
Следовательно, перенося начало координат в точку , преобразуем уравнение (4) в новое уравнение, которое имеет вид
Следовательно, уравнение (4) определяет параболу, имеющу вершину в точке ; ветви параболы направлены вверх (рис. 24).
Приведем пример применения квадратичной функции в механике.
Задача:
Найти траекторию тела, брошенного под углом к горизонту. Угол бросания а, скорость бросания. Сопротивлением воздуха пренебрегаем.
Решение:
Выберем оси координат так: ось Оу—вертикальная прямая, проведенная в точке бросания , ось Ох— горизонтальная прямая, начало координат—точка бросания (рис. 25).
Если бы не действовала сила притяжения Земли, то тело, брошенное под углом к горизонту, по инерции двигалось бы по прямой ОМ. За t сек оно прошло бы расстояние и, стало быть, находилось бы в точке М. Но под действием силы притяжения Земли это тело, как свободно падающее, за t сек пройдет вниз путь следовательно, тело фактически будет в точке Р. Вычислим координаты точки Р:
Найдем уравнение, связывающее х с у. Для этого из уравнения (*) найдем t и подставим это выражение в уравнение (**):
и, следовательно,
или
Мы получили уравнение траектории тела. Как мы видим, это есть квадратичная функция рассмотренного вида, следовательно, тело, брошенное под углом к горизонту, движется в безвоздушном пространстве по параболе, расположенной вершиной вверх, поскольку коэффициент при отрицателен.
Какова наибольшая высота подъема тела над Землей? Чтобы ответить на этот вопрос, нужно найти вершину параболы. Как было выведено, вершина параболы имеет координаты
В нашей задаче
этому координаты вершины равны
Найдем теперь дальность полета тела, т. е. абсциссу точки падения. Для этого приравняем в уравнении (***) у нулю, получим уравнение
решая которое найдем два значения
первое из них дает точку бросания, а второе — искомую абсциссу точки падения.
Все эти рассуждения относятся к безвоздушному пространству; в воздухе и высота и дальность будут значительно меньше.
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат
В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.
Функция вида , где называется квадратичной функцией.
В уравнении квадратичной функции:
a — старший коэффициент
b — второй коэффициент
с — свободный член.
Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:
Обратите внимание на точки, обозначенные зелеными кружками — это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции , составим таблицу:
Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции при любых значениях остальных коэффициентов.
График функции имеет вид:
Для нахождения координат базовых точек составим таблицу:
Обратите внимание, что график функции симметричен графику функции относительно оси ОХ.
Итак, мы заметили:
Если старший коэффициент a>0, то ветви параболы напрaвлены вверх.
Если старший коэффициент a<0, то ветви параболы напрaвлены вниз.
Второй параметр для построения графика функции — значения х, в которых функция равна нулю, или нули функции. На графике нули функции — это точки пересечения графика функции с осью ОХ.
Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение .
В случае квадратичной функции нужно решить квадратное уравнение .
Теперь внимание!
В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.
И здесь возможны три случая:
1. Если ,то уравнение не имеет решений, и, следовательно, квадратичная парабола не имеет точек пересечения с осью ОХ. Если ,то график функции выглядит как-то так:
2. Если ,то уравнение имеет одно решение, и, следовательно, квадратичная парабола имеет одну точку пересечения с осью ОХ. Если ,то график функции выглядит примерно так:
3. Если ,то уравнение имеет два решения, и, следовательно, квадратичная парабола имеет две точки пересечения с осью ОХ:
,
Если ,то график функции выглядит примерно так:
Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.
Следующий важный параметр графика квадратичной функции — координаты вершины параболы:
Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.
И еще один параметр, полезный при построении графика функции — точка пересечения параболы с осью OY.
Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль: .
То есть точка пересечения параболы с осью OY имеет координаты (0;c).
Итак, основные параметры графика квадратичной функции показаны на рисунке:
Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.
1. Функция задана формулой .
Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции
1. Направление ветвей параболы.
Так как ,ветви параболы направлены вверх.
2. Найдем дискриминант квадратного трехчлена
Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.
Для того, чтобы найти их координаты, решим уравнение:
,
3. Координаты вершины параболы:
4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.
Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:
Этот способ можно несколько упростить.
1. Найдем координаты вершины параболы.
2. Найдем координаты точек, стоящих справа и слева от вершины.
Воспользуемся результатами построения графика функции
Кррдинаты вершины параболы
Ближайшие к вершине точки, расположенные слева от вершины имеют абсциссы соответственно -1;-2;-3
Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2
Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:
Нанесем эти точки на координатную плоскость и соединим плавной линией:
2. Уравнение квадратичной функции имеет вид — в этом уравнении — координаты вершины параболы
или в уравнении квадратичной функции , и второй коэффициент — четное число.
Построим для примера график функции .
Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно
- сначала построить график функции ,
- затем одинаты всех точек графика умножить на 2,
- затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- а затем вдоль оси OY на 4 единицы вверх:
Теперь рассмотрим построение графика функции . В уравнении этой функции , и второй коэффициент — четное число.
Выделим в уравнении функции полный квадрат:
Следовательно, координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):
3. Уравнение квадратичной функции имеет вид y=(x+a)(x+b)
Построим для примера график функции y=(x-2)(x+1)
1. Вид уравнения функции позволяет легко найти нули функции — точки пересечения графика функции с осью ОХ:
(х-2)(х+1)=0, отсюда
2. Координаты вершины параболы:
3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.
Нанесем эти точки на координатную плоскость и построим график:
График квадратичной функции.
Перед вами график квадратичной функции вида .
Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции от значения коэффициента ,
— сдвига графика функции вдоль оси от значения ,
— сдвига графика функции вдоль оси от значения
— направления ветвей параболы от знака коэффициента
— координат вершины параболы от значений и :
Скачать таблицу квадратичная функция
И.В. Фельдман, репетитор по математике.