Калькулятор комплексных чисел. Вычисление выражений с комплексными числами
Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.
Калькулятор комплексных чисел
7
8
9
+
—
*
/
^
4
5
6
i
(
)
π
e
1
2
3
sin
cos
tg
ctg
ln
.
0
√
sh
ch
th
cth
abs
Скрыть клавиатуру
С решением
Тригонометрическая форма
Показательная форма
Десятичных знаков:
Вычислить
Вычислено выражений:
Как пользоваться калькулятором
- Введите в поле ввода выражение с комплексными числами
- Укажите, требуется ли вывод решения переключателем «С решением»
- Нажмите на кнопку «Построить»
Ввод комплексных чисел
комплексные числа можно вводить в следующих трёх форматах:
- Только действительная часть:
2, 2.5, -6.7, 12.25
- Только мнимая часть:
i, -i, 2i, -5i, 2.16i, -12.5i
- Действительная и мнимая части:
2+i, -5+15i, -7+2.5i, -6+i
- Математические константы:
π, e
Поддерживаемые операции и математические функции
- Арифметические операции:
+, -, *, /, ^
- Получение абсолютного значения числа:
abs
- Базовые математические функции:
exp, ln, sqrt
- Получение действительной и мнимой частей:
re, im
- Тригонометрические функции:
sin, cos, tg, ctg
- Гиперболические функции:
sh, ch, th, cth
- Обратные тригонометрические функции:
arcsin, arccos, arctg, arcctg
- Обратные гиперболические функции:
arsh, arch, arth, arcth
Примеры корректных выражений
- (2+3i)*(5-7i)
- sh(i)
- (4+i) / (3 — 4i)
- sqrt(2i)
- (-3+4i)*2i / exp(2i + (15 — 8i)/4 — 3.75)
Комплексные числа
Комплексные числа — это числа вида x+iy
, где x
, y
— вещественные числа, а i
— мнимая единица (специальное число, квадрат которого равен -1, то есть i2 = -1
).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.
Примеры комплексных чисел
4+3i
— действительная часть = 4, мнимая = 3-2+i
— действительная часть = -2, мнимая = 1i
— действительная часть = 0, мнимая = 1-i
— действительная часть = 0, мнимая = -110
— действительная часть = 10, мнимая = 0
Основные действия с комплексными числами
Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:
- сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
- вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
- умножение: (a + bi) · (c + di) = ac + bci + adi + bdi2 = (ac — bd) + (bc + ad)i
- деление: = = + i
Примеры
Найти сумму чисел 5+7i
и 5.5-2i
:
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом:5+7i
+ 5.5-2i
= 10.5 + 5i
Найти разность чисел 12-i
и -2i
:
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом:12-i
— (-2i)
= 12 + i
Найти произведение чисел 2+3i
и 5-7i
:
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом:2+3i
* (5-7i)
= 31 + i
Найти отношение чисел 75-50i
и 3+4i
:
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом:75-50i
/ (3+4i)
= 1 - 18i
Другие действия над комплексными числами
Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:
- Получение действительной части числа:
Re(z) = a
- Получение мнимой части числа:
Im(z) = b
- Модуль числа:
|z| = √(a2 + b2)
- Аргумент числа:
arg z = arctg(b / a)
- Экспонента:
ez = ea·cos(b) + i·ea·sin(b)
- Логарифм:
Ln(z) = ln |z| + i·arg(z)
- Тригонометрические функции: sin z, cos z, tg z, ctg z
- Гиперболические функции: sh z, ch z, th z, cth z
- Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
- Обратные гиперболические функции: arsh z, arch z, arth z, arcth z
Примеры
Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(42 + (-3)2) = √25 = 5
Формы представления комплексных чисел
Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.
- Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей:
x+iy
, где x — действительная часть, а y — мнимая часть - Тригонометричкая форма — запись вида
r·(cos φ + isin φ)
, где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z)) - Показательная форма — запись вида
r·eiφ
, где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))
Пример:
Переведите число 1+i в тригонометрическую и показательную формы:
Решение:
- Найдём радиус (модуль) комплексного числа r: r = √(12 + 12) = √2
- Найдём аргумент числа: φ = arctan() = = 45°
- Запишем результат в тригонометрической форме:
√2·(cos(45°) + isin(45°))
- Запишем результат в показательной форме:
√2·eπi/4
Вычислить аргумент и модуль комплексного числа.
Аргументом комплексного числа z называется угол φ в радианах радиус-вектора точки, соответствующей данному комплексному числу и обозначается Arg(z) = φ
Аргументом комплексного числа z называется угол φ в радианах радиус-вектора точки,
соответствующей данному комплексному числу и обозначается Arg(z) = φ
Из определения следуют следующие формулы:
Для числа z = 0 аргумент не определен.
Главным значением аргумента называется такое значение φ, что .
Обозначается: arg(z).
Свойства аргумента:
Модулем комплексного числа z = x + iy называется вещественное число |z| равное:
Для любых комплексных чисел z, z1, z2 имеют место следующие свойства модуля:
для пары комплексных чисел z1 и z2 модуль их разности |z1 − z2| равен расстоянию между соответствующими точками комплексной плоскости. |
Комплексные числа
Комплексное число в тригонометрической форме:
z=|z|[cos(φ+2πk)+i·sin(φ+2πk)]
Комплексное число в показательной форме: z=|z|eiφ
Угол φ называют аргументом числа z и обозначают Arg(z).
Назначение. Данный сервис предназначен для представления комплексного числа в тригонометрической и показательной формах в онлайн режиме. Результаты вычисления оформляются в формате Word.
- Решение онлайн
- Видеоинструкция
Правила ввода функции
Все математические операции выражаются через общепринятые символы +, -, *, /.
Примеры
≡ 1/2+sqrt(3)*I
Если 0 ≤ arg z ≤ 2π:
см. также Как извлечь корень из комплексного числа
Действия с комплексными числами
z2=-1-i
Сложение комплексных чисел (отдельно складываются действительные и мнимые части)
Вычитание комплексных чисел (отдельно вычитаются действительные и мнимые части)
Умножение комплексных чисел
Деление комплексных чисел (подвести под общий знаменатель)
При умножении двух комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. При делении комплексных чисел их модули делятся, а аргументы вычитаются.
z1 = r1(cos φ1 + i sin φ1), z2 = r2(cos φ2 + i sin φ2)
Тогда
z1 · z2 = r1r2[cos(φ1 + φ2)+ i sin(φ1 + φ2)]
Что делать, если задано сложное комплексное выражение. Его можно упростить с помощью следующего правила. Например:
Необходимо умножить дробь на сопряженное выражение (2-i).
Возведение в степень. Формула Муавра
При возведении комплексного числа в натуральную степень, модуль возводится в эту степень, а аргумент умножается на показатель степени.
Пример. Найти
Решение.
=218(cos6π + i*sin6π)=218=262144
Что делать, если комплексное число необходимо возвести в большую степень. Например: (1+i)988
. Достаточно это комплексное число сначала возвести во вторую степень:
(1+i)2 = 2i
, а затем 2i988/2 = 2i494 = 2494i494 = 2494(-1)247 = -2494
Все вычисления с комплексными числами можно проверить в онлайн режиме.
Примечание:
- abs — модуль комплексного числа |z|. Пример:
abs(-5.5-6.6i)
- arg — аргумент комплексного числа φ. Пример:
arg(5.5+6.6i)
Пример №1. Записать комплексное число в тригонометрической форме.
z=-1-4i
Базовая формула:
z = |z|[cos(φ+2πk) + i sin(φ+2πk)]
где φ=arctg((-4)/(-1));
Алгоритм
- находим угол φ.
- находим модуль
|z| = sqrt(x2 + y2)
.
1. Находим тригонометрическую форму комплексного числа z=-1-4i
Действительная часть комплексного числа: x = Re(z) = -1
Мнимая часть: y = Im(z) = -4
Модуль комплексного числа равен:
Поскольку x<0, y<0, то arg(z) находим как:
Таким образом, тригонометрическая форма комплексного числа z=-1-4i
2. Находим показательную форму комплексного числа
Пример №2. Как из тригонометрической формы комплексного числа преобразовать в алгебраическую форму.
Модуль комплексного числа равен 2 ,т.е. или x2+y2=4
Аргумент комплексного числа
или
Получаем систему из двух уравнений:
x2+y2=4
Выразим и подставим в первое выражение:
Поскольку , то получаем:
или или .
Таким образом, из выражения можно сразу было получить:
,
Начиная с 16 века математики столкнулись с необходимостью введения комплексных чисел, то есть чисел вида a+bi, где a,b — вещественные числа, i — мнимая единица — число, для которого выполняется равенство: i2=-1.
Интересно проследить, как менялось представление о комплексных числах с течением времени. Вот некоторые цитаты из древних трудов:
- XVI век : Эти сложнейшие величины бесполезны, хотя и весьма хитроумны. 1
- XVII век : Мнимые числа — это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием. 2
- XVIII век : Квадратные корни из отрицательных чисел не равны нулю, не меньше нуля и не больше нуля. Из сего видно, что квадратные корни из отрицательных чисел не могут находиться среди возможных чисел. Поэтому, нам не остается ничего другого, как признать их невозможными числами. Это ведет нас к понятию таких чисел, которые по своей природе невозможны и обычно называются мнимыми или воображаемыми, потому что их только в уме представить можно. 3
- XIX век Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы и иероглифы нелепых количеств. 4
Известно три способа записи комплексного числа z:
Алгебраическая запись комплексного числа
,
где a и b — вещественные числа, i — мнимая единица. a — действительная часть, bi — мнимая часть.
Тригонометрическая запись комплексного числа
,
где r — модуль комплексного числа:
, который соответствует расстоянию от точки на комплексной плоскости до начала координат, а φ — угол наклона вектора 0-z к оси действительных значений или аргумент комплексного числа.
Показательная запись комплексного числа
была введена Леонардом Эйлером для сокращения тригонометрической записи.
Комплексное число
Точность вычисления
Знаков после запятой: 2
В тригонометрической форме
Главный аргумент (радианы)
Главный аргумент (градусы)
Комплексная плоскость
Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.
Значение аргумент комплексного числа определяется с точностью до , для всех целых k. Главный аргумент — это значение аргумента, лежащее в диапазоне (-π..π].
Главный аргумент вычисляется как арктангенс двух аргументов мнимой и действительной части комплексного числа:
, см Арктангенс с двумя аргументами
Над комплексным числом возможны все алгебраические операции:
Действия над комплексными числами
Точность вычисления
Знаков после запятой: 2
Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.
Сложение комплексных чисел
Комплексные числа складываются ровно так же, как и многочлены:
Умножение комплексных чисел
Помня о том, что i*i=-1, легко выразить формулу для умножения комплексных чисел:
Деление комплексных чисел
Формулу деления комплексных чисел проще всего вывести, путем умножения числителя и знаменателя на сопряженное комплексное число, для того, чтобы избавиться от мнимой единицы в знаменателе:
Сопряженное комплексное число, это число вида:
Раскрывая скобки получаем:
Возведение в целую степень
Проще всего комплексное число возводить в степень используя показательную форму:
формула вытекает из формулы Муавра:
Вычисление корня степени n
Из формулы Муавра вытекает решение для корней степени n из комплексного числа:
,
всего получается n корней, где k = 0..n-1 — целое число, определяющее индекс корня. Корни располагаются на комплексной плоскости, как вершины правильного многоугольника.
Комплексные числа по шагам
Примеры комплексных выражений
- Деление комплексных чисел
-
(1-2i)/(1+4i)
- Умножение комплексных чисел
-
(5+4i)*(8-2i)
- Комплексные уравнения
-
z - |z| = 2 + i
-
(i + 5)*z - 2*i + 1 = 0
- Возведение комплексного числа в степень
-
i^15
-
(1 - 2*i)^32
- Квадратный корень из комплексного числа
-
sqrt(1-24*i)
- Кубический корень
-
cbrt(1-24*i)
- Корни четвертой и пятой степени
-
(1-11*i)^(1/4)
-
(1-11*i)^(1/5)
- Мнимая и действительная часть
-
im(re(x) + y)
- Комплексно-сопряженное число
-
conj(1 + 4j)
-
(3/2-3*sqrt(3)/2*i)/conj(-5/2-1/3*i)
- Реальная часть комплексного числа
-
re(1+I)
- Мнимая часть
-
im(1+I)
- Модуль комплексного числа
-
absolute(1+I)
- Аргумент
-
arg(1+I)
- Комплексный знак числа
-
sign(1+I)
Что умеет?
- Простые операции с комплексными числами
- Выполнять деление с подробным решением
- Находить разные формы комплексных чисел:
- Алгебраическую
- Тригонометрическую
- Показательную
- Модуль и аргумент комплексного числа
- Комплексно-сопряжённое к данному
- Геометрическую интерпретацию комплексного числа
Подробнее про Комплексное число
.
Указанные выше примеры содержат также:
- модуль или абсолютное значение: absolute(x) или |x|
-
квадратные корни sqrt(x),
кубические корни cbrt(x) -
тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
-
обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
арккотангенс acot(x) -
натуральные логарифмы ln(x),
десятичные логарифмы log(x) -
гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x),
гиперболический тангенс и котангенс tanh(x), ctanh(x) -
обратные гиперболические функции:
гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x) -
другие тригонометрические и гиперболические функции:
секанс sec(x), косеканс csc(x), арксеканс asec(x),
арккосеканс acsc(x), гиперболический секанс sech(x),
гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
гиперболический арккосеканс acsch(x) -
функции округления:
в меньшую сторону floor(x), в большую сторону ceiling(x) -
знак числа:
sign(x) -
для теории вероятности:
функция ошибок erf(x) (интеграл вероятности),
функция Лапласа laplace(x) -
Факториал от x:
x! или factorial(x) - Гамма-функция gamma(x)
- Функция Ламберта LambertW(x)
-
Тригонометрические интегралы: Si(x),
Ci(x),
Shi(x),
Chi(x)
Правила ввода
Можно делать следующие операции
- 2*x
- — умножение
- 3/x
- — деление
- x^2
- — возведение в квадрат
- x^3
- — возведение в куб
- x^5
- — возведение в степень
- x + 7
- — сложение
- x — 6
- — вычитание
- Действительные числа
- вводить в виде 7.5, не 7,5
Постоянные
- pi
- — число Пи
- e
- — основание натурального логарифма
- i
- — комплексное число
- oo
- — символ бесконечности