Заказать задачи по любым предметам можно здесь от 10 минут
Модуль и аргумент комплексного числа
Пусть задано комплексное число $ z = a+bi $.
Формула |
Модуль комплексного числа равен корню квадратному из суммы квадратов мнимой и действительной части и находится по формуле: $$ |z| = sqrt{a^2 + b^2} $$ |
Если комплексное число состоит только из действительной части $ z = a $, то его модуль равен $ |z| = |a| $.
Стоит заметить, что модуль комплексных чисел всегда неотрицательный $ |z| ge 0 $ и равен нулю $ |z| = 0 $, только в случае $ z = 0 $.
Формула |
Аргумент комплексного числа обозначается $ varphi = arg z $ и зависит от полуплоскости, в которой лежат числа $a,b$:
|
Введите комплексное число
Пример 1 Пример 2 Правила ввода
Пример 1 |
Найти модуль и аргумент комплексного числа $ z = 3 — 4i $. |
Решение |
Комплексное число состоит из действительной и мнимой части: $$ a = Re z = 3 $$ $$ b = Im z = -4 $$ Применяя формулу вычисления модуля получаем: $$ |z| = sqrt{a^2 + b^2} = sqrt{3^2 + (-4)^2} = sqrt{9+16} = 5 $$ Теперь вычисляем аргумент. Так как $a = 3 > 0$, то получаем аргумент: $$varphi = arctg frac{b}{a} = arctg frac{-4}{3} = -arctg frac{4}{3}.$$ |
Ответ |
$$ |z| = 5, varphi = -arctg frac{4}{3} $$ |
Пример 2 |
Найти модуль и аргумент комплексного числа $ z = 3i $ |
Решение |
В данном случае отсутствует действительная часть, а вернее она равна нулю: $$ a = Re z = 0 $$ Мнимая часть комплексного числа равна: $$ b = Im z = 3 $$ Вычисляем модуль по уже известной формуле: $$ |z| = sqrt{a^2 + b^2} = sqrt{0^2 + 3^2} = sqrt{9} = 3 $$ А вот аргумент здесь попадает под правило при $a = 0, b>0$ и значит равен $$varphi = frac{pi}{2}.$$ |
Ответ |
$$ |z| = 3, varphi = frac{pi}{2} $$ |
Пример 3 |
Найти модуль и аргумент комплексного числа $$ z = 1+sqrt{3}i $$ |
Решение |
Выписываем действительную и мнимую часть: $$ a = 1 $$ $$ b = sqrt{3} $$ Так как $ a > 0 $, то аргумент равен $$ varphi = arctg frac{sqrt{3}}{1} = arctg sqrt{3} = frac{pi}{3} $$ Находим модуль извлекая квадратный корень из суммы квадратов действительной и мнимой части: $$|z| = sqrt{1^2 + (sqrt{3})^2} = sqrt{1+3}=2.$$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ varphi = frac{pi}{3}, |z| = 2 $$ |
Пример 4 |
Найти аргумент комплексного числа $$ z = -1 + sqrt{3}i $$ |
Решение |
Действительная часть $$ a = Re z = -1 $$ Мнимая часть $$ b = Im z = sqrt{3} $$ Так как $ a < 0 $ и $ b > 0 $, то пользуемся второй формулой: $$ varphi = arg z = pi + arctg frac{sqrt{3}}{-1} = pi + arctg (-sqrt{3}) = $$ $$ = pi — arctg(sqrt{3}) = pi — frac{pi}{3} = frac{2pi}{3}. $$ |
Ответ |
$$ varphi = frac{2pi}{3} $$ |
Щебетун Виктор
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Определение 1
Длина радиус-вектора, который изображает заданное комплексное число $z=a+bi$, называется модулем данного комплексного числа.
Модуль заданного комплексного числа вычисляется по следующей формуле:
[r=|z|=|a+bi|=sqrt{a^{2} +b^{2} } .]
Пример 1
Вычислить модуль заданных комплексных чисел $z_{1} =13,, , z_{2} =4i,, , , z_{3} =4+3i$.
Решение:
Модуль комплексного числа $z=a+bi$ вычислим по формуле: $r=sqrt{a^{2} +b^{2} } $.
Для исходного комплексного числа $z_{1} =13$ получим $r_{1} =|z_{1} |=|13+0i|=sqrt{13^{2} +0^{2} } =sqrt{169} =13$
Для исходного комплексного числа $, z_{2} =4i$ получим $r_{2} =|z_{2} |=|0+4i|=sqrt{0^{2} +4^{2} } =sqrt{16} =4$
Для исходного комплексного числа $, z_{3} =4+3i$ получим $r_{3} =|z_{3} |=|4+3i|=sqrt{4^{2} +3^{2} } =sqrt{16+9} =sqrt{25} =5$
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Определение 2
Угол $varphi $, образованный положительным направлением вещественной оси и радиус-вектором $overrightarrow{OM} $, который соответствует заданному комплексному числу $z=a+bi$, называется аргументом данного числа и обозначается $arg z$.
Примечание 1
Модуль и аргумент заданного комплексного числа в явном виде используются при представлении комплексного числа в тригонометрической или показательной форме:
- $z=rcdot (cos varphi +isin varphi )$ — тригонометрическая форма;
- $z=rcdot e^{ivarphi } $ — показательная форма.
Пример 2
Записать комплексное число в тригонометрической и показательной формах, заданное следующими данными: 1) $r=3;varphi =pi $; 2) $r=13;varphi =frac{3pi }{4} $.
«Модуль и аргумент комплексного числа» 👇
Решение:
1) Подставим данные $r=3;varphi =pi $ в соответствующие формулы и получим:
$z=3cdot (cos pi +isin pi )$ — тригонометрическая форма
$z=3cdot e^{ipi } $ — показательная форма.
2) Подставим данные $r=13;varphi =frac{3pi }{4} $ в соответствующие формулы и получим:
$z=13cdot (cos frac{3pi }{4} +isin frac{3pi }{4} )$ — тригонометрическая форма
$z=13cdot e^{ifrac{3pi }{4} } $ — показательная форма.
Пример 3
Определить модуль и аргумент заданных комплексных чисел:
1) $z=sqrt{2} cdot (cos 2pi +isin 2pi )$; 2) $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$; 3) $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $; 4) $z=13cdot e^{ipi } $.
Решение:
Модуль и аргумент найдем, используя формулы записи заданного комплексного числа в тригонометрической и показательной формах соответственно
[z=rcdot (cos varphi +isin varphi );] [z=rcdot e^{ivarphi } .]
1) Для исходного комплексного числа $z=sqrt{2} cdot (cos 2pi +isin 2pi )$ получим $r=sqrt{2} ;varphi =2pi $.
2) Для исходного комплексного числа $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$ получим $r=frac{5}{3} ;varphi =frac{2pi }{3} $.
3) Для исходного комплексного числа $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $ получим $r=sqrt{13} ;varphi =frac{3pi }{4} $.
4) Для исходного комплексного числа $z=13cdot e^{ipi } $ получим $r=13;varphi =pi $.
Аргумент $varphi $ заданного комплексного числа $z=a+bi$ можно вычислить, используя следующие формулы:
[varphi =tgfrac{b}{a} ;cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } ;sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } .]
На практике для вычисления значения аргумента заданного комплексного числа $z=a+bi$ обычно пользуются формулой:
$varphi =arg z=left{begin{array}{c} {arctgfrac{b}{a} ,age 0} \ {arctgfrac{b}{a} +pi ,a
или решают систему уравнений
$left{begin{array}{c} {cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } } \ {sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } } end{array}right. $. (**)
Пример 4
Вычислить аргумент заданных комплексных чисел: 1) $z=3$; 2) $z=4i$; 3) $z=1+i$; 4) $z=-5$; 5) $z=-2i$.
Решение:
1) $z=3$
Так как $z=3$, то $a=3,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{0}{3} =arctg0=0.]
2) $z=4i$
Так как $z=4i$, то $a=0,b=4$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{4}{0} =arctg(infty )=frac{pi }{2} .]
3) $z=1+i$.
Так как $z=1+i$, то $a=1,b=1$. Вычислим аргумент исходного комплексного числа, решая систему (**):
[left{begin{array}{c} {cos varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } \ {sin varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } end{array}right. .]
Из курса тригонометрии известно, что $cos varphi =sin varphi =frac{sqrt{2} }{2} $ для угла, соответствующего первой координатной четверти и равного $varphi =frac{pi }{4} $.
4) $z=-5$
Так как $z=-5$, то $a=-5,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{0}{-5} +pi =arctg0+pi =0+pi =pi .]
5) $z=-2i$
Так как $z=-2i$, то $a=0,b=-2$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{-2}{0} =arctg(-infty )=frac{3pi }{2} .]
Примечание 3
Аргумент чисто мнимых чисел равен соответственно:
- $frac{pi }{2} $ с положительной мнимой частью;
- $frac{3pi }{2} $ с отрицательной мнимой частью.
Решение:
Число $z_{1} $ изображено точкой $(3;0)$, следовательно, длина радиус-вектора равна 3, т.е. $r=3$, а аргумент $varphi =0$ по примечанию 2.
Число $z_{2} $ изображено точкой $(-2;0)$, следовательно, длина соответствующего радиус-вектора равна 2, т.е. $r=2$, а аргумент $varphi =pi $ по примечанию 2.
Число $z_{3} $ изображено точкой $(0;1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{pi }{2} $ по примечанию 3.
Число $z_{4} $ изображено точкой $(0;-1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{3pi }{2} $ по примечанию 3.
Число $z_{5} $ изображено точкой $(2;2)$, следовательно, длина соответствующего радиус-вектора равна $sqrt{2^{2} +2^{2} } =sqrt{4+4} =sqrt{8} =2sqrt{2} $, т.е. $r=2sqrt{2} $, а аргумент $varphi =frac{pi }{4} $ по свойству прямоугольного треугольника.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Аргумент комплексного числа
ОПРЕДЕЛЕНИЕ
Угол (измеряемый в радианах) радиус-вектора точки, которая соответствует комплексному числу
на комплексной плоскости, называется аргументом числа
. В таком случае вещественные числа
комплексного числа
можно выразить через модуль
и аргумент
.
Геометрическая интерпретация комплексного числа
Если рассмотреть плоскость с прямоугольной системой координат, то любому комплексному числу можно сопоставить точку на этой плоскости с соответствующими координатами:
, и радиус-вектор
комплексного числа, т.е. вектор, соединяющий начало координат с точкой на плоскости, соответствующей числу.
Данная плоскость называется комплексной. Действительные числа располагаются на горизонтальной (вещественной) оси, мнимые части – на вертикальной (мнимой) оси.
ОПРЕДЕЛЕНИЕ
Модулем комплексного числа называется выражение
.
ПРИМЕР
Задание | Найти модуль числа |
Решение | Действительной частью комплексного числа |
Ответ |
Свойства аргумента
- Для комплексного числа
аргумент определяется с точностью до
.
Длязначение аргумента не определено.
- Главным значением аргумента называется число
. Для обратного числа выполняется свойство:
.
Аргумент в тригонометрической форме комплексного числа
ОПРЕДЕЛЕНИЕ
Тригонометрической формой комплексного числа , не равного нулю, называется запись
где
— модуль комплексного числа
.
ПРИМЕР
Задание | Найти аргумент комплексного числа |
Решение | Действительной частью комплексного числа Для нахождения тригонометрической формы записи комплексного числа нужно также найти его модуль. Модулем комплексного числа Следовательно, тригонометрическая форма комплексного числа имеет вид: |
Ответ | Аргумент равен |
Читайте также:
Извлечение корня из комплексного числа
Деление комплексных чисел
Умножение комплексных чисел
Геометрическая интерпретация комплексного числа
Формула Эйлера
Сложение комплексных чисел
Содержание:
- Комплексные числа
- Алгебраическая форма комплексного числа
- Действия над комплексными числами в алгебраической форме
- Геометрическая интерпретация комплексного числа
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- Показательная форма комплексного числа
- Что такое комплексное число
- Понятие о комплексном числе
- Арифметические операции над комплексными числами
- Отыскание комплексных корней уравнений
Комплексные числа
Комплексное число — это выражение вида a + bi, где a, b — действительные числа, а i — так называемая мнимая единица, символ, квадрат которого равен –1, то есть i2 = –1. Число a называется действительной частью, а число b — мнимой частью комплексного числа z = a + bi. Если b = 0, то вместо a + 0i пишут просто a. Видно, что действительные числа — это частный случай комплексных чисел.
Алгебраическая форма комплексного числа
На множестве действительных чисел ряд алгебраических задач, в частности нахождение корней квадратных уравнений с отрицательным дискриминантом, не имеет решения. Введём некоторое навое число, которое будем считать решением уравнения х2 + 1 = 0. Корень уравнения х2 + 1 = 0 или х2 = -1 называется мнимой единицей и обозначается буквой i. Таким образом i2 = -1.
В некоторых технических дисциплинах мнимую единицу обозначают буквой j. В дальнейшем будем использовать оба обозначения.
Мнимая единица позволяет ввести числа нового вида, которые называют комплексными.
Комплексным числом называют выражение вида , где
— действительные числа, i — мнимая единица.
Число называют действительной, а число
— мнимой частями комплексного числа. Комплексное число, как правило, обозначают буквой
. Два комплексных числа
называют равными тогда и только тогда, когда
, то есть когда равны их действительные части и коэффициенты при мнимой части.
Понятия «больше» и «меньше» для комплексных чисел не определено. Комплексное число называется нулём и обозначается 0; комплексное число
отождествляется с действительным числом
; комплексное число
называют чисто мнимым и обозначают
. Число 0 является единым числом, которое одновременно и является действительным, и чисто мнимое.
Комплексные числа называются сопряжёнными и обозначаются
и
. Например, в числе
, сопряжённым к нему будет число
, а для числа
сопряжённым будет число
.
Множество комплексных чисел принято обозначать буквой С. Запись комплексного числа в виде называется алгебраической формой комплексного числа.
Действия над комплексными числами в алгебраической форме
Сложение, вычитание, умножение комплексных чисел в алгебраической форме по правилам соответствующих действий над многочленами.
Пример 1. Найти сумму и произведение комплексных чисел
Решение: Сумму находим формальным сложением двучленов
произведение находим перемножив двучлены с последующей заменой
.
Ответ:
Легко увидеть, что слагаемое двух сопряжённых чисел является действительным числом:
Воспользуемся этим свойством для введения действия деления двух комплексных чисел.
При делении комплексных чисел , где
достаточно умножить числитель и знаменатель дроби
на число сопряжённое к знаменателю, то есть на
Пример 2. Даны комплексные числа и
Найдите разность
и частное
Решение:
Находим разность вычитанием двучленов
Чтобы найти частное умножим числитель и знаменатель на число, сопряжённое к знаменателю:
Ответ:
Действия над комплексными числами имеют следующие интересные свойства:
Доказательство выходит из определения сопряжённых чисел. Действительно,
Аналогично доказываются и другие приведённые свойства.
Возведение комплексного числа в степень выполняется по формулам возведения двучлена в степень. При этом следует учитывать, что
Например:
Пример 3. Найти комплексное число
Решение:
Выполнив в знаменателе возведение в степень, получим:
Умножив числитель и знаменатель на число, сопряжённое к знаменателю, то есть на -5-12i, получим:
Ответ: z = i.
Геометрическая интерпретация комплексного числа
Каждому комплексному числу можно поставить в соответствие упорядоченную пару действительных чисел
и наоборот. Такая упорядоченная пара действительных чисел определяет точку или вектор на плоскости.
Следовательно, комплексное число вида изображается на координатной плоскости точкой
или вектором, начало которого совпадает с началом координат, а конец с т. М.
Сама координата плоскости называется при этом комплексной плоскости, ось абсцисс — действительной осью, ось ординат — мнимой осью.
Например, изобразим числа
Представление комплексного числа как вектора на плоскости позволяет ввести понятие модуля и аргумента комплексного числа.
Модулем комплексного числа называют длину вектора, которая соответствует данному числу (обозначают r либо p).
Аргументом комплексного числа называют величину угла
между положительным направлением действительной оси и вектора, который соответствует данному комплексному числу.
Рассмотрим рисунок:
На основе теоремы Пифагора получаем
Например, комплексное число имеет модуль равный 10, так как
Аргумент комплексного числа , в отличии от модуля, вычисляется неоднозначно. Так аргументом числа 5 являются следующие углы
Среди бесконечного множества значений аргумента только одно принадлежит промежутку
. Эти значения аргумента мы и будем вычислять.
Аргумент легко вычислить, если комплексное число расположено в I четверти. Действительно, согласно тригонометрическим соотношениям в прямоугольном треугольнике (рис. 2) имеем:
Если комплексные числа размещены в других четвертях, то необходимо провести дополнительные рассуждения. Рассмотрим рис. 3. Видим, что для
Таким образом, алгоритм нахождения аргумента комплексного числа следующий:
1.Определить коэффициент заданного комплексного числа.
2. Найти
3. Установить, в какой четверти расположено комплексное число.
4. Вычислить аргумент согласно приведённым формулам.
Возможны и другие способы нахождения аргумента комплексного числа, например:
Пример 4. Найти аргумент комплексного числа
Тригонометрическая форма комплексного числа
Рассмотрим рис. 2. Согласно тригонометрическим соотношениям в прямоугольном треугольнике числа можно выразить через r и
таким образом:
Тогда комплексное число запишется в виде:
Запись комплексного числа в таком виде называется тригонометрической формой комплексного числа.
Следовательно, для того, чтобы перейти от алгебраической формы записи комплексного числа к тригонометрической, достаточно найти его модуль и аргумент.
Пример 5. Записать число в тригонометрической форме.
Решение:
Найдём модуль
Найдём острый угол
Вектор, который соответствует данному комплексному числу принадлежит третьей четверти, поэтому аргумент равен следовательно
Ответ:
Для того, чтобы перейти от тригонометрической формы записи комплексного числа к алгебраической, достаточно найти действительные числа
из формул
Пример 6. Записать число в алгебраической форме.
Найдём и
Ответ:
Действия над комплексными числами в тригонометрической форме
В тригонометрической форме записи комплексного числа выполняют действия умножения, деления, возведения в степень, извлечения корня n-й степени. Выведение формул, по которым выполняются действия, относительно просты и основываются на основных формулах тригонометрии.
Следовательно, при умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножают, а аргументы складывают; при делении — модули делят, а аргументы вычитают.
Правило умножения комплексных чисел автоматически распространяется на произвольное число множителей. Если взять равные множители
Полученную формулу называют формулой Муавра.
Для извлечении корня n-й степени из комплексного числа используют формулу:
где арифметический корень,
Пример 8. Вычислить Ответ записать в алгебраической форме.
Решение: Находим:
Ответ:
Пример 9. Вычислить
Решение: Запишем число в тригонометрической форме:
Пример 10. Вычислите . Ответ запишите в алгебраической и тригонометрической формах.
Решение: Запишем число -81 в тригонометрической форме:
Тогда:
Показательная форма комплексного числа
Рассматривая функцию для комплексной переменной, известный математик Л. Эйлер установил соотношение
Из заданной формулы следует, что каждое комплексное число можно записать в виде
которое называется показательной формой записи.
Над комплексными числами в показательной форме выполняют те же действия что и в тригонометрической форме. Выведение формул, по которым выполняют действия основывается на основных свойствах степени.
Пусть , тогда:
Пример 11. Представить число в алгебраической форме.
Решение: Согласно условию задачи , поэтому
значит
Ответ:
Пример 12. Выполнить действия, результат записать в тригонометрической и показательной формах:
Решение: Сначала выполним действия:
Теперь полученное число запишем в тригонометрической и показательной формах. Для этого найдём модуль и аргумент:
Тогда
Ответ:
Что такое комплексное число
Комплексные числа — это числа вида , где
— вещественные числа,
— мнимая единица, то есть число, для которого выполняется равенство:
Понятие о комплексном числе
Процесс расширения понятия числа от натуральных к действительным был связан как с потребностями практики, так и с нуждами самой математики. Сначала для счета предметов использовались натуральные числа. Необходимость выполнения деления привела к понятию обыкновенной (и десятичной) дроби, необходимость выполнения вычитания — к понятиям нуля и отрицательного числа, необходимость извлечения корней из положительных чисел — к понятию иррационального числа.
Все перечисленные операции выполнимы на множестве действительных чисел. Однако остались и невыполнимые на этом множестве операции, например извлечение квадратного корня из отрицательного числа. Значит, имеется потребность в дальнейшем расширении понятия числа, в появлении новых чисел, отличных от действительных.
Геометрически действительные числа изображаются точками на координатной прямой: каждому действительному числу соответствует одна точка прямой («образ» действительного числа) и, обратно, каждая точка координатной прямой соответствует одному действительному числу. Координатная прямая сплошь заполнена образами действительных чисел, т. е., выражаясь фигурально, «на ней нет места для новых чисел». Возникает предположение о том, что геометрические образы новых чисел надо искать уже не на прямой, а на плоскости. Однако каждую точку М координатной плоскости ху можно отождествить с координатами этой точки. Поэтому естественно в качестве новых чисел ввести упорядоченные пары действительных чисел (упорядоченные в том смысле, что — разные точки, а значит, и разные числа).
Комплексным числом называют всякую упорядоченную пару действительных чисел
Два комплексных числа называют равными тогда и только тогда, когда
Арифметические операции над комплексными числами
Суммой комплексных чисел
называют комплексное число
Например,
Комплексным нулем считают пару (0; 0). Числом, противоположным числу считают число
обозначают его
Разностью комплексных чисел называют, как обычно, такое число
Разность всегда существует и единственна. В самом деле, пусть
Тогда
Это значит, что
откуда находим
Таким образом, получаем следующее правило вычитания комплексных чисел:
Например, (9; 10) — (8; 12) = (9 — 8; 10 — 12) = (1;-2).
Произведением комплексных чисел называют комплексное число
Например, если то
Арифметические операции над комплексными числами обладают теми же свойствами, что арифметические операции над действительными числами (см. п. 29).
Пусть Существует, и только одно, комплексное число
такое, что
Это число и называют, как обычно, частным от деления z на w.
Имеем Так как
то должны выполняться равенства
Из этой системы двух уравнений с двумя переменными находим (см. п. 164) Итак,
Получили следующее правило деления комплексных чисел: если то
Например,
Алгебраическая форма комплексного числа
Используя введенные в п. 45 определения сложения и умножения комплексных чисел, легко получить следующие равенства:
Условились вместо писать просто
, а комплексное число (0; 1) обозначать буквой
и называть мнимой единицей. Тогда равенство (1) принимает вид
т. е.
а равенство (2) — вид
Запись называют алгебраической формой комплексного числа
при этом число
называют действительной частью комплексного числа z, a bi — его мнимой частью.
Например,
Если мнимая часть комплексного числа отлична от нуля, то число называют мнимым, если при этом
= 0, т. е. число имеет вид bi, то его называют чисто мнимым, наконец, если у комплексного числа
мнимая часть равна нулю, то получается действительное число
.
Алгебраическая форма существенно облегчает выполнение арифметических операций над комплексными числами.
Сложение. Известно (см. п. 45), что
Выполнив сложение тех же чисел в алгебраической форме, считая и с + di обычными двучленами, находим
Сравнивая равенства (7) и (8), замечаем, что получился верный результат.
Вычитание. Известно (см. п. 45), что
Выполнив вычитание тех же чисел в алгебраической форме, считая и с + di обычными двучленами, находим
Сравнивая равенства (9) и (10), замечаем, что получился верный результат.
Умножение. Известно (см. п. 45), что
Выполнив умножение тех же чисел в алгебраической форме, считая и с + di обычными двучленами, находим
Воспользуемся тем, что (см. равенство (5)); тогда
В результате получаем
Сравнивая равенства (11) и (12), замечаем, что получился верный результат.
Деление. Известно (см. п. 45), что если то
Выполним деление тех же чисел в алгебраической форме, считая и с + di обычными двучленами, a
— обычной дробью. Умножив числитель и знаменатель этой дроби на с — di (предполагая, что значение дроби от этого не изменится), находим
Итак,
Сравнивая равенства (13) и (14), замечаем, что получился верный результат.
Подводя итоги, приходим к следующему важному практическому выводу: над комплексными числами, записанными в алгебраической форме, можно осуществлять все арифметические операции как над обычными двучленами, учитывая лишь, что Чтобы преобразовать в комплексное число дробь вида
нужно числитель и знаменатель дроби умножить на число с — di; числа с + di и с — di называют комплексно-сопряженными.
Пример 1.
Вычислить
Решение:
Применив формулу , получим
Пример 2.
Вычислить
Решение:
Пример 3.
Найти действительные числа х и у такие, что выполняется равенство
Решение:
Имеем
Тогда заданное равенство можно переписать в виде
Комплексные числа равны тогда и только тогда, когда равны их действительные части (
= с) и коэффициенты при мнимых частях (Ь = d). Значит, приходим к системе уравнений
из которой находим (см. п. 164)
Пример 4.
Найти комплексные числа z, удовлетворяющие равенству
Решение:
Будем искать комплексное число z в виде х + yi. Имеем
Из последнего равенства следует, что
Эта система имеет два решения (см. п. 164): (2; 3) и (-2; -3). Значит,
Пример 5.
Вычислить
Решение:
Имеем (см. п. 58)
Значит,
Далее, имеем
Значит,
Отыскание комплексных корней уравнений
Пусть > 0. Так как
Тем самым мы получаем возможность извлекать квадратные корни из отрицательных действительных чисел. Это позволяет находить не только действительные, но и мнимые корни уравнений.
Пример 1.
Решить уравнение
Решение.
Имеем (см. п. 137)
Итак,
Пример 2.
Решить уравнение
Решение.
Имеем Значит, либо х — 2 = 0, откуда находим
либо
откуда находим
Итак,
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
- Математика решение заданий и задач
Смотрите также дополнительные лекции по предмету «Математика»:
Лекции:
- Производная сложной функции
- Многоугольники
- Арифметические операции над пределами
- Метод Гаусса: пример решения
- Производные показательной и логарифмической функций
- Уравнение окружности и прямой
- Область определения функции примеры решения
- Неопределенный интеграл
- Тригонометрические функции углов прямоугольного треугольника
- Решение треугольников
Комплексные числа в тригонометрической
и показательной формах
Тригонометрическая форма комплексного числа
Каждому комплексному числу геометрически соответствует точка
на плоскости
. Но положение точки на плоскости, кроме декартовых координат
, можно зафиксировать другой парой — ее полярных координат
в полярной системе (рис. 1.3,a).
Величина является неотрицательной и для данной точки определяется единственным образом, а угол
может принимать бесчисленное множество значений (при этом
): если точке соответствует некоторое значение
, то ей также соответствуют значения
. Например, если для точки
(см. рис. 1.1) выбрать
, то ей соответствует любое
, в частности
при
. Если же выбрать
, то
, а при
получаем
.
Используя связь декартовых и полярных координат точки (рис. 1.3,б), из алгебраической формы записи комплексного числа
получаем тригонометрическую форму:
(1.3)
Показательная форма комплексного числа
Если обозначить комплексное число , у которого
, а
, через
, то есть
, то из (1.3) получим показательную форму записи комплексного числа:
(1.4)
Равенство называется формулой Эйлера.
Заметим, что геометрически задание комплексного числа равносильно заданию вектора
, длина которого равна
, то есть
, а направление — под углом
к оси
(рис. 1.3,б).
Модуль комплексного числа
Число — длина радиуса-вектора точки
называется модулем комплексного числа
. Обозначение:
.
Из рис. 1.3,б получаем формулу для нахождения модуля числа, заданного и алгебраической форме
(1.5)
Очевидно, что и
только для числа
.
С помощью правила вычитания запишем модуль числа , где
и
А это, как известно, есть формула для расстояния между точками и
.
Таким образом, число есть расстояние между точками
и
на комплексной плоскости.
Пример 1.13. Найти модули комплексных чисел:
Решение
Аргумент комплексного числа
Полярный угол точки
называется аргументом комплексного числа
. Обозначение:
.
В дальнейшем, если нет специальных оговорок, под будем понимать значение
, удовлетворяющее условию
. Так, для точки
(см. рис. 1.1)
.
Формулу для нахождения аргумента комплексного числа , заданного в алгебраической форме, получаем, используя связь декартовых и полярных координат точки
(см. рис. 1.3,б). Для точек, не лежащих на мнимой оси, т.е. для
, у которых
, получаем
; для точек мнимой положительной полуоси, т.е. для
, у которых
, имеем
; для точек мнимой отрицательной полуоси, т.е. для
, у которых
, соответственно
.
Аргумент числа — величина неопределенная.
Нахождение аргумента при сводится к решению тригонометрического уравнения
. При
, т.е. когда
— число действительное, имеем
при
и
при
. При
решение уравнения зависит от четверти плоскости
. Четверть, в которое расположена точка
, определяется по знакам
и
. В результате получаем:
(1.6)
При решении примеров удобно пользоваться схемой, которая изображена на рис. 1.5.
Пример 1.14. Найти аргументы чисел из примера 1.13.
Решение
Пример 1.15. Найти модуль и аргумент числа .
Решение. Находим . Так как
, т.е. точка расположена в четвертой четверти, то из равенства
получаем
(рис. 1.5).
Главное значение аргумента комплексного числа
Аргумент комплексного числа определяется неоднозначно. Это следует из неоднозначности задания величины угла для данной точки, а также из тригонометрической формы записи комплексного числа и свойства периодичности функций
и
.
Всякий угол, отличающийся от на слагаемое, кратное
, обозначается
и записывается равенством:
(1.7)
где — главное значение аргумента,
.
Пример 1.16. Записать и
для чисел
.
Решение. Числа и
— действительные, расположены на действительной оси (рис. 1.6), поэтому
числа и
— чисто мнимые, расположены на мнимой оси (рис. 1.6), поэтому
Пример 1.17. Записать комплексные числа из примера 1.16:
а) в тригонометрической форме;
б) в показательной форме.
Решение
Модули всех чисел, очевидно, равны 1. Поэтому, используя решение предыдущего примера и формулы (1.3) и (1.4), получаем:
а)
б) .
Пример 1.18. Записать в тригонометрической форме числа .
Решение
Числа и
записаны в алгебраической форме (заметим, что заданная запись числа
не является тригонометрической формой записи (сравните с (1.3)). Находим модули чисел по формуле (1.5):
Далее находим аргументы. Для числа имеем
и, так как
(точка расположена в третьей четверти), получаем
(см. рис. 1.5). Для числа
имеем
, или
, и, так как
(точка расположена в четвертой четверти (см. рис. 1.5)), получаем
.
Записываем числа и
в тригонометрической форме
Заметим, что для числа решение можно найти иначе, а именно используя свойства тригонометрических функций:
.
Число является произведением двух чисел. Выполнив умножение, получим алгебраическую форму записи (найдем
и
):
. Здесь, как и для числа
, при решении удобно использовать преобразования тригонометрических выражений, а именно
.
Рассуждая, как выше, найдем . Для числа
, записанного в алгебраической форме, получаем тригонометрическую форму:
Равенство комплексных чисел в тригонометрической форме
Условия равенства комплексных чисел получаем, используя геометрический смысл модуля и аргумента комплексного числа, заданного в тригонометрической форме. Так, для чисел
из условия
. очевидно, следует:
или
(1.8)
Аргументы равных комплексных чисел либо равны (в частности равны главные значения), либо отличаются на слагаемое, кратное .
Для пары сопряженных комплексных чисел и
справедливы следующие равенства:
(1.9)
Умножение комплексных чисел в тригонометрической форме
Зададим два комплексных числа в тригонометрической форме и
и перемножим их по правилу умножения двучленов:
или
Получили новое число , записанное в тригонометрической форме:
, для которого
.
Правило умножения. При умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножаются, а аргументы складываются:
(1.10)
В результате умножения чисел может получиться аргумент произведения, не являющийся главным значением.
Пример 1.19. Найти модули и аргументы чисел:
Решение
Каждое из заданных чисел записано в виде произведения. Найдем модули и аргументы сомножителей и воспользуемся правилом (1.10) умножения чисел, заданных в тригонометрической форме:
Для чисел и
находим модули и аргументы:
. Используя формулы (1.10), получаем
б) . Для числа
имеем:
; для числа
, и так как
(точка расположена в четвертой четверти), то
. Используя формулы (1.10), получаем
.
Заметим, что для решения этой задачи можно раскрыть скобки, записать каждое число в алгебраической форме, а затем найти и
, используя формулы (1.5), (1.6).
Деление комплексных чисел в тригонометрической форме
Рассмотрим частное комплексных чисел , заданных в тригонометрической форме. Из определения частного
имеем
и, применяя к произведению правило умножения (формулы (1.10)), получаем
.
Правило деления. Модуль частного, полученного в результате деления чисел, заданных в тригонометрической форме, равен частному от деления модуля числителя на модуль знаменателя, а аргумент частного равен разности аргументов делимого и делителя:
(1.11)
В результате деления чисел по формуле (1.11) может получиться аргумент честного, не являющийся главным значением.
Пример 1.20. Записать в тригонометрической форме комплексное число .
Решение. Обозначим . Для чисел
и
находим модули и аргументы:
(см. пример 1.19). По формуле (1.11) получаем
и
Возведение в степень комплексного числа в тригонометрической форме
Из определения степени и правила умножения чисел, записанных в тригонометрической форме (формула (1.10)), получаем
, где
.
Правило возведения в степень. При возведении в степень комплексного числа в эту степень возводится модуль числа, а аргумент умножается на показатель степени:
(1.12)
Записывая число в тригонометрической форме
, получаем формулу возведения в степень:
(1.13)
При это равенство принимает вид и называется формула Муавра
(1.14)
Пример 1.21. Найти модуль и аргумент комплексного числа .
Решение. Обозначим . Находим модуль и аргумент числа
. Поэтому
и
. Так как по определению для главного значения аргумента выполняется условие
, то
.
Пример 1.22. Записать в тригонометрической форме число .
Решение
Пример 1.23. Используя формулу Муавра, найти выражения для и
через тригонометрические функции угла
.
Решение
Из формулы (1.14) при имеем
. Возведем левую часть в степень, учитывая, что
(см. пример 1.8):
Используя условие равенства комплексных чисел, получаем:
Извлечение корня из комплексного числа в тригонометрической форме
Рассмотрим задачу извлечения корня из комплексного числа, заданного в показательной или тригонометрической форме , или
. Искомое число
также запишем в показательной форме:
. Используя определение операции извлечения корня
и условия (1.8), получаем соотношения
или
(1.15)
Правило извлечения корня. Чтобы извлечь корень из комплексного числа, нужно извлечь корень (арифметический) той же степени из модуля данного числа, а аргумент разделить на показатель корня:
(1.16)
Теперь можно записать число в показательной форме:
Если записать это соотношение в тригонометрической форме, то, учитывая периодичность тригонометрических функций, нетрудно убедиться, что выражение принимает только
различных значений. Для их записи достаточно в формуле (1.15) взять
последовательных значений
, например
. В результате получаем формулу извлечения корня из комплексного числа в тригонометрической форме, где
:
(1.17)
Замечания 1.1
1. Рассмотренная задача извлечения корня степени из комплексного числа равносильна решению уравнения вида
, где, очевидно,
.
Для решения уравнения нужно найти значений
, а для этого необходимо найти
и использовать формулу извлечения корня.
2. Исследование формулы (1.17) показывает, что все комплексные числа (значения
) имеют равные модули, т.е. геометрически расположены на окружности радиуса
. Аргументы двух последовательных чисел отличаются на
, так как
, т.е. каждое последующее значение
может быть получено из предыдущего
поворотом радиуса-вектора точки
на
.В этом заключается геометрический смысл формулы (1.17), что можно сформулировать следующим образом.
Точки, соответствующие значениям , расположены в вершинах правильного n-угольника, вписанного в окружность с центром в начале координат, радиус которой
, причем аргумент одного из значений
равен
(рис. 1.7).
Алгоритм решения комплексных уравнений вида z^n-a=0
1. Найти модуль и аргумент числа .
2. Записать формулу (1.17) при заданном значении .
3. Выписать значения корней уравнения , придавая значения
.
Пример 1.24. Решить уравнения: a) ; б)
.
Решение
Задача равносильна задаче нахождения всех значений корня из комплексного числа. Решаем в каждом случае по алгоритму.
а) Найдем .
1. Определим модуль и аргумент числа .
2. При полученных значениях и
записываем формулу (1.17):
Заметим, что справа стоит — арифметический корень, его единственное значение равно 1.
3. Придавая последовательно значения от 0 до 5, выписываем решения уравнения:
Геометрически соответствующие точки расположены в вершинах правильного шестиугольника, вписанного в окружность радиуса , одна из точек (соответствует
)
. Строим шестиугольник (рис. 1.8,в). Отметим свойства корней этого уравнения с действительными коэффициентами — его комплексные корни являются попарно сопряженными:
и
— действительные числа.
б) Найдем .
1. Определим модуль и аргумент числа .
2. По формуле (1.17) имеем
3. Выписываем корни .
Для геометрического представления решения уравнения достаточно изобразить одно значение, например (при
) — это точка окружности
, лежащая на луче
. После этого строим правильный треугольник, вписанный в окружность
(рис. 1.8,б).
Пример 1.25. Найти корень уравнения , для которого
.
Решение
Задача равносильна задаче нахождения при условие
.
1. Находим модуль и аргумент числа .
2. По формуле (1.17) имеем: .
3. Для нахождения искомого решения нет необходимости выписывать все значения корня. Нужно выбрать значение , при котором выполняется условие
(соответствующая точка — точка второй четверти). Удобно при этом использовать чертеж (рис. 1.9).
Условию поставленной задачи удовлетворяет корень (при
):
.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.