Как найти арксинус по окружности

Арксинус, арккосинус, арктангенс и арккотангенс – начальные сведения

Задача, обратная нахождению значения синуса, косинуса, тангенса и котангенса данного угла (числа), подразумевает нахождение угла (числа) по известным значениям тригонометрических функций. Она приводит к понятиям арксинуса, арккосинуса, арктангенса и арккотангенса числа.

В этой статье мы дадим определения арксинуса, арккосинуса, арктангенса и арккотангенса числа, введем принятые обозначения, а также приведем примеры арксинуса, арккосинуса, арктангенса и арккотангенса. В заключение упомянем про аркфункции и покажем, как арксинус, арккосинус, арктангенс и арккотангенс связаны с единичной окружностью.

Навигация по странице.

Определения, обозначения, примеры

Арксинус, арккосинус, арктангенс и арккотангенс можно определить как угол и как число. Это связано с тем, что мы определили синус, косинус, тангенс и котангенс как угла, так и числа (смотрите синус, косинус, тангенс и котангенс в тригонометрии). Остановимся на обоих подходах к определению арксинуса, арккосинуса, арктангенса и арккотангенса.

Арксинус, арккосинус, арктангенс и арккотангенс как угол

Пусть про угол альфа α известно лишь то, что его синус равен числу 1/2 , то есть, sinα=1/2 . Последнее равенство определяет угол α неоднозначно, так как ему удовлетворяет бесконечное множество углов α=(−1) k ·30°+180°·k ( α=(−1) k ·π/6+π·k ), где k∈Z . Однако, если потребовать, чтобы величина угла α в градусах принадлежала отрезку [−90, 90] (в радианах – отрезку [−π/2, π/2] ), то равенство sinα=1/2 будет определять угол альфа однозначно. При этом условии равенству удовлетворяет единственный угол в 30 градусов ( π/6 радианов).

Вообще, равенство sinα=a (не путайте a и альфа: a и α ) при любом числе a∈[−1, 1] и условии −90°≤α≤90° ( −π/2≤α≤π/2 ) определяет единственный угол α . Этот угол называют арксинусом числа a .

Арксинус числа a∈[−1, 1] – это угол −90°≤α≤90° ( −π/2≤α≤π/2 ), синус которого равен a .

Аналогично определяются арккосинус, арктангенс и арккотангенс.

Арккосинус числа a∈[−1, 1] – это угол 0°≤α≤180° ( 0≤α≤π ), косинус которого равен a .

Арктангенс числа a∈(−∞, +∞) – это угол −90° ( −π/2 ), тангенс которого равен a .

Арккотангенс числа a∈(−∞, +∞) – это угол 0° ( 0 ), котангенс которого равен a .

Для записи арксинуса, арккосинуса, арктангенса и арккотангенса приняты следующие обозначения: arcsin , arccos , arctg и arcctg . То есть, арксинус числа a можно записать как arcsin a , арккосинус, арктангенс и арккотангенс числа a запишутся соответственно как arccos a , arctg a и arcctg a .

Также можно встретить обозначения arctan и arccot , они являются другой формой обозначения арктангенса и арккотангенса, которая принята в англоязычной литературе. Мы же арктангенс и арккотангенс будем обозначать как arctg и arcctg .

В свете введенных обозначений, определения арксинуса, арккосинуса, арктангенса и арккотангенса числа можно записать более формально:

arcsin a , a∈[−1, 1] , есть такой угол α , что −90°≤α≤90° ( −π/2≤α≤π/2 ) и sinα=a ;

arccos a , a∈[−1, 1] , есть такой угол α , что 0°≤α≤180° ( 0≤α≤π ) и cosα=a ;

arctg a , a∈(−∞, +∞) , есть такой угол α , что −90° ( −π/2 ) и tgα=a ;

arcctg a , a∈(−∞, +∞) , есть такой угол α , что 0° ( 0 ) и ctgα=a .

Подчеркнем, что арксинус и арккосинус числа определен для чисел, принадлежащих отрезку [−1, 1] , для остальных чисел арксинус и арккосинус не определен. Например, не имеет смысла запись arcsin2 . Аналогично не определен арксинус пяти, арксинус минус корня из трех, арккосинус семи целых двух третьих и арккосинус минус пи, так как числа 2 , 5 , , −π выходят за пределы числового отрезка от −1 до 1 . В свою очередь записи arctg a и arcctg a имеют смысл для любого действительного числа a , например, имеют смысл записи arctg0 , arctg(−500,2) , arcctg(6·π+1) и т.п.

Теперь можно привести примеры арксинуса, арккосинуса, арктангенса и арккотангенса числа.

Начнем с примеров арксинуса. Определение арксинуса позволяет утверждать, что угол π/3 является арксинусом числа , то есть, (здесь и α=π/3 ). Действительно, число принадлежит отрезку [−1, 1] , угол π/3 лежит в пределах от −π/2 до π/2 и . Приведем еще несколько примеров арксинуса числа: arcsin(−1)=−90° , arcsin(0,5)=π/6 , .

А вот π/10 не является арксинусом 1/2 , так как sin(π/10)≠1/2 . Еще пример: несмотря на то, что синус 270 градусов равен −1 , угол 270 градусов не является арксинусом минус единицы, так как 270 градусов не является углом в пределах от −90 до 90 градусов. Более того, угол 270 градусов вообще не может быть арксинусом какого-либо числа, так как арксинус числа должен лежать в пределах от −90 до 90 градусов.

Для полноты картины приведем примеры арккосинуса, арктангенса и арккотангенса числа. Например, угол 0 радианов является арккосинусом единицы, то есть, arccos1=0 (так как выполняются все условия из определения арккосинуса: число 1 принадлежит отрезку от −1 до 1 , угол нуль радианов лежит в пределах от нуля до пи включительно и cos0=1 ). Аналогично, угол π/2 есть арккосинус нуля: arccos0=π/2 . По определению арктангенса числа arctg(−1)=−π/4 или arctg(−1)=−45° . Арктангенс корня из трех равен 60 градусам ( π/3 рад). А из определения арккотангенса можно заключить, что arcctg0=π/2 , так как угол π/2 лежит в рамках от 0 до пи и ctg(π/2)=0 .

Подобный подход к определению арксинуса, арккосинуса, арктангенса и арккотангенса описан в учебнике Кочеткова [1, с. 260-278] .

Арксинус, арккосинус, арктангенс и арккотангенс как число

Когда мы имеем дело с синусом, косинусом, тангенсом и котангенсом угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять как угол. Если же мы начинаем говорить про синус, косинус, тангенс и котангенс числа, а не угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять уже как число.

Арксинусом числа a∈[−1, 1] называется такое число t∈[−π/2, π/2] , синус которого равен a .

Обратная тригонометрическая функция: Арксинус (arcsin)

Определение

Арксинус (arcsin) – это обратная тригонометрическая функция.

Арксинус x определяется как функция, обратная к синусу x , при -1≤x≤1.

Если синус угла у равен х (sin y = x), значит арксинус x равняется y :

Примечание: sin -1 x означает обратный синус, а не синус в степени -1.

Например:

arcsin 1 = sin -1 1 = 90° (π/2 рад)

График арксинуса

Функция арксинуса пишется как y = arcsin (x) . График в общем виде выглядит следующим образом ( -1≤x≤1 , -π/2≤y≤π/2 ):

Свойства арксинуса

Ниже в табличном виде представлены основные свойства арксинуса с формулами.

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos ( 1 2 ) = π 3 .

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin ( — π 2 ) = — 1 , sin ( — π 3 ) = — 3 2 , sin ( — π 4 ) = — 2 2 , sin ( — π 6 ) = — 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от — 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

в р а д и а н а х

α — 1 — 3 2 — 2 2 — 1 2 0 1 2 2 2 3 2
a r c sin α к а к у г о л — π 2 — π 3 — π 4 — π 6 0 π 6 π 4 π 3
в г р а д у с а х — 90 ° — 60 ° — 45 ° — 30 ° 0 ° 30 ° 45 ° 60 °
a r c sin α к а к ч и с л о — π 2 — π 3 — π 4 — π 6 0 π 6 π 4 π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = — 1 2 , cos 3 π 4 = — 2 2 , cos 5 π 6 = — 3 2 , cos π = — 1

Следуя из таблицы, находим значения арккосинуса:

a r c cos ( — 1 ) = π , arccos ( — 3 2 ) = 5 π 6 , arcocos ( — 2 2 ) = 3 π 4 , arccos — 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0

в р а д и а н а х

α — 1 — 3 2 — 2 2 — 1 2 0 1 2 2 2 3 2 1
a r c cos α к а к у г о л π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0
в г р а д у с а х 180 ° 150 ° 135 ° 120 ° 90 ° 60 ° 45 ° 30 ° 0 °
a r c cos α к а к ч и с л о π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α — 3 — 1 — 3 3 0 3 3 1 3
a r c t g a к а к у г о л в р а д и а н а х — π 3 — π 4 — π 6 0 π 6 π 4 π 3
в г р а д у с а х — 60 ° — 45 ° — 30 ° 0 ° 30 ° 45 ° 60 °
a r c t g a к а к ч и с л о — π 3 — π 4 — π 6 0 π 6 π 4 π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

a r c sin , a r c cos , a r c t g и a r c c t g

Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin ( — α ) = — a r c sin α , a r c cos ( — α ) = π — a r c cos α , a r c t g ( — α ) = — a r c t g α , a r c c t g ( — α ) = π — a r c c t g α .

Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном a r c sin α = — π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:

a r c cos α = π 2 − a r c sin α = π 2 − ( − π 12 ) = 7 π 12 .

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.

При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

источники:

Обратная тригонометрическая функция: Арксинус (arcsin)

http://zaochnik.com/spravochnik/matematika/trigonometrija/nahozhdenie-znachenij-arksinusa-arkkosinusa-arktan/

План урока: 

Арккосинус

Арксинус

Арктангенс

Решение уравнения cosx = a

Решение уравнения sinx = a

Решение уравнений tgx = a и ctgx = a

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

1ghfhjkk

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1<а < 1, то должно получиться две точки, которым соответствуют два противоположных угла:

2hgjhj

Получается, что каждому значению числа а соответствует некоторый угол α. А если есть соответствие, то есть и функция:

α = f (a)

В математике ее называют арккосинусом. Записывается она так:

3hgfgh

Вертикальная прямая может пересекать единичную окружность в двух разных точках. Им соответствуют разные углы. Принято считать, что арккосинус – это значение того угла, который лежит в первой или второй четверти, то есть ему соответствует точка, лежащая выше оси Ох. Тогда другая точка пересечения будет соответствовать углу (– arccosa):

4gfgh

Выходит, что арккосинус может принимать только значения из отрезка [0; π]. Дадим определение арккосинуса:

5gfdhg

Задание. Вычислите арккосинус числа 1/2.

Решение. Мы помним, что косинус угла π/3 равен 1/2:

6gfgjhj

Следовательно, arccos 1/2 – это и есть угол π/3:

7fdfg

Ответ: π/3.

Обратим внимание, что если число а равно 1 или (– 1), то его арккосинус равен нулю в первом случае и π во втором:

8gfghfgh

В тех случаях, когда а > 1 либо а <– 1, то соответствующая прямая не пересечет единичную окружность. Это значит, что эти значения не входят в область определения арккосинуса:

9gfghh

Получается, что область определения арккосинуса – это промежуток [– 1; 1].

Для вычисления арккосинусов от отрицательных величин удобно пользоваться формулой

10gfdty

Действительно, если отложить на координатной прямой числа а и (– а), то вертикальные прямые, проходящие через них, пересекут окружность в некоторых точках А и С:

11fdty

Дополнительно обозначим буквой В точку с координатами (1; 0) и буквой D точку с координатами (– 1; 0). Эти точки располагаются на пересечении оси Ох и единичной окружности. Тогда можно записать, что

12fgfhgj

ведь эти два угла образуют вместе развернутый угол ВОD, равный π. С другой стороны, из симметрии очевидно, что углы ∠COD и ∠АОВ равны друг другу, значит, ∠COD = ∠АОВ = arccosa. Тогда

13fgghhjghj

Но ∠СОВ – это арккосинус от (– а), поэтому

14gdfgty

15hfyu

Задание. Вычислите arccos (– 1/2).

Решение. Используем только что полученную формулу:

16hyutyu

17hgyuty

Ответ: 2π/3.

Арксинус

Арккосинус – это ф-ция, обратная косинусу. Аналогично можно вести и другие обратные тригонометрические ф-ции. Пусть нам требуется узнать, синус какого угла равен числу а. Так как синус – это координата у точки на единичной окружности, то достаточно провести горизонтальную линию у = а:

18bgfhy

Прямая может пересечь окружность сразу в двух точках. За арксинус принимают угол, соответствующей точке, расположенной правее оси Оу. Вторая же точка соответствует углу π – arcsin α:

19gnhjjk

Арксинус может быть вычислен и для отрицательного значения а. В этом случае точка пересечения прямой и окружности будет располагаться в IV четверти, а соответствующий ему угол окажется отрицательным:

20nhkjk

При значениях а, равных (– 1) и 1, точка пересечения будет только одна. В этих случаях арксинус окажется равным либо углу π/2, либо углу (– π/2):

21bghjk

Таким образом, арксинус может принимать значения из отрезка [– π/2; π/2], а вычислить его можно для чисел а, принадлежащих отрезку [– 1; 1]. Если же число а выходит за пределы этого промежутка, то горизонтальная прямая не пересекает единичную окружность, а потому ф-ция арксинуса становится неопределенной:

22hghjt

Получается, что областью определения арксинуса является промежуток [– 1; 1], а областью значений – промежуток [– π/2; π/2].

Дадим определение арксинусу:

23gfghy

Задание. Чему равен arcsin0,5?

Решение. Мы знаем, что sinπ/6 = 1/2 = 0,5. Следовательно, арксинус 0,5 равен π/6.

24bgfhy

Для вычисления арксинусов отрицательных углов используется формула

25bgj

Справедливость этой формулы очевидна из картинки:

26bghj

27nhgkjk

Задание. Вычислите arcsin (– 0,5).

Решение. Используем формулу для арксинуса отрицательного числа:

28bgjhj

Арктангенс

Введем ф-цию, обратную тангенсу. Она называется арктангенс.

Напомним, что величину тангенса на координатной плоскости можно получить, если продолжить угол до его пересечения с вертикальной прямой х = 1. Аналогично, чтобы определить арктангенс некоторого числа а, надо отметить на этой прямой точку с координатами (1; а) и соединить её с началом координат:

29bghjf

Несложно видеть, что, какое бы число а нами не было выбрано, мы с помощью построения всегда сможем соединить точку А с началом координат и получить некоторый угол arctga. Это значит, что область определения арктангенса – это вся числовая прямая, то есть промежуток (– ∞; + ∞).

Ещё раз уточним, что вводимые нами функции arcos, arcsin, arctg называются ОБРАТНЫМИ тригонометрическими функциями. C их помощью можно определить угол, если известно значение его синуса, косинуса или тангенса.Образно говоря, обратные триг-кие функции играют в тригонометрии ту же роль, что и квадратные корни при исследовании квадратных ур-ний. Как без квадратных корней невозможно решать квадратные ур-ния, так и без знания об обратных триг-ких функций нельзя решать уже тригом-кие уравнения.

Теперь вернемся к понятию арктангенса. При положительном значении числа а угол arctga будет принадлежать I четверти. Если же а – отрицательное число, то угол arctga окажется также отрицательным и будет принадлежать IV четверти:

30ghjuk

Получается, что величина arctgа может принадлежать промежутку (– π/2; π/2). Обратите внимание, что в данном случае у промежутка круглые скобки. Действительно для углов (– π/2) и π/2 тангенс не определен, а потому арктангенс не может принимать эти два значения.

31gfgh

Задание. Чему равен arctg 1?

Решение. Из таблицы тангенсов мы знаем, что tgπ/4 = 1. Это значит, что

32bgfhgj

Для вычисления арктангенсов отрицательных чисел используют формулу

33bgj

В ее справедливости можно убедиться, взглянув на рисунок:

34gfhj

35nghjh

Задание. Вычислите arctg (– 1).

Решение.

36nhgh

Ответ: – 1

В принципе можно ввести ещё ф-цию, обратную котангенсу – арккотангенс. Однако для решения тригонометрических уравнений, как мы убедимся далее, она не требуется, а поэтому в рамках школьного курса математики ее можно не изучать.

В заключение приведем таблицы, которые помогают вычислять значение обратных тригон-ких функций:

37nfgjhj

Решение уравнения cosx = a

Рассмотрим тригонометрическое уравнение, в левой части которого стоит ф-ция cosx, а в правой – число, например, 0,5:

38hfgh

По определению арккосинуса очевидно, что arccos 0,5 будет его решением, ведь

39hgfgh

Так как arccos 0,5 = π/3, то мы находим очевидный корень х = π/3. И действительно, если подставить это значение в исходное ур-ние, то получится верное равенство:

40gfyu

Значит ли это, что мы решили ур-ние? Нет, ведь мы нашли только один корень, а их может быть несколько. Проведем на единичной окружности вертикальную прямую х = 0,5 и посмотрим, где она пересечет окружность:

41gfdyu

Видно, что есть ещё одна точка пересечения, соответствующая углу (– arccos 0,5). Это значит, что этот угол также является решением ур-ния. Проверим это:

42gfjhj

Здесь мы использовали тот факт, косинус – четная функция, то есть

43gfgjhj

Итак, число – π/3 также является корнем ур-ния. Есть ли ещё какие-нибудь корни? Оказывается, есть. Построим график ф-ции у = cosx и посмотрим, где ее пересекает прямая у = 0,5:

44hgfjhj

Оказывается, прямая пересекает график в бесконечном количестве точек! Это связано с периодичностью ф-ции у = cosx. Период этой ф-ции равен 2π, то есть

45bgjhj

Поэтому, если число π/3 является решением ур-ния, то так же решением будут и число π/3 + 2π. Но к этому числу можно ещё раз добавить 2π и получить число π/3 + 4π. И оно тоже будет корнем. С другой стороны, период можно не только добавлять, но и вычитать, поэтому корнями ур-ния окажутся числа π/3 – 2π, π/3 – 4π и т.д. Как же записать все эти бесчисленные решения? Для этого используется такая запись:

46hhkjk

Запись «π/3+ 2πn» называется серией решений. Она включает в себя бесконечное количество значений х, которые обращают ур-ние в справедливое равенство. Достаточно выбрать любое целое число и подставить его в серию решений. Например, при n = 0 получим решение

47hgfj

При n = 5 получим корень

48hgjj

При n = – 10 у нас получится решение

49jhkjk

Однако помимо серии х = π/3 + 2πn решениями ур-ния будет определять ещё одна серия:

50hgfyu

Действительно, число (– π/3) является корнем, но не входит в первую серию. Поэтому оно порождает собственную серию корней. Так, подставив в эту серию n = 4, получим корень

51ghjhj

Итак, решением ур-ния являются две серии решений. Заметим, что каждой серии решений с периодом 2π соответствует ровно одна точка на единичной окружности:

52hjkjk

Объединить же обе серии можно одной записью:

53ghyu

Напомним, что мы решали ур-ние

54gfhyu

и получили для него решение

55bggfh

Число π/3 появилось в записи по той причине, что arccos 0,5 = π/3. Поэтому в общем случае, когда ур-ние имеет вид

56hgi

где а – некоторое число, его решением будут все такие х, что

57jhjk

58jyui

Для краткости запись «n– целое число» заменяют эквивалентной записью

«n ∈ Z»

Напомним, что буквой Z обозначают множество целых чисел.

Задание. Решите ур-ние

59nhgj

Решение. Вспомним, что

60hgfhf

Задание. Решите ур-ние

61gfty

Решение. В таблице стандартных углов нет такого числа, у которого косинус равен 0,25. Поэтому вычислить значение arccos 0,25 мы не сможем. Но для записи решения и не нужно его вычислять:

62kgit

Иногда встречаются задачи, в которых надо не просто решить ур-ние, но и выбрать некоторые его корни, удовлетворяющие определенному условию. Процедуру выбора корней, удовлетворяющих условию задачи, часто называют отбором корней. Заметим, что иногда при отборе корней удобнее записывать решение ур-ние не в виде одной серии, а в виде двух серий, у каждой из которых период равен 2π. Рассмотрим отбор корней на примере.

Задание. Укажите три наименьших положительных корня ур-ния

63bgh

Решение. Так как

64gfdgd

то все решения образуют две серии:

65gfdfg

Начнем подставлять вместо n целые числа и выпишем из каждой серии несколько чисел. Так мы сможем найти наименьшие положительные числа в каждой серии.

Для первой серии:

66gfdfg

Для второй серии:

67gdffgs

Отметим все найденные корни на координатной прямой (схематично, не выдерживая масштаб):

68gfdgs

Видно, что тремя наименьшими положительными корнями являются числа π/4, 7π/4 и 9π/4

Ответ: π/4, 7π/4 и 9π/4.

Отметим, что возможны три частных случая, когда две серии решений сливаются в одну. Для ур-ния

69fhgh

На графике видно, что этим значениям х соответствуют вершины синусоиды. Решениями же ур-ния

70gfdhgh

являются точки, в которых график пересекает ось Ох:

71gdfg

Отдельно отметим, что если правая часть в ур-нии – это число, большее единицы или меньшее (– 1), то ур-ние корней не имеет, ведь область определения косинуса – это отрезок [– 1; 1].

Решение уравнения sinx = a

Ур-ние cosx = a называют простейшим тригонометрическим уравнением, ведь, ведь для его решения не требуется проводить никаких преобразований. Аналогично простейшими являются ур-ния sinx = a, tgx = a и ctgx = a.

Ситуация с ур-нием sinx = a аналогична ситуации с косинусом. Если число а не принадлежит промежутку [– 1; 1], то корней у ур-ния не будет. Если же число а будет принадлежать этому промежутку, то у ур-ния окажется бесконечное число решений.

Рассмотрим случай, когда 0<а< 1. Тогда решениями ур-ния окажутся числа arcsina и π – arcsina:

72jgjfkd

В свою очередь каждое из этих двух решений порождает свою собственную бесконечную серию решений

73fdhh

Однако, как и в случае с косинусом, существует способ записать одной формулой сразу оба этих решения. Для этого перепишем первую серию таким образом:

74gfjhjh

Действительно, если n окажется четным, то, то выражение (– 1)n,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1)n окажется равным (– 1), и мы получим вторую серию.

75ggfdhgh

Задание. Решите ур-ние

76gghj

Задание. Запишите корни ур-ния

77gdhgh

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

78dfgf

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

79gfdfg

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

80gdfhg

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

81jhdfg

Решениями ур-ния

82kjhgfg

83gtyui

Наконец, решениями ур-ния

84hkjhjk

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

85ghyu

Таким образом, у ур-ния tgx = a существует очевидное решение

x = arctg a

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

86gdfgy

87fgjt

88yiui

Задание. Решите ур-ние

89gfjdg

Задание. Запишите формулу корней ур-ния

90fjdfgfg

Далее рассмотрим ур-ние вида

91gfdgu

Задание. Решите ур-ние

92gjiyu

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

93jkyllu

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

  • Определение

  • График арксинуса

  • Свойства арксинуса

  • Таблица арксинусов

Определение

Арксинус (arcsin) – это обратная тригонометрическая функция.

Арксинус x определяется как функция, обратная к синусу x, при -1≤x≤1.

Если синус угла у равен х (sin y = x), значит арксинус x равняется y:

arcsin x = sin-1 x = y

Примечание: sin-1x означает обратный синус, а не синус в степени -1.

Например:

arcsin 1 = sin-1 1 = 90° (π/2 рад)

График арксинуса

Функция арксинуса пишется как y = arcsin (x). График в общем виде выглядит следующим образом (-1≤x≤1, -π/2≤y≤π/2):

График арксинуса

Свойства арксинуса

Ниже в табличном виде представлены основные свойства арксинуса с формулами.

Таблица арксинусов

x arcsin x (рад) arcsin x (°)
-1 -π/2 -90°
-√3/2 -π/3 -60°
-√2/2 -π/4 -45°
-1/2 -π/6 -30°
0 0
1/2 π/6 30°
2/2 π/4 45°
3/2 π/3 60°
1 π/2 90°

microexcel.ru

Содержание:

При изучении тригонометрических функций часто возникает вопрос о нахождении значения аргумента, при котором значение функции равно заданному числу.

Нахождение значения аргумента

Например, найдем все значения аргумента, при которых значение функции Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

На единичной окружности найдем точки Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ординаты которых равны Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияЭтим точкам соответствуют углы Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения  и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияи таких углов бесконечно много. Однако, если рассмотреть промежуток Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то на нем функция Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения возрастает и принимает все значения от -1 до 1. Поэтому для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения из промежутка Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения существует единственное число Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения такое что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так на промежутке Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решениясуществует единственное значение аргумента, при котором значение функции Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения равно Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения — это угол равный Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения( рис.93) 

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Определение Арксинуса

Определение:

Арксинусом числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения называется угол, принадлежащий промежутку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения синус которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 94).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Этот угол обозначают Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №1

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

  Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №2

Найдите значение выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 95, б).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Заметим, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ( рис.95)  Так как углы, соответствующие точкам Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения где Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения с ординатами Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения отличаются только знаком, то Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 96).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Пусть Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения тогда Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Так как точкиАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения имеют противоположные ординаты, то Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то по определению арксинуса Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Воспользуемся полученным равенством и найдем значение выражения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Отметим, что областью определения выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения является отрезок Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то выражение Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеет смысла.

Например, выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения  не имеют смысла, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Выражение Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеет смысла, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Из определения арксинуса числа следует, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Рассмотрим промежуток Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения на котором функция Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения возрастает и принимает все значения от Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения до 1. Для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения из промежутка Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения существует единственное число Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения такое, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Определение Арккосинуса

Определение:

Арккосинусом числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения называется угол, принадлежащий промежутку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения косинус которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 97).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Этот угол обозначают Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например: Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
 

Пример №3

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №4

Найдите значение выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ( рис. 98.а)

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ( рис.98.б)

Заметим, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения ( см.98) 

Пусть Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так как точки Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения имеют противоположные абсциссы, то Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то по определению арккосинуса Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 99).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Воспользуемся полученным равенством и найдем значение выражения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Областью определения выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения  является отрезок Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то выражение Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеет смысла.

Так, выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеют смысла, поскольку

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Выражение Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения не имеет смысла, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Из определения арккосинуса числа следует, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

На промежутке монотонности Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения функции Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения существует единственный угол, тангенс которого равен некоторому данному числу Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Определение Арктангенса

Определение:

Арктангенсом числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения называется угол, принадлежащий промежутку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения тангенс которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 100).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Этот угол обозначают Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Так, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №5

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения верно равенство Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 101).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения 

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №6

Найдите значение выражения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Из определения арктангенса числа следует, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения при Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

На промежутке монотонности Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения функции Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения существует единственный угол, котангенс которого равен некоторому данному числу Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Определение Арккотангенса

Определение:

Арккотангенсом числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения называется угол, принадлежащий промежутку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения котангенс которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 102).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения
Этот угол обозначают Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения поскольку

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

  • Заказать решение задач по высшей математике

Пример №7

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения так как

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Для любого числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения верно равенство Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения (рис. 103).

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №8

Найдите значение выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Из определения арккотангенса числа следует, что Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения если Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения и Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Например, Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Примеры заданий и их решения

Пример №9

Верно ли, что:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

а) Верно, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

б)    верно, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

в)    неверно, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

г)    неверно, так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №10

Вычислите:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №11

Найдите значение выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №12

Оцените значение выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

По определению арктангенса числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Воспользуемся свойствами числовых неравенств и получим: Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №13

Найдите область определения выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 а) По определению арксинуса числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения это угол, синус которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

б)    По определению арккосинуса числа Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения это угол, косинус которого равен Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №14

Найдите значение выражения:

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №15

Вычислите Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

 Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №16

Найдите значение выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Воспользуемся формулой Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения при Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения Поскольку Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения то эту формулу сразу применить нельзя.

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решенияАрксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Пример №17

Найдите значение выражения Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

Решение:

Так как Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения при Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения при Арксинус, арккосинус, арктангенс и арккотангенс числа с примерами решения

  • Тригонометрические уравнения
  • Тригонометрические неравенства
  • Формулы приведения
  • Синус, косинус, тангенс суммы и разности
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
  • Функция y=sin x и её свойства и график
  • Функция y=cos x и её свойства и график
  • Функции y=tg x и y=ctg x — их свойства, графики

Как найти арксинус: формула, свойства, функция

Содержание:

  • Понятие арксинуса
  • Зачем нужен арксинус
  • Получение функции arcsin с пояснением на примерах
  • Свойства функции arcsin
  • График арксинуса

Понятие арксинуса

Обратные тригонометрические функции называют по соответствующим им тригонометрическим функциям. Формулировка наименования заключается в приписывании приставки «арк», что является производным от латинского слова «дуга» (arcus).

Такая методика объясняется тем, что в геометрии функцию, обратную тригонометрической, связывают с длиной, которую имеет дуга единичной окружности, равной какому-то отрезку, либо с углом, стягивающим данную дугу. В результате с помощью синуса можно, учитывая дугу окружности, определить хорду, которая ее стягивает.

Обратная функция под названием арксинус призвана решить противоположную задачу. Арксинус обозначают (arcsin x) и определяют, как угол с синусом, равным х.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Для тригонометрических функций характерна периодичность. В связи с этим, обратные тригонометрические функции являются многозначными. Аркфункция обладает значением в виде множества из углов, для которых прямая тригонометрическая функция соответствует заданному числу.

Пример 1

Рассмотрим функцию: (arcsin ½). Данная аркфункция обозначает множество из углов:

(left ( frac{pi}{6}, frac{5 pi}{6}, frac{13 pi}{6}, frac{17 pi}{6} dots ~ (30^circ, 150^circ, 390^circ, 510^circ dots) right ))

Значение синуса при этом: ½

Как правило, под обратными тригонометрическими функциями понимают ключевые значения каждой аркфункции, выделенные из ее множества значений.

Если (-1leqslant alpha leqslant 1), то любое решение уравнения (sin x=alpha) записывают в такой форме: ( x=(-1)^{n}arcsin alpha +pi n,~n=0,pm 1,pm 2,dots )~

Арксинус числа х — значение для угла у, определенного в радианах, для которого  (sin y=x,quad -{frac {pi }{2}}leqslant yleqslant {frac {pi }{2}},quad |x|leqslant 1).

Зачем нужен арксинус

С помощью аркфункций, в том числе — арккосинуса, арктангенса, арккотангенса, арксинуса — определяют углы треугольника. Подобное действие доступно при наличии информации о сторонах данной геометрической фигуры.

В том случае, когда имеется некий прямоугольный треугольник, обратные тригонометрические функции от отношений сторон позволяют определить угол. Например, длина катета составляет «а». Этот катет определяется, как противолежащий для угла (alpha), то:

(alpha =arcsin(a/c)=arccos(b/c)=operatorname {arctg} (a/b)=operatorname {arccosec} (c/a)=operatorname {arcsec}(c/b)=operatorname {arcctg} (b/a))

Определение угла

Источник: ru.wikipedia.org

Получение функции arcsin с пояснением на примерах

Предположим, что существует некая функция:

(y=sin x)

Записанная функция обладает областью определения. В ее рамках она приобретает кусочно-монотонный вид. По этой причине обратное выражение y=arcsin x нельзя причислить к функциям.

В результате целесообразно проанализировать отрезок, где наблюдается строгое возрастание функции, и все значения относятся к ряду из области значений:

(left[-{frac {pi }{2}};{frac {pi }{2}}right])

Функция (y=sin x ) на отрезке (left[-{frac {pi }{2}};{frac {pi }{2}}right]) обладает следующей особенностью: какое-либо из значений этой функции возможно только при одном значении аргумента. По этой причине на данном интервале может существовать обратная функция с формулой (y=arcsin x.)

График обратной функции является симметричным графику функции (y=sin x) в рамках интервала (left[-{frac {pi }{2}};{frac {pi }{2}}right]) по отношению к прямой y=x. Можно наблюдать симметричность в расположении графиков функций, которые являются взаимно обратными, по отношению к биссектрисе первого и третьего координатных углов на плоскости координат Oxy.

Пример 2

Определим значение выражение:

(arcsin 0,4)

По определению обратной тригонометрической функции можно сделать вывод, что запись означает угол с синусом, равным 0,4. В данном выводе заключается смысл понятия арксинус.

решение

Источник: www.egesdam.ru

Пример 3

Требуется найти, что означает (arcsin 0,5).

Если знать определение, эта простая обратная тригонометрическая функция является обозначением угла с синусом, равным 0,5. Таким синусом обладает угол в 30°. Таким образом:

(arcsin 0,5 = 30°)

Общий ответ можно высчитать не в градусах, а в радианах:

Ответ

Источник: www.egesdam.ru

Свойства функции arcsin

Рассмотрим функцию (y=arcsin x). Она является непрерывной в тригонометрии и ограничивается на протяжении всей своей области определения. Данная функция строго возрастает.

Область определения, в которой функцию можно вычислить:

(D(arcsin x)=[-1;1]qquad) (от минус единицы до плюс единицы)

Область значений:

(E(arcsin x)=left[-{frac {pi }{2}};{frac {pi }{2}}right]qquad )

Значения функций можно посчитать таким образом:

  • (sin(arcsin x)=xqquad), если (-1leqslant xleqslant 1)
  • (arcsin(sin y)=yqquad), если (-{frac {pi }{2}}leqslant yleqslant {frac {pi }{2}})

Функция arcsin обладает следующими свойствами:

  • (arcsin(-x)=-arcsin xqquad )(нечетная функция);
  • (arcsin x>0, когда 0<xleqslant 1);
  • (arcsin x=0, когда x=0);
  • (arcsin x<0, если -1leqslant x<0);
  • (arcsin x=left{{begin{matrix}arccos {sqrt {1-x^{2}}},qquad 0leqslant xleqslant 1\-arccos {sqrt {1-x^{2}}},qquad -1leqslant x<0end{matrix}}right.)
  • (arcsin x=operatorname {arctg}{frac {x}{{sqrt {1-x^{2}}}}});
  • (arcsin x=left{{begin{matrix}operatorname {arcctg},{frac {{sqrt {1-x^{2}}}}{x}},qquad 0<xleqslant 1\operatorname {arcctg},{frac {{sqrt {1-x^{2}}}}{x}}-pi ,qquad -1leqslant x<0end{matrix}}right.)

График арксинуса

График функции (y=arcsin x):

График арксинуса

Источник: ru.wikipedia.org

Понравилась статья? Поделить с друзьями:
  • Как найти камеры в школе
  • Как найти хорошую аватарку
  • Как найти поставщиков сотовой связи
  • Как найти нужную тебе курсовую
  • Как найти квадрат суммы формула