Как найти арктангенс если известен тангенс

Арктангенс(y = arctg(x)) – это обратная тригонометрическая функция к тангенсу x = tg(y). Область определения -∞ ≤ x ≤ +∞ и множество значений -π/2 ≤ y ≤ +π/2.

arctg(0) = 0° arctg(-1.732050808) = 120° arctg(1.732050808) = 240°
arctg(0.01745506493) = 1° arctg(-1.664279482) = 121° arctg(1.804047755) = 241°
arctg(0.03492076949) = 2° arctg(-1.600334529) = 122° arctg(1.880726465) = 242°
arctg(0.05240777928) = 3° arctg(-1.539864964) = 123° arctg(1.962610506) = 243°
arctg(0.06992681194) = 4° arctg(-1.482560969) = 124° arctg(2.050303842) = 244°
arctg(0.08748866353) = 5° arctg(-1.428148007) = 125° arctg(2.144506921) = 245°
arctg(0.1051042353) = 6° arctg(-1.37638192) = 126° arctg(2.246036774) = 246°
arctg(0.1227845609) = 7° arctg(-1.327044822) = 127° arctg(2.355852366) = 247°
arctg(0.1405408347) = 8° arctg(-1.279941632) = 128° arctg(2.475086853) = 248°
arctg(0.1583844403) = 9° arctg(-1.234897157) = 129° arctg(2.605089065) = 249°
arctg(0.1763269807) = 10° arctg(-1.191753593) = 130° arctg(2.747477419) = 250°
arctg(0.1943803091) = 11° arctg(-1.150368407) = 131° arctg(2.904210878) = 251°
arctg(0.2125565617) = 12° arctg(-1.110612515) = 132° arctg(3.077683537) = 252°
arctg(0.2308681911) = 13° arctg(-1.07236871) = 133° arctg(3.270852618) = 253°
arctg(0.2493280028) = 14° arctg(-1.035530314) = 134° arctg(3.487414444) = 254°
arctg(0.2679491924) = 15° arctg(-1) = 135° arctg(3.732050808) = 255°
arctg(0.2867453858) = 16° arctg(-0.9656887748) = 136° arctg(4.010780934) = 256°
arctg(0.3057306815) = 17° arctg(-0.9325150861) = 137° arctg(4.331475874) = 257°
arctg(0.3249196962) = 18° arctg(-0.9004040443) = 138° arctg(4.704630109) = 258°
arctg(0.3443276133) = 19° arctg(-0.8692867378) = 139° arctg(5.144554016) = 259°
arctg(0.3639702343) = 20° arctg(-0.8390996312) = 140° arctg(5.67128182) = 260°
arctg(0.383864035) = 21° arctg(-0.8097840332) = 141° arctg(6.313751515) = 261°
arctg(0.4040262258) = 22° arctg(-0.7812856265) = 142° arctg(7.115369722) = 262°
arctg(0.4244748162) = 23° arctg(-0.7535540501) = 143° arctg(8.144346428) = 263°
arctg(0.4452286853) = 24° arctg(-0.726542528) = 144° arctg(9.514364454) = 264°
arctg(0.4663076582) = 25° arctg(-0.7002075382) = 145° arctg(11.4300523) = 265°
arctg(0.4877325886) = 26° arctg(-0.6745085168) = 146° arctg(14.30066626) = 266°
arctg(0.5095254495) = 27° arctg(-0.6494075932) = 147° arctg(19.08113669) = 267°
arctg(0.5317094317) = 28° arctg(-0.6248693519) = 148° arctg(28.63625328) = 268°
arctg(0.5543090515) = 29° arctg(-0.600860619) = 149° arctg(57.28996163) = 269°
arctg(0.5773502692) = 30° arctg(-0.5773502692) = 150° arctg(∞) = 270°
arctg(0.600860619) = 31° arctg(-0.5543090515) = 151° arctg(-57.28996163) = 271°
arctg(0.6248693519) = 32° arctg(-0.5317094317) = 152° arctg(-28.63625328) = 272°
arctg(0.6494075932) = 33° arctg(-0.5095254495) = 153° arctg(-19.08113669) = 273°
arctg(0.6745085168) = 34° arctg(-0.4877325886) = 154° arctg(-14.30066626) = 274°
arctg(0.7002075382) = 35° arctg(-0.4663076582) = 155° arctg(-11.4300523) = 275°
arctg(0.726542528) = 36° arctg(-0.4452286853) = 156° arctg(-9.514364454) = 276°
arctg(0.7535540501) = 37° arctg(-0.4244748162) = 157° arctg(-8.144346428) = 277°
arctg(0.7812856265) = 38° arctg(-0.4040262258) = 158° arctg(-7.115369722) = 278°
arctg(0.8097840332) = 39° arctg(-0.383864035) = 159° arctg(-6.313751515) = 279°
arctg(0.8390996312) = 40° arctg(-0.3639702343) = 160° arctg(-5.67128182) = 280°
arctg(0.8692867378) = 41° arctg(-0.3443276133) = 161° arctg(-5.144554016) = 281°
arctg(0.9004040443) = 42° arctg(-0.3249196962) = 162° arctg(-4.704630109) = 282°
arctg(0.9325150861) = 43° arctg(-0.3057306815) = 163° arctg(-4.331475874) = 283°
arctg(0.9656887748) = 44° arctg(-0.2867453858) = 164° arctg(-4.010780934) = 284°
arctg(1) = 45° arctg(-0.2679491924) = 165° arctg(-3.732050808) = 285°
arctg(1.035530314) = 46° arctg(-0.2493280028) = 166° arctg(-3.487414444) = 286°
arctg(1.07236871) = 47° arctg(-0.2308681911) = 167° arctg(-3.270852618) = 287°
arctg(1.110612515) = 48° arctg(-0.2125565617) = 168° arctg(-3.077683537) = 288°
arctg(1.150368407) = 49° arctg(-0.1943803091) = 169° arctg(-2.904210878) = 289°
arctg(1.191753593) = 50° arctg(-0.1763269807) = 170° arctg(-2.747477419) = 290°
arctg(1.234897157) = 51° arctg(-0.1583844403) = 171° arctg(-2.605089065) = 291°
arctg(1.279941632) = 52° arctg(-0.1405408347) = 172° arctg(-2.475086853) = 292°
arctg(1.327044822) = 53° arctg(-0.1227845609) = 173° arctg(-2.355852366) = 293°
arctg(1.37638192) = 54° arctg(-0.1051042353) = 174° arctg(-2.246036774) = 294°
arctg(1.428148007) = 55° arctg(-0.08748866353) = 175° arctg(-2.144506921) = 295°
arctg(1.482560969) = 56° arctg(-0.06992681194) = 176° arctg(-2.050303842) = 296°
arctg(1.539864964) = 57° arctg(-0.05240777928) = 177° arctg(-1.962610506) = 297°
arctg(1.600334529) = 58° arctg(-0.03492076949) = 178° arctg(-1.880726465) = 298°
arctg(1.664279482) = 59° arctg(-0.01745506493) = 179° arctg(-1.804047755) = 299°
arctg(1.732050808) = 60° arctg(0) = 180° arctg(-1.732050808) = 300°
arctg(1.804047755) = 61° arctg(0.01745506493) = 181° arctg(-1.664279482) = 301°
arctg(1.880726465) = 62° arctg(0.03492076949) = 182° arctg(-1.600334529) = 302°
arctg(1.962610506) = 63° arctg(0.05240777928) = 183° arctg(-1.539864964) = 303°
arctg(2.050303842) = 64° arctg(0.06992681194) = 184° arctg(-1.482560969) = 304°
arctg(2.144506921) = 65° arctg(0.08748866353) = 185° arctg(-1.428148007) = 305°
arctg(2.246036774) = 66° arctg(0.1051042353) = 186° arctg(-1.37638192) = 306°
arctg(2.355852366) = 67° arctg(0.1227845609) = 187° arctg(-1.327044822) = 307°
arctg(2.475086853) = 68° arctg(0.1405408347) = 188° arctg(-1.279941632) = 308°
arctg(2.605089065) = 69° arctg(0.1583844403) = 189° arctg(-1.234897157) = 309°
arctg(2.747477419) = 70° arctg(0.1763269807) = 190° arctg(-1.191753593) = 310°
arctg(2.904210878) = 71° arctg(0.1943803091) = 191° arctg(-1.150368407) = 311°
arctg(3.077683537) = 72° arctg(0.2125565617) = 192° arctg(-1.110612515) = 312°
arctg(3.270852618) = 73° arctg(0.2308681911) = 193° arctg(-1.07236871) = 313°
arctg(3.487414444) = 74° arctg(0.2493280028) = 194° arctg(-1.035530314) = 314°
arctg(3.732050808) = 75° arctg(0.2679491924) = 195° arctg(-1) = 315°
arctg(4.010780934) = 76° arctg(0.2867453858) = 196° arctg(-0.9656887748) = 316°
arctg(4.331475874) = 77° arctg(0.3057306815) = 197° arctg(-0.9325150861) = 317°
arctg(4.704630109) = 78° arctg(0.3249196962) = 198° arctg(-0.9004040443) = 318°
arctg(5.144554016) = 79° arctg(0.3443276133) = 199° arctg(-0.8692867378) = 319°
arctg(5.67128182) = 80° arctg(0.3639702343) = 200° arctg(-0.8390996312) = 320°
arctg(6.313751515) = 81° arctg(0.383864035) = 201° arctg(-0.8097840332) = 321°
arctg(7.115369722) = 82° arctg(0.4040262258) = 202° arctg(-0.7812856265) = 322°
arctg(8.144346428) = 83° arctg(0.4244748162) = 203° arctg(-0.7535540501) = 323°
arctg(9.514364454) = 84° arctg(0.4452286853) = 204° arctg(-0.726542528) = 324°
arctg(11.4300523) = 85° arctg(0.4663076582) = 205° arctg(-0.7002075382) = 325°
arctg(14.30066626) = 86° arctg(0.4877325886) = 206° arctg(-0.6745085168) = 326°
arctg(19.08113669) = 87° arctg(0.5095254495) = 207° arctg(-0.6494075932) = 327°
arctg(28.63625328) = 88° arctg(0.5317094317) = 208° arctg(-0.6248693519) = 328°
arctg(57.28996163) = 89° arctg(0.5543090515) = 209° arctg(-0.600860619) = 329°
arctg(∞) = 90° arctg(0.5773502692) = 210° arctg(-0.5773502692) = 330°
arctg(-57.28996163) = 91° arctg(0.600860619) = 211° arctg(-0.5543090515) = 331°
arctg(-28.63625328) = 92° arctg(0.6248693519) = 212° arctg(-0.5317094317) = 332°
arctg(-19.08113669) = 93° arctg(0.6494075932) = 213° arctg(-0.5095254495) = 333°
arctg(-14.30066626) = 94° arctg(0.6745085168) = 214° arctg(-0.4877325886) = 334°
arctg(-11.4300523) = 95° arctg(0.7002075382) = 215° arctg(-0.4663076582) = 335°
arctg(-9.514364454) = 96° arctg(0.726542528) = 216° arctg(-0.4452286853) = 336°
arctg(-8.144346428) = 97° arctg(0.7535540501) = 217° arctg(-0.4244748162) = 337°
arctg(-7.115369722) = 98° arctg(0.7812856265) = 218° arctg(-0.4040262258) = 338°
arctg(-6.313751515) = 99° arctg(0.8097840332) = 219° arctg(-0.383864035) = 339°
arctg(-5.67128182) = 100° arctg(0.8390996312) = 220° arctg(-0.3639702343) = 340°
arctg(-5.144554016) = 101° arctg(0.8692867378) = 221° arctg(-0.3443276133) = 341°
arctg(-4.704630109) = 102° arctg(0.9004040443) = 222° arctg(-0.3249196962) = 342°
arctg(-4.331475874) = 103° arctg(0.9325150861) = 223° arctg(-0.3057306815) = 343°
arctg(-4.010780934) = 104° arctg(0.9656887748) = 224° arctg(-0.2867453858) = 344°
arctg(-3.732050808) = 105° arctg(1) = 225° arctg(-0.2679491924) = 345°
arctg(-3.487414444) = 106° arctg(1.035530314) = 226° arctg(-0.2493280028) = 346°
arctg(-3.270852618) = 107° arctg(1.07236871) = 227° arctg(-0.2308681911) = 347°
arctg(-3.077683537) = 108° arctg(1.110612515) = 228° arctg(-0.2125565617) = 348°
arctg(-2.904210878) = 109° arctg(1.150368407) = 229° arctg(-0.1943803091) = 349°
arctg(-2.747477419) = 110° arctg(1.191753593) = 230° arctg(-0.1763269807) = 350°
arctg(-2.605089065) = 111° arctg(1.234897157) = 231° arctg(-0.1583844403) = 351°
arctg(-2.475086853) = 112° arctg(1.279941632) = 232° arctg(-0.1405408347) = 352°
arctg(-2.355852366) = 113° arctg(1.327044822) = 233° arctg(-0.1227845609) = 353°
arctg(-2.246036774) = 114° arctg(1.37638192) = 234° arctg(-0.1051042353) = 354°
arctg(-2.144506921) = 115° arctg(1.428148007) = 235° arctg(-0.08748866353) = 355°
arctg(-2.050303842) = 116° arctg(1.482560969) = 236° arctg(-0.06992681194) = 356°
arctg(-1.962610506) = 117° arctg(1.539864964) = 237° arctg(-0.05240777928) = 357°
arctg(-1.880726465) = 118° arctg(1.600334529) = 238° arctg(-0.03492076949) = 358°
arctg(-1.804047755) = 119° arctg(1.664279482) = 239° arctg(-0.01745506493) = 359°
  • Определение

  • График арктангенса

  • Свойства арктангенса

  • Таблица арктангенсов

Определение

Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.

Арктангенс x определяется как функция, обратная к тангенсу x, где x – любое число (x∈ℝ).

Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y:

arctg x = tg-1 x = y, причем -π/2<y<π/2

Примечание: tg-1x означает обратный тангенс, а не тангенс в степени -1.

Например:

arctg 1 = tg-1 1 = 45° = π/4 рад

График арктангенса

Функция арктангенса пишется как y = arctg (x). График в общем виде выглядит следующим образом:

График арктангенса

Свойства арктангенса

Ниже в табличном виде представлены основные свойства арктангенса с формулами.

Таблица арктангенсов

arctg x (°) arctg x (рад) x
-90° -π/2 -∞
-71.565° -1.2490 -3
-63.435° -1.1071 -2
-60° -π/3 -√3
-45° -π/4 -1
-30° -π/6 -1/√3
-26.565° -0.4636 -0.5
0 0
26.565° 0.4636 0.5
30° π/6 1/√3
45° π/4 1
60° π/3 3
63.435° 1.1071 2
71.565° 1.2490 3
90° π/2

microexcel.ru

  1. Понятие арктангенса
  2. График и свойства функции y=arctgx
  3. Уравнение tgx=a
  4. Понятие арккотангенса
  5. График и свойства функции y=arcctgx
  6. Уравнение ctgx=a
  7. Формулы преобразований аркфункци
  8. Примеры

Определение тангенса и котангенса через отношение сторон прямоугольника и с помощью касательной к числовой окружности – см. §3 данного справочника.
Свойства функции y=tgx на всей области определения (xinmathbb{R}) — см. §6 данного справочника.
Свойства функции y=ctgx на всей области определения (xinmathbb{R}) — см. §7 данного справочника.
Определение и свойства взаимно обратных функций — см. §2 справочника для 9 класса.

п.1. Понятие арктангенса

В записи (y=tgx) аргумент x — это значение угла (в градусах или радианах), функция y – тангенс угла, действительное число в пределах от (-infty;) до (+infty). Т.е., по заданному углу мы находим тангенс.
Можно поставить обратную задачу: по заданному тангенсу найти угол. Но одному значению тангенса соответствует бесконечное количество углов. Например, если (tgx=1), то (x=fracpi4+pi k, kinmathbb{Z}); если (tgx=0), то (x=pi k, kinmathbb{Z}) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x главной ветвью тангенса: (-fracpi2leq xleq fracpi2) (правая половина числовой окружности, вся ось тангенсов).

Арктангенсом числа (a (ainmathbb{R})) называется такое число (xin[-fracpi2; fracpi2]), тангенс которого равен (a). $$ arctg a=x Leftrightarrow begin{cases} tgx=a\ -fracpi2leq xleq fracpi2 end{cases} $$

Например:

(arctgfrac{1}{sqrt{3}}=fracpi6, arctg(-sqrt{3})=-frac{pi}{3}, arctg1=fracpi4).

п.2. График и свойства функции y=arctgx

График и свойства функции y=arctg x
1. Область определения (xinmathbb{R}).
2. Функция ограничена сверху и снизу асимптотами (-fracpi2leq arctgxleq fracpi2).
Область значений (yinleft(-fracpi2; fracpi2right))
3. Функция стремится к максимальному значению (y_{max}=fracpi2 text{при} xrightarrow +infty)
Функция стремится к минимальному значению (y_{min}=-fracpi2 text{при} xrightarrow -infty)
Функция имеет две горизонтальные асимптоты (y=pmfracpi2).
4. Функция возрастает на всей области определения.
5. Функция непрерывна на всей области определения.
6. Функция нечётная: (arctg(-x)=-arctg(x)).

п.3. Уравнение tgx=a

Уравнение tgx=a На оси тангенсов каждому углу на числовой окружности в интервале (-fracpi2leq xleq fracpi2) соответствует одно действительное число.

Например:
1) Решим уравнение (tgx=frac{1}{sqrt{3}})
Числу (frac{1}{sqrt{3}}) на оси тангенсов соответствует угол (fracpi6) на числовой окружности, (arctgfrac{1}{sqrt{3}}=fracpi6).
Учитывая период тангенса (pi), получаем ответ:
(x=fracpi6+pi k)

Уравнение tgx=a 2) Решим уравнение (tgx=2)
Числу (frac{1}{sqrt{3}}) на оси тангенсов соответствует угол (arctg2) на числовой окружности.
Учитывая период тангенса (pi), получаем ответ:
(x=arctg2+pi k)

В общем случае:

Уравнение (tgx=a) имеет решения $$ x=arctga+pi k, kinmathbb{Z}, ainmathbb{R} $$

п.4. Понятие арккотангенса

По аналогии с арктангенсом, арккотангенс определяется на главной ветви котангенса: (0lt xlt pi) (верхняя половина числовой окружности, вся ось котангенсов).

Арккотангенсом числа (a (ainmathbb{R})) называется такое число (xin(0;pi)), котангенс которого равен (a). $$ arcctg a=x Leftrightarrow begin{cases} ctgx=a\ 0lt xlt pi end{cases} $$

Например:

(arcctgfrac{1}{sqrt{3}}=fracpi3, arcctg(-sqrt{3})=-frac{pi}{6}, arcctg1=fracpi4).

п.5. График и свойства функции y=arcctgx

График и свойства функции y=arcctg x
1. Область определения (xinmathbb{R}).
2. Функция ограничена сверху и снизу асимптотами (0lt arcctgxlt pi).
Область значений (yin(0;pi))
3. Функция стремится к максимальному значению (y_{max}=pi text{при} xrightarrow -infty)
Функция стремится к минимальному значению (y_{min}=0 text{при} xrightarrow +infty)
Функция имеет две горизонтальные асимптоты (y=0 text{и} y=pi).
4. Функция убывает на всей области определения.
5. Функция непрерывна на всей области определения.
6. Функция ни чётная, ни нечётная.

п.6. Уравнение ctgx=a

Уравнение ctgx=a

В общем случае:

Уравнение (ctgx=a) имеет решения $$ x=arcctga+pi k, kinmathbb{Z}, ainmathbb{R} $$

Часто уравнение (ctgx=a) преобразуют в уравнение (tgx=frac{1}{a}), и ищут его корни.
Например:
1) (ctgx=sqrt{3})
(x=fracpi6+pi k)
Можно также преобразовать уравнение в (tg x=frac{1}{sqrt{3}})
Получаем тот же ответ: (x=fracpi6+pi k)

2) (ctgx=2)
(x=arcctg2+pi k)
Можно также преобразовать уравнение в (tg x=frac{1}{2})
Получаем ответ: (x=arctgfrac12+pi k)
Очевидно, что (arcctg 2=arctgfrac{1}{2}) (см. ниже формулы для аркфункций).

п.7. Формулы преобразования аркфункций

Аркфункции от обратных тригонометрических функций

begin{gather*} arcsin(sinalpha)=alpha, alphainleft[-fracpi2;fracpi2right], arccos(cosalpha)=alpha, alphain[0;pi]\ arctg(tgalpha)=alpha, alphainleft(-fracpi2;fracpi2right), arcctg(ctgalpha)=alpha, alphain(0;pi) end{gather*}

Аркфункции отрицательных аргументов

begin{gather*} arcsin(-alpha)=-arcsinalpha, arccos(-alpha)=pi-arccosalpha\ arctg(-alpha)=-arctgalpha, arcctg(-alpha)=pi-arcctgalpha end{gather*}

Суммы аркфункций

begin{gather*} arcsinalpha+arccosalpha=fracpi2, arctgalpha+arcctgalpha=fracpi2 end{gather*}

Сводная таблица тригонометрических функций от аркфункций

arcsin arccos arctg arcctg
sin begin{gather*} a\ ain[-1;1] end{gather*} begin{gather*} sqrt{1-a^2}\ ain[-1;1] end{gather*} begin{gather*} frac{a}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} begin{gather*} frac{1}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*}
cos begin{gather*} sqrt{1-a^2}\ ain[-1;1] end{gather*} begin{gather*} a\ ain[-1;1] end{gather*} begin{gather*} frac{1}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} begin{gather*} frac{a}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*}
tg begin{gather*} frac{a}{sqrt{1-a^2}}\ ain(-1;1) end{gather*} begin{gather*} frac{sqrt{1-a^2}}{a}\ ain(-1;0)cup(0;1) end{gather*} begin{gather*} a\ ainmathbb{R} end{gather*} begin{gather*} frac{1}{a}\ ane 0 end{gather*}
ctg begin{gather*} frac{sqrt{1-a^2}}{a}\ ain(-1;0)cup(0;1) end{gather*} begin{gather*} frac{a}{sqrt{1-a^2}}\ ain(-1;1) end{gather*} begin{gather*} frac{1}{a}\ ane 0 end{gather*} begin{gather*} a\ ainmathbb{R} end{gather*}

Аркфункции, выраженные через другие аркфункции

arcsin
arccos $$ arcsina= begin{cases} arccossqrt{1-a^2}, 0leq aleq 1\ -arccossqrt{1-a^2}, -1leq alt 0 end{cases} $$
arctg $$ arcsina=arctgfrac{a}{sqrt{1-a^2}}, -1lt alt 1 $$
arcctg $$ arcsina= begin{cases} arcctgfrac{sqrt{1-a^2}}{a}, 0lt aleq 1\ -arcctgfrac{sqrt{1-a^2}}{a}-pi, -1leq alt 0 end{cases} $$

arccos
arcsin $$ arccosa= begin{cases} arcsinsqrt{1-a^2}, 0leq aleq 1\ pi-arcsinsqrt{1-a^2}, -1leq alt 0 end{cases} $$
arctg $$ arccosa= begin{cases} arcctgfrac{sqrt{1-a^2}}{a}, 0lt aleq 1\ pi+arctgfrac{sqrt{1-a^2}}{a}, -1leq alt 0 end{cases} $$
arcctg $$ arccosa=arcctgfrac{a}{sqrt{1-a^2}}, -1lt alt 1 $$

arctg
arcsin $$ arctga=arcsinfrac{a}{sqrt{1+a^2}}, ainmathbb{R} $$
arccos $$ arctga= begin{cases} arccosfrac{1}{sqrt{1+a^2}}, ageq 0\ -arccosfrac{1}{sqrt{1+a^2}}, alt 0 end{cases} $$
arcctg $$ arctga=arcctgfrac{1}{a}, ane 0 $$

arcctg
arcsin $$ arcctga= begin{cases} arcsinfrac{1}{sqrt{1+a^2}}, ageq 0\ pi-arcsinfrac{1}{sqrt{1+a^2}}, alt 0 end{cases} $$
arccos $$ arcctga=arccosfrac{a}{sqrt{1+a^2}}, ainmathbb{R} $$
arctg $$ arcctga=arctgfrac{1}{a}, ane 0 $$

п.8. Примеры

Пример 1. Найдите функцию, обратную арктангенсу. Постройте графики арктангенса и найденной функции в одной системе координат.

Для (y=arctgx) область определения (xinmathbb{R}), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=tgx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) (главная ветвь) и область значений (yinmathbb{R}).
Строим графики:
Пример 1
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) (tg x=-1)
(x=fracpi4+pi k)
б) (ctgx=-1)
(x=frac{3pi}{4}+pi k)

Если решать через (tgx=-1)
(x=-fracpi4+pi k)

в) (tg x=-5)
(x=arctg(-5)+pi k=-arctg5+pi k)
г) (ctgx=3)
(x=arcctg3+pi k)

Если решать через (tgx=frac13)
(x=arctgfrac13+pi k)

Пример 3. Вычислите:
a) (2arccosleft(-frac12right)+arctg(-1)+arcsinfrac{sqrt{2}}{2}=2cdotfrac{2pi}{3}-fracpi4+fracpi4=frac{4pi}{3})
б) (arcsin1-arccosfrac{sqrt{3}}{2}-arctg(sqrt{-3})=arcsin1-fracpi3+fracpi3=arcsin1)
в) (arctg4+arcsin0-arccos1=arctg4+0-0=arctg4)
г) (5-2arccos0+arcsinfrac{sqrt{2}}{2}+3arccosfrac{sqrt{2}}{2}=5-2cdotfracpi2+fracpi4+3cdotfracpi4=5)

Пример 4. Постройте графики функций:
(a) y=arccosleft(frac{1}{x}right)+arccosleft(-frac{1}{x}right))
Сумма арккосинусов (arccosa+arccos(-a)=pi), где (-1leq aleq 1).
Получаем систему для определения ОДЗ: begin{gather*} -1leq frac{1}{x}leq 1Rightarrow 0leq frac{1}{x}+1leq 2Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{x+1}{x}leq 2 end{cases} Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{-x+1}{x}leq 0 end{cases} Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{x-1}{x}geq 0 end{cases} Rightarrow\ Rightarrow left[ begin{array}{l l} begin{cases} xgt 0\ x+1geq 0\ x-1geq 0 end{cases} \ begin{cases} xlt 0\ x+1leq 0\ x-1leq 0 end{cases} end{array} right. Rightarrow left[ begin{array}{l l} begin{cases} xgt 0\ xgeq 1 end{cases} \ begin{cases} xlt 0\ xleq -1 end{cases} end{array} right. Rightarrow xleq -1cup xgeq 1 end{gather*} Заметим, что используя модуль, тот же результат можно получить значительно быстрей: $$ -1leqfrac{1}{x}leq 1Leftrightarrow |frac{1}{x}|leq 1Leftrightarrow |x|geq 1 $$ Таким образом, ОДЗ – вся числовая прямая, кроме (xnotin(-1;1).) $$ y=arccosleft(frac{1}{x}right)+arccosleft(-frac{1}{x}right)Leftrightarrow begin{cases} y=pi\ xnotin (-1;1) end{cases} $$ Строим график:
Пример 4а

(б) y=arcctg(sqrt{x})+arcctg(-sqrt{x}))
Сумма арккотангенсов (arcctga+arcctg(-a)=pi), где (ainmathbb{R})
ОДЗ ограничено требованием к подкоренному выражению: (xgeq 0)
$$ y=arcctgleft(sqrt{x}right)+arcctgleft(-sqrt{x}right)Leftrightarrow begin{cases} y=pi\ xgeq 0 end{cases} $$ Строим график:
Пример 4б

Пример 5*. Запищите в порядке возрастания:
$$ arctgleft(fracpi4right), arcsinleft(fracpi4right), arctg1 $$

Пример 5 Способ 1. С помощью числовой окружности.

Отмечаем точку (fracpi4) на оси синусов (ось OY) и точки (fracpi4) и 1 на оси тангенсов (касательная к окружности).
На пересечении с числовой окружностью получаем искомые углы.
В порядке возрастания: $$ arctgleft(fracpi4right)lt underbrace{arctg1}_{=fracpi4} lt arcsinleft(fracpi4right) $$

Способ 2. Аналитический
Арктангенс – функция возрастающая: (fracpi4approx 0,79lt 1Rightarrow arctgleft(fracpi4right)lt arctg 1)
Сравним (arctg1=fracpi4=arcsinleft(frac{sqrt{2}}{2}right)) и (arcsinleft(fracpi4right))
(frac{sqrt{2}}{2} ? fracpi4) — возведем в квадрат обе части
(frac12 ? frac{pi^2}{16}Leftrightarrow 8 ? pi^2)
(8ltpi^2Rightarrowfrac{sqrt{2}}{2}ltfracpi4 Rightarrow arcsinleft(frac{sqrt{2}}{2}right)lt arcsinleft(fracpi4right)Rightarrow 1lt arcsinleft(fracpi4right))
Получаем: $$ arctgleft(fracpi4right)lt underbrace{arctg1}_{=fracpi4} lt arcsinleft(fracpi4right) $$

Пример 6*. Решите уравнения:

a) (arccosx=arctgx)
ОДЗ определяется ограничением для арккосинуса: (-1leq xleq 1)
Арккосинус ограничен (0leq arccosxleq pi), арктангенс (-fracpi2leq arctgxltfracpi2)
Т.к. по условию они равны, ограничение сужается до (0leq arctgxlt fracpi2) и (0leq arccos xlt fracpi2) $$ arccosx=arctgxLeftrightarrow begin{cases} x=cos(arctgx)\ -1leq xleq 1\ 0leq arctgxltfracpi2\ 0leq arccosxltfracpi2 end{cases} Leftrightarrow begin{cases} x=cos(arctgx)\ -1leq xleq 1\ 0leq x\ 0lt xleq 1 end{cases} Leftrightarrow begin{cases} x=cos(arctgx)\ 0lt xlt 1 end{cases} $$ Для решения можно воспользоваться готовой формулой для (cos(arctgx)).
Выведем её. Пуcть (arctgx=varphi). Тогда (x=tgvarphi) и $$ cos(arctgx)=cosvarphi=sqrt{frac{1}{1+tg^2varphi}}=sqrt{frac{1}{1+x^2}} $$ Получаем уравнение: $$ x=sqrt{frac{1}{1+x^2}}Rightarrow x^2=frac{1}{1+x^2}Rightarrow x^2(1+x^2)=1Rightarrow x^4+x^2-1=0 $$ $$ D=1+4=5, x^2=frac{-1pmsqrt{5}}{2} $$ Квадрат числа не может быть отрицательным. Остаётся корень (x^2=frac{sqrt{5}-1}{2})
Откуда (x=pmsqrt{frac{sqrt{5}-1}{2}})
По условию (0lt xlt 1). Получаем (x=sqrt{frac{sqrt{5}-1}{2}})
Ответ: (sqrt{frac{sqrt{5}-1}{2}})

б) (arccos^2x+arcsin^2x=frac{5pi^2}{36})
Используем формулу для суммы: (arccosx+arcsinx=fracpi2)
Получаем: begin{gather*} arccos^2x+left(fracpi2-arccosxright)^2=frac{5pi^2}{36}\ arccos^2x+frac{pi^2}{4}-pi arccosx+arccos^2x=frac{5pi^2}{36}\ 2arccos^2x-pi arccosx+frac{pi^2}{9}=0\ D=(-pi)^2-4cdot 2cdot frac{pi^2}{9}=pi^2-frac89pi^2=frac{pi^2}{9}\ arccosx=frac{pipmfracpi3}{4}Rightarrow left[ begin{array} {l l} arccosx_1=fracpi6\ arccosx_2=fracpi3 end{array} right. Rightarrow left[ begin{array} {l l} x_1=cosfracpi6=frac{sqrt{3}}{2}\ x_2=cosfracpi3=frac12 end{array} right. end{gather*} Ответ: (left{frac12; frac{sqrt{3}}{2}right})

в) (arcsinfrac{sqrt{3x+2}}{2}=arcctgsqrt{frac{2}{x+1}})
ОДЗ определяется ограничением для арксинуса: ( -1leq frac{sqrt{3x+2}}{2}leq 1)
Арксинус ограничен (-fracpi2leq arcsinfrac{sqrt{3x+2}}{2}leqfracpi2), арккотангенс (0leq arcctgsqrt{frac{2}{x+1}}ltpi)
Т.к. по условию они равны, ограничение сужается до (0leq arcctgsqrt{frac{2}{x+1}}ltfracpi2) и (0leq arcsinfrac{sqrt{3x+2}}{2}ltfracpi2). begin{gather*} arcsinfrac{sqrt{3x+2}}{2}=arcctgsqrt{frac{2}{x+1}}Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ -1leqfrac{sqrt{3x+2}}{2}leq 1\ 0leq arcsinfrac{sqrt{3x+2}}{2}ltfracpi2\ 0leq arcctgsqrt{frac{2}{x+1}}ltfracpi2 end{cases} Leftrightarrow\ Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ -1leqfrac{sqrt{3x+2}}{2}leq 1\ 0leq frac{sqrt{3x+2}}{2}lt 1\ 0leq sqrt{frac{2}{x+1}} end{cases} Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ 0leq frac{sqrt{3x+2}}{4}lt 1\ frac{4}{x+1}geq 0 end{cases} end{gather*} Для ОДЗ получаем: $$ begin{cases} 0leq 3x+2lt 4\ x+1gt 0 end{cases} Rightarrow begin{cases} -2leq 3x lt 2\ xgt -1 end{cases} Rightarrow begin{cases} -frac23leq x lt frac23\ xgt -1 end{cases} Rightarrow -frac23leq xltfrac23 $$ ОДЗ: (-frac23leq xlt frac23)
Выведем формулу для синуса арккотангенса.
Пусть (arcctgx=varphi Rightarrow x=ctgvarphi)
Тогда (sin(arcctgx)=sinvarphi=sqrt{frac{1}{1+ctg^2varphi}}=sqrt{frac{1}{1+x^2}})
Правая часть уравнения: $$ sinleft(arcctgsqrt{frac{2}{x+1}}right)= sqrt{frac{1}{1+left(sqrt{frac{2}{x+1}}right)}}= sqrt{frac{1}{1+frac{2}{x+1}}}=sqrt{frac{x+1}{x+3}} $$ Подставляем: begin{gather*} frac{sqrt{3x+2}}{2}=sqrt{frac{x+1}{x+3}}Rightarrow frac{3x+2}{4}=frac{x+1}{x+3}Rightarrow (3x+2)(x+3)=4(x+1)Rightarrow\ Rightarrow 3x^2+11x+6=4x+4Rightarrow 3x^2+7x+2=0\ D=49-4cdot 3cdot 2=25\ x=frac{-7pm5}{6}Rightarrow left[ begin{array} {l l} x_1=-2 — text{ не подходит по ОДЗ}\ x_2=-frac13 end{array} right. end{gather*} Ответ: (-frac13)

Калькулятор обратных тригонометрических функций

Калькулятор обратных тригонометрических функций вычислит: арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс и обратные гиперболические функции такие как: ареасинус, ареакосинус, ареатангенс, ареакотангенс, ареасеканс, ареакосеканс. Значением могут быть любые числа и выражения. Угловая мера результата может быть выражена как градусах, так и в радианах.

Что такое обратные тригонометрические функции

К обратным тригонометрическим функциям относятся: арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс.

Обратная
тригонометрическая
функция
Обозначение
Арксинус arcsin
Арккосинус arccos
Арктангенс arctg, arctan
Арккотангенс arcctg, arccot
Арксеканс arcsec
Арккосеканс arccsc

Если известен некоторый угол α, то по значению этого угла мы можем найти значения тригонометрических функций таких как: синус, косинус, тангенс, котангенс, секанс, косеканс, аналогично зная значение тригонометрической функции можно вычислить угол.

Приведем пример, значение синуса некоторого угла α равно √2/2
sin(α) = √2/2
Чтобы узнать, чему равен угол α необходимо вычислить арксинус этого угла.
arcsin(√2/2) = π/4 радиан.
Следовательно sin(π/4) = √2/2

Значение обратной тригонометрической функции всегда будет в радианах. Чтобы перевести радианы в градусы необходимо значение угла в радианах умножить на 180 и разделить на π.

В данном случае так как угол π = 180°, можно записать:
π/4 радиан = 180/4 градусов = 45°.


Обратные гиперболические функции

Обратная
гиперболическая
функция
Обозначение
Ареасинус arsh, arsinh, sin−1
Ареакосинус arch, arcosh, cosh−1
Ареатангенс arth, artanh, tanh−1
Ареакотангенс arcth, arcoth, coth−1
Ареасеканс arsch, arsech, sech−1
Ареакосеканс arcsch, csch−1

Сферы применения правил обратных тригонометрических функций

Определение

Тригонометрия — раздел математики, объясняющий зависимость между сторонами и углами треугольника, правила используют для расчета углов.

Изучая постулаты тригонометрических функций, ученики и студенты часто задаются вопросом, где эти знания могут пригодиться. Сфер применения достаточно много. Астрономы используют понятия для расчёта положения небесных объектов, тригонометрия помогает выполнять чертежи и создавать архитектурные шедевры, выстраивать модель биологических ритмов. В морской и воздушной навигации, акустике и оптике, в анализе финансового рынка, статистике, медицине, химии, во многих областях используются тригонометрические вычисления. Поэтому так важно научиться применять и выводить формулы самостоятельно.

Обратные функции тригонометрии

Обратными называются функции, которые ещё называют арксинус, арккосинус, арктангенс, арккотангенс.

Название данный вид тригонометрической зависимости, получил от соответствующей прямой функции с приставкой арк — дуга. Взаимосвязь просматривается между длиной дуги единичной окружности и соответствующим определённым отрезком.

Правила обратной функции справедливы в пределах интервалов, например,

формула арксинуса возможна при:

[arcsin (sin mathrm{x})=mathrm{x} text { при }-frac{pi}{2} leq mathrm{x} leq frac{pi}{2}]

[arccos (cos mathrm{x})=mathrm{x} text { при } 0 leq mathrm{x} leq pi]

и так далее.

Формулы с обратными функциями тригонометрии

Уже были рассмотрены обратные тригонометрические функции. Они, как и другие функции имеют между собой связи и зависимости, которые можно выразить в виде формул и использовать для решения задач.

В данной работе мы рассмотрим основные формулы, в которых применяются функции тригонометрии. Разберём их виды, деление на группы, доказательства и способы решения задач с их помощью.

Группировка основных понятий

Сначала проведём группировку формул, для того чтобы сделать более понятной логику объяснений. И объединим все правила и доказательства в одну статью.

Синус от арксинуса для [alpha in(-1 ; 1) sin (arcsin alpha)=alpha, cos (arccos alpha)=alpha]

Тангенса от арктангенса для [alpha in(-infty, infty) operatorname{tg}(operatorname{arctg} alpha)=alpha, operatorname{ctg}(operatorname{arctg} alpha)=alpha].

Указанное в данных выражениях легко выводится из самих определений обратных функций тригонометрии. При необходимости найти arcsin tg, можно использовать приведённые формулы.

Тангенс, арктангенс, котангенс, арккотангенс, синус, арксинус, косинус, арккосинус и формулы

[text{Для }-frac{pi}{2} leq alpha leq frac{pi}{2} arcsin (sin alpha)=alpha],

[text{Для } leq alpha leq pi arccos (cos alpha)=alpha],

[text{Для }-frac{pi}{2}<alpha<frac{pi}{2} operatorname{arctg}(operatorname{tg} alpha)=alpha],

[text{Для } 0<alpha<pi operatorname{arcctg}(operatorname{ctg} alpha)=alpha].

В данном примере собраны тригонометрические выражения, достаточно очевидные, которые можно вывести из определений функций тригонометрии. Необходимо обратить внимание, на то, что высказывания будут верны, если «а» (угол, или числовое значение) будет входить в определённый предел. Если условие не выполняется, расчёт будет не верен и формулу использовать нельзя.

Соотношение между собой обратных тригонометрических функций противоположных чисел

Рассмотрим важное определение:

Обратные функции тригонометрии можно выразить через аркфункции противоположного положительного числа.

[text{Для }alpha in operatorname{open}-1,1] text { arccis }(-alpha)= -operatorname{arc} sin alpha, quad operatorname{arc} cos (-alpha)=pi -a r c cos alpha]

[text { Для } alpha in(-infty, infty) operatorname{arctg}(-alpha)= -operatorname{arctg} alpha, operatorname{arcctg}(-alpha)=pi-operatorname{arcctg} alpha]

Это значит, если расчёты имеют функции отрицательного числа, от них можно избавиться. Для этого необходимо преобразовать их в аркфункции положительных чисел. Такие вычисления проводить проще.

Формулы суммы: arcsin + arccos, arctg +arcctg

Правила суммы выглядят так:

Для [alpha in[-1,1] arcsin alpha+arccos alpha=frac{pi}{2}],

Для [alpha in[-infty, infty] operatorname{arctg} alpha+operatorname{arctg} alpha=frac{pi}{2}].

Отсюда видно, что arcsin определённого числа можно выразить через его arccos , и наоборот. Тоже правило касается и arctg и arcctg, которые выражаются аналогично.

Формулы связи между обратными и прямыми тригонометрическими функциями

Чтобы иметь возможность решить множество задач, требуется знание связей между прямыми тригонометрическими функциями, и их аркфункциями. Рассмотрим, как необходимо поступить, если нужно вычислить тангенс арксинуса. Ниже представлен список основных формул, которые помогут в решении таких задач.

[-1 leq alpha leq 1],
[sin (arcsin alpha)=alpha]
[-1 leq alpha leq 1],
[sin (arccos alpha) =sqrt{1-alpha^{2}}]
[-infty leq alpha leq+infty],
[sin (operatorname{arctg} alpha)=frac{alpha}{sqrt{1+alpha^{2}}}]
[-infty leq alpha leq+infty],
[sin (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-1 leq alpha leq 1],
[cos (arcsin alpha)=sqrt{1-alpha^{2}}]
[-1 leq alpha leq 1],
[cos (arccos alpha)=alpha]
[-infty leq alpha leq+infty],
[cos (operatorname{arctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-infty leq alpha leq+infty],
[cos (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-1<alpha<1],
[operatorname{tg}(arcsin alpha)=frac{alpha}{sqrt{1-alpha^{2}}}]
[alpha in(-1,0) cup(0,1)],
[operatorname{tg}(arccos alpha)=frac{sqrt{1-a^{2}}}{alpha}]
[-infty leq alpha leq+infty],
[operatorname{tg}(operatorname{arctg} alpha)=alpha]
[alpha neq 0],
[operatorname{tg}(operatorname{arcctg} alpha)=frac{1}{alpha}]
[alpha in(-1,0) cup(0,1)],
[operatorname{ctg}(arcsin alpha)=frac{sqrt{1-alpha^{2}}}{alpha}]
[-1<alpha<1],
[operatorname{ctg}(arccos alpha)=frac{alpha}{sqrt{1-a^{2}}}]
[alpha neq 0],
[operatorname{ctg}(operatorname{arctg} alpha)=frac{1}{alpha}]
[-infty leq alpha leq+infty],
[operatorname{ctg}(operatorname{arcctg} alpha)=alpha]
Таблица 1.

Примеры 1 — 2

Нужно найти косинус арктангенса из 5.

Решение. Для этого необходимо воспользоваться формулой следующего вида: [cos (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]

Подставим необходимое значение: [cos (operatorname{arctg} sqrt{5})=frac{1}{sqrt{1+sqrt{5^{2}}}}=frac{2}{sqrt{6}}]


Определить синус арккосинуса [frac{1}{2}]
Решение. Реализовать решение нам поможет формула: [sin (arccos alpha)=sqrt{1-alpha^{2}}]

Ставим значение и получаем: [sin left(arccos frac{1}{2}right)=sqrt{1-left(frac{1}{2}right)^{2}}=frac{sqrt{3}}{2}]

Заметим, что непосредственное вычисление приведёт к тому же ответу: [sin left(arccos frac{1}{2}right)=sin frac{pi}{3}=frac{sqrt{3}}{2}]

Для правильного вычисления значений прямых и обратных тригонометрических функций, стоит вспомнить начальные материалы.

Доказательство формул синуса от арккосинуса, арккотангенса и арктангенса

Чтобы вывести формулы и разобрать их более наглядно, необходимо применить основные тригонометрические тождества и правила обратных тригонометрических функций, которые были выведены ранее.

Доказательство формул 1

Используя тождества получим:

[sin ^{2} alpha+cos ^{2} alpha=1]

[1+operatorname{ctg}^{2} alpha=frac{1}{sin ^{2} alpha}]

Вспомним тот факт, что tg α *ctg α= 1, следовательно

[sin alpha=sqrt{1-cos ^{2} alpha}, 0 leq alpha leq pi]

[sin alpha=frac{operatorname{tg} alpha}{sqrt{1+operatorname{tg}^{2} alpha}},-frac{pi}{2}<alpha<frac{pi}{2}]

[sin alpha=frac{1}{sqrt{1+c t g^{2} alpha}}, 0<alpha<pi]

Результатом станет вывод синуса через подходящие аркфункции в заданном условии.

В математическое выражение вместо α, ставим arccos α, получаем в итоге формулу синуса арккосинуса.

Во втором случае вместо α подставляем arctg α, соответственно получаем формулу синуса арктангенса.

В третьем варианте проводим аналогичную операцию и подставляем arcctg α для выражения формулы синуса арккотангенса.

Нет времени решать самому?

Наши эксперты помогут!

Доказательство формул для тангенса, обратных функций(arcsin, arccos, arcctg)

В данном разделе рассмотрим доказательство закона тангенса обратных функций тригонометрии.

Доказательство формул 2

  1. Исходя из: [frac{sin alpha}{sqrt{1-sin alpha^{2}}},-frac{pi}{2}<alpha<frac{pi}{2}]Получим [operatorname{tg}(arcsin alpha)=frac{sin (arcsin alpha)}{sqrt{1-sin ^{2}(arcsin alpha)}}=frac{alpha}{sqrt{1-alpha^{2}}}]При условии [-1<alpha<1]
  2. Из выражения [operatorname{tg} alpha=frac{sqrt{1-cos ^{2} alpha}}{cos alpha}, alpha inleft[0, frac{pi}{2}right) cupleft(frac{pi}{2}, piright]]
    Получаем [operatorname{tg}(arccos alpha)=frac{sqrt{1-cos ^{2}(arccos alpha)}}{cos (arccos alpha)}=frac{sqrt{1-alpha^{2}}}{alpha}] при условии [alpha in(-1,0) cup(0,1)].
  3. Исходя из [operatorname{tg} alpha=frac{1}{operatorname{ctg} alpha}, alpha inleft(0, frac{pi}{2}right) cupleft(frac{pi}{2}, piright)] получаем [operatorname{tg}(operatorname{arcctg} alpha)=frac{1}{operatorname{ctg}(operatorname{arcctg} alpha)}=frac{1}{alpha}] при условии, что [alpha neq 0].

Далее нам понадобятся понятия котангенсов арксинуса, арккосинуса, арктангенса. Напомним такое тригонометрическое равенство:

[operatorname{ctg} alpha=frac{1}{operatorname{tg} alpha}]

Применяя данное выражение можно вывести необходимые формулы, вставляя выражения тангенса обратных функций тригонометрии. Практически необходимо поменять местами числитель и знаменатель.

Выражение арксинуса с помощью арккосинуса, арктангенса и арккотангенса

Прямые и обратные функции в тригонометрии связаны между собой. Полученные в результате выведения формулы помогут найти связь и между обратными функциями тригонометрии, выразив одни аркфункции через другие. Рассмотрим примеры.

В первом случае меняем арксинус на арккосинус, а арктангенс на арккотангенс, получим следующие формулы арксинуса и арккосинуса:

[begin{aligned} &arcsin a=left{begin{array}{l} arccos sqrt{1-a^{2}}, 0 leq a leq 1 \ -arccos sqrt{1-a^{2}},-1 leq a<0 end{array}right. \ &arcsin a=operatorname{arctg} frac{a}{sqrt{1-a^{2}}},-1<a<1 \ &arcsin a=left{begin{array}{l} operatorname{arcctg} frac{sqrt{1-a^{2}}}{a}, 0<a leq 1 \ operatorname{arcctg} frac{sqrt{1-a^{2}}}{a}-pi,-1 leq a<0 end{array}right. end{aligned}]

Для арккосинуса также есть свои формулы:

[begin{aligned} &arccos a=left{begin{array}{l} arcsin sqrt{1-a^{2}}, 0 leq a leq 1 \ pi-arcsin sqrt{1-a^{2}},-1 leq a<0 end{array}right. \ &arccos a=left{begin{array}{l} operatorname{arctg} frac{sqrt{1-a^{2}}}{a}, 0<a leq 1 \ pi+operatorname{arctg} frac{sqrt{1-a^{2}}}{a},-1 leq a<0 end{array}right. \ &arccos a=operatorname{arcctg} frac{a}{sqrt{1-a^{2}}},-1<a<1 end{aligned}]

Выражения для арктангенса:

[begin{aligned} &operatorname{arctg} a=arcsin frac{a}{sqrt{1+a^{2}}},-infty<a<+infty\ &operatorname{arctg} a=left{begin{array}{l} arccos frac{1}{sqrt{1+a^{2}}}, a geq 0 \ -arccos frac{1}{sqrt{1+a^{2}}}, a<0 end{array}right.\ &operatorname{arctg} a=operatorname{arcctg} frac{1}{a}, a neq 0 end{aligned}]

Последний блок формул покажет преобразование арккотангенса через другие обратные функции тригонометрии:

[begin{aligned} &operatorname{arcctg} a=left{begin{array}{l} arcsin frac{1}{sqrt{1+a^{2}}}, a geq 0 \ pi-arcsin frac{1}{sqrt{1+a^{2}}}, a<0 end{array}right.\ &operatorname{arctg} a=arccos frac{a}{sqrt{1+a^{2}}},-infty<a<+infty\ &operatorname{arcctg} a=operatorname{arctg} frac{1}{a}, a neq 0 end{aligned}]

Рассмотренные формулы арксинуса, арккосинуса, арктангенса помогут в решении различных задач. Разберём доказательство с использованием основных определений обратных функций и ранее рассмотренных правил.

Возьмём arcsin [alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}},-1<alpha<1] для выведения доказательства.

Мы имеем выражение [operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}] — число, которое имеет значение от минус половины [pi] до плюс половины [pi]. Используя выражение синуса арктангенса, получаем следующее:

[sin left(operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}right)=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{sqrt{1+left(frac{alpha}{sqrt{1-alpha^{2}}}right)^{2}}}=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{sqrt{1+frac{alpha^{2}}{1-alpha^{2}}}}=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{frac{1}{sqrt{1-alpha^{2}}}}=alpha]

Получается, что [operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}] с условием [-1<alpha<1] — арксинус числа [alpha].

Вывод: [arcsin alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}},-1<alpha<1].

Другие подобные формулы доказываются по аналогичной схеме.

Рассмотрим пример применения полученных истин.

Пример 3

Необходимо вычислить синус арккотангенса — [sqrt{3}]
Решение. Для того чтобы провести решение задачи, необходимо использовать формулу связи арккотангенса и арксинуса: [arcsin alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}]

Подставим в неё [alpha=-sqrt{3}] и получим [-frac{1}{2}].

Используя непосредственное вычисление ответ был бы такой же: [sin (operatorname{arcctg}(-sqrt{3}))=sin frac{5 pi}{6}=frac{1}{2}]

Можно использовать и следующую формулу:

[sin (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]

[sin (operatorname{arcctg}(-sqrt{3}))=frac{1}{sqrt{1+(-sqrt{3})^{2}}}=frac{1}{2}]

Другие формулы, в которых используются обратные функции тригонометрии

Разобраны основные функции, которые чаще всего используются для решения задач. Но представлены не все формулы с обратными тригонометрическими функциями, есть некоторые специфичные, употребляемые редко, но они тоже полезны. Учить их нет смысла, лучше вывести при необходимости.

Пример 4

Разберём для примера одну такую формулу. Выглядит она так:

[sin ^{2} frac{alpha}{2}=sqrt{frac{1-cos alpha}{2}}]

Если представленный угол имеет значение больше нуля, но меньше Пи, то получаем:

[sin frac{arccos alpha}{2}=sqrt{frac{1-cos (arccos alpha)}{2}}]

[Leftrightarrow sin frac{arccos alpha}{2}=frac{sqrt{1-alpha}}{2}]

Здесь мы выводим следующую готовую формулировку, арксинус которой выведен через арккосинус:

[frac{arccos alpha}{2}=arcsin sqrt{frac{1-alpha}{2}}]

В тексте рассмотрены лишь некоторые, самые популярные виды связей между прямыми и обратными функциями тригонометрии. Главное не выучить наизусть данные постулаты, а научиться их применять и выводить, исходя из уже известных определений.

Удобно использовать инженерный вид калькулятора, на котором есть, необходимые для вычислений тригонометрические формулы и функции.

Like this post? Please share to your friends:
  • Как найти длину волны струны
  • Как найти список драйверов на компьютере
  • Оторвался зубчик на молнии как исправить
  • Bully scholarship edition вылетает на windows 10 как исправить
  • Как найти длину ненулевого вектора