Треугольник вписанный в окружность
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:
Площадь треугольника вписанного в окружность,
если известен полупериметр:
Площадь треугольника вписанного в окружность,
если известен высота и основание:
Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:
Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:
[ S = frac<1><2>ab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:
Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:
Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
окружность и треугольник,
которые изображены на рисунке 2.
окружность описана
около треугольника.
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.
Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).
Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).
Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.
Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.
Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).
Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно
что и требовалось доказать.
Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.
Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.
Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.
Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).
Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать
Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .
Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.
Формулы для радиуса окружности, вписанной в треугольник
Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.
a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр
.
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Фигура | Рисунок | Формула | Обозначения |
Произвольный треугольник | |||
Равнобедренный треугольник | |||
Равносторонний треугольник | |||
Прямоугольный треугольник |
где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.
где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.
где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Произвольный треугольник |
Равнобедренный треугольник |
Равносторонний треугольник |
Прямоугольный треугольник |
Произвольный треугольник |
где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.
где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.
Равнобедренный треугольник
Равносторонний треугольник
где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Прямоугольный треугольник
Вывод формул для радиуса окружности, вписанной в треугольник
Теорема 5 . Для произвольного треугольника справедливо равенство
где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).
с помощью формулы Герона получаем:
что и требовалось.
Теорема 6 . Для равнобедренного треугольника справедливо равенство
где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).
то, в случае равнобедренного треугольника, когда
что и требовалось.
Теорема 7 . Для равностороннего треугольника справедливо равенство
где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).
то, в случае равностороннего треугольника, когда
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.
Теорема 8 . Для прямоугольного треугольника справедливо равенство
Доказательство . Рассмотрим рисунок 9.
Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,
В силу теоремы 3 справедливы равенства
Следовательно, принимая также во внимание теорему Пифагора, получаем
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.
Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.
Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.
Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?
В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.
Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.
Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.
— радиус окружности, вписанной в треугольник.
Есть и еще одна формула, применяемая в основном в задачах части :
где — стороны треугольника, — радиус описанной окружности.
Для любого треугольника верна теорема синусов:
Ты нашел то, что искал? Поделись с друзьями!
. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .
Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .
Запишем площадь треугольника АВС двумя способами:
Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .
В ответ запишем .
. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.
По теореме синусов,
Получаем, что . Угол — тупой. Значит, он равен .
. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.
Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.
, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .
Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .
http://www.resolventa.ru/uslugi/uslugischoolrost.htm
http://ege-study.ru/ru/ege/materialy/matematika/vpisannyj-i-opisannyj-treugolnik-vpisannaya-i-opisannaya-okruzhnost/
Окружность, описанная около треугольника
Окружность называют описанной около треугольника, если все вершины треугольника расположены на окружности.
Её центр равноудалён от всех вершин, то есть должен находиться в точке пересечения серединных перпендикуляров к сторонам треугольника.
Следовательно, около любого треугольника можно описать окружность, так как серединные перпендикуляры к сторонам пересекаются в одной точке.
Для остроугольного треугольника центр окружности находится в треугольнике.
Другая ситуация с прямоугольным и тупоугольным треугольниками.
Окружность, вписанная в треугольник
Окружность называют вписанной в треугольник, если все стороны треугольника касаются окружности.
Её центр равноудалён от всех сторон, то есть должен находиться в точке пересечения биссектрис треугольника.
Следовательно, в любой треугольник можно вписать окружность, так как биссектрисы треугольника пересекаются в одной точке.
Так как биссектрисы углов треугольника всегда пересекаются внутри треугольника, то для всех треугольников центр вписанной окружности находится в треугольниках.
Равносторонний треугольник
Обрати внимание!
У равностороннего треугольника совпадают биссектрисы, медианы и высоты, то есть, эти отрезки являются также серединными перпендикулярами. Это значит, что центры описанной и вписанной окружности совпадают.
Радиус описанной окружности
Радиус вписанной окружности
, где (h) — высота треугольника.
Если дана сторона треугольника (a), то
h=a32
.
Поэтому
r=a36
.
Прямоугольный треугольник
Радиус описанной окружности
, где (c) — гипотенуза.
Радиус вписанной окружности
, где (p) — полупериметр.
Произвольный треугольник
Радиус описанной окружности
, где
α
— угол, противолежащий стороне (a);
.
Радиус вписанной окружности
, где (p) — полупериметр.
Содержание
- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — не диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
[ r = frac{S}{(a+b+c)/2} ]
- Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
[ r = frac{S}{frac{1}{2}P} ]
- Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
[ r = sqrt{frac{(p-a)(p-b)(p-c)}{p}} ]
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
[ R = frac{AC}{2 sin angle B} ]
- Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
[ R = frac{abc}{4S} ]
- Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:[ R = frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}} ]
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:[ S = pr ]
- Площадь треугольника вписанного в окружность,
если известен полупериметр:[ S = sqrt{p(p-a)(p-b)(p-c)} ]
- Площадь треугольника вписанного в окружность,
если известен высота и основание:[ S = frac{1}2 ah ]
- Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:[ S = frac{a^2}{2cdot (sin(α)⋅sin(β)) : sin(180 — (α + β))} ]
- Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:[ S = frac{1}{2}ab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
[ P = a + b + c ]
- Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
[ P = frac{2S}{r} ]
- Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:[ P = sqrt{ b2 + с2 — 2 * b * с * cosα} + (b + с) ]
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:[ a = sqrt{b^2+c^2 -2bc cdot cos alpha} ]
- Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
[ a = frac{b · sin alpha }{sin β} ]
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
[ l = frac{AB}{2} ]
- Средняя линия треугольника вписанного в окружность,
если известны две стороны, ни одна из них не является
основанием, и косинус угла между ними:
[ l = frac{sqrt{b^2+c^2-2bc cdot cos alpha}}{2} ]
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:[ h = frac{2S}{a} ]
- Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:[ h = b cdot sin alpha ]
- Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:[ h = frac{bc}{2R} ]
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
Дано: окружность и треугольник,
которые изображены на рисунке 2.
Доказать: окружность описана
около треугольника.
Доказательство:
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
Следовательно: окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Окружность вписана в треугольник. В данной статье собрал для вас задачи, в которых даётся треугольник с вписанной в него или описанной около него окружностью. В условии ставится вопрос о нахождении радиуса окружности или стороны треугольника.
Данные задания удобно решать используя представленные формулы. Рекомендую их выучить, бывают очень полезны не только при решении этого типа заданий. Одна формула выражает связь радиуса вписанной в треугольник окружности с его сторонами и площадью, другая радиус описанной около треугольника окружности также с его сторонами и площадью:
где a, b, c – стороны треугольника
S – площадь треугольника
Рассмотрим задачи:
27900. Боковая сторона равнобедренного треугольника равна 1, угол при вершине, противолежащей основанию, равен 1200. Найдите диаметр описанной окружности этого треугольника.
Здесь окружность описана около треугольника.
Первый способ:
Диаметр мы сможем найти, если будет известен радиус. Используем формулу радиуса описанной около треугольника окружности:
где a, b, c – стороны треугольника
S – площадь треугольника
Две стороны нам известны (боковые стороны равнобедренного треугольника), третью мы можем вычислить используя теорему косинусов:
Теперь вычислим площадь треугольника:
*Использовали формулу (2) из этой статьи.
Вычисляем радиус:
Таким образом диаметр будет равен 2.
Второй способ:
Это устные вычисления. Для тех кто имеет навык решения заданий с вписанным в окружность шестиугольником, тот сразу определит, что стороны треугольника АС и ВС «совпадают» со сторонами вписанного в окружность шестиугольника (угол шестиугольника как раз равен 1200, как и в условии задачи). А далее на основании того, что сторона вписанного в окружность шестиугольника равна радиусу этой окружности не сложно сделать вывод о том, что диаметр будет равен 2АС, то есть двум.
Подробнее о шестиугольнике посмотрите информацию в этой статье (п.5).
Ответ: 2
27931. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу с этого треугольника. В ответе укажите .
Воспользуемся формулой радиуса окружности вписанной в треугольник:
где a, b, c – стороны треугольника
S – площадь треугольника
Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна:
А площадь треугольника будет равна 0,5х2.
Значит
Таким образом, гипотенуза будет равна:
В ответе требуется записать:
Ответ: 4
27933. В треугольнике ABC АС = 4, ВС = 3, угол C равен 900. Найдите радиус вписанной окружности.
Воспользуемся формулой радиуса окружности вписанной в треугольник:
где a, b, c – стороны треугольника
S – площадь треугольника
Две стороны известны (это катеты), можем вычислить третью (гипотенузу), также можем вычислить и площадь.
По теореме Пифагора:
Найдём площадь:
Таким образом:
Ответ: 1
27934. Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.
Воспользуемся формулой радиуса окружности вписанной в треугольник:
где a, b, c – стороны треугольника
S – площадь треугольника
Известны все стороны, вычислим и площадь. Её мы можем найти по формуле Герона:
Тогда
Таким образом:
Ответ: 1,5
27624. Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника.
Посмотреть решение
27625. Площадь треугольника равна 24, а радиус вписанной окружности равен 2. Найдите периметр этого треугольника.
Посмотреть решение
27626. Площадь треугольника равна 54, а его периметр 36. Найдите радиус вписанной окружности.
Посмотреть решение
27923. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.
Посмотреть решение
27932. Катеты равнобедренного прямоугольного треугольника равны . Найдите радиус окружности, вписанной в этот треугольник.
Посмотреть решение
Небольшой итог.
Если в условии дан треугольник и вписанная или описанная окружность, и речь идёт о сторонах, площади, радиусе, то сразу вспомните об указанных формулах и пробуйте использовать их при решении. Если не получается, то тогда уже ищите другие способы решения.
На этом всё. Успеха вам!
С уважением, Александр Крутицких.
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.
Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.
Рассмотрим важные теоремы, которые помогут нам при решении задач.
Теорема 1. Вокруг любого треугольника можно описать окружность, причем только одну. Ее центр – это точка пересечения серединных перпендикуляров к сторонам треугольника.
Иногда говорят, что окружность описана около треугольника. Это означает то же самое – все вершины треугольника лежат на окружности.
Доказательство этой теоремы здесь: Свойство серединных перпендикуляров.
Теорема 2. В любой треугольник можно вписать окружность, причем только одну. Ее центром является точка пересечения биссектрис треугольника.
Доказательство теоремы здесь: Свойства биссектрис треугольника.
Теорема 3. Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы, а радиус этой окружности равен половине гипотенузы.
Доказательство:
Медиана, проведенная к гипотенузе, равна ее половине, по свойству медианы прямоугольного треугольника.
Его доказательство можно найти здесь: Свойство медианы прямоугольного треугольника.
Поэтому середина гипотенузы – это точка, равноудаленная от вершины прямого угла и от концов гипотенузы, то есть от всех вершин прямоугольного треугольника.
Теорема 4.
Центр окружности, описанной вокруг остроугольного треугольника, лежит внутри этого треугольника.
Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы.
Центр окружности, описанной вокруг тупоугольного треугольника, лежит вне этого треугольника.
Теорема 5. Радиус окружности , вписанной в прямоугольный треугольник с катетами и и гипотенузой , вычисляется по формуле:
Доказательство теоремы здесь: Радиус окружности, вписанной в прямоугольный треугольник.
В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.
Напомним определение правильного многоугольника:
Правильным называется многоугольник, все стороны и все углы которого равны. Центры вписанной и описанной окружностей правильного многоугольника находятся в одной точке.
Из этого определения, понятно, что правильный треугольник – равносторонний. Для решения такого треугольника полезно уметь выводить формулы радиусов вписанной и описанной окружностей.
Теорема 6.
Для правильного треугольника со стороной а радиус описанной окружности равен
А радиус окружности, вписанной в правильный треугольник, равен
Докажем эту теорему.
У равностороннего треугольника медианы, биссектрисы, высоты и серединные перпендикуляры совпадают, и точка их пересечения является центром как вписанной, так и описанной окружностей.
Пусть в правильном треугольнике стороны , точка О – центр вписанной и описанной окружностей, — медианы и высоты. По свойству медиан треугольника, отрезки в точке О делятся в отношении 2 : 1, считая от вершин. Тогда
Получаем, что
Из треугольника АВН получаем, что длина стороны
Тогда
Значит, формула радиуса окружности, описанной около правильного треугольника —
Формула радиуса окружности, вписанной в правильный треугольник
Как видим, часто геометрическая задача решается с помощью несложных формул, и помогает в этом алгебра.
Разберем задачи ОГЭ и ЕГЭ по теме: Вписанные и описанные треугольники.
Задача 1, тренировочная. Периметр правильного треугольника АВС равен 15. Найдите радиус вписанной и описанной окружностей.
Решение:
Длина стороны равностороннего треугольника равна
Радиусы – вписанной и – описанной окружностей можно найти по формулам:
где — сторона треугольника.
Значит,
Ответ:
Решая задачи по теме «Вписанные и описанные треугольники», мы часто пользуемся формулами площади треугольника, а также теоремой синусов.
Вот две полезные формулы для площади треугольника.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.
,
где — полупериметр,
— радиус окружности, вписанной в треугольник.
Есть и еще одна формула, применяемая в основном в задачах части :
где — стороны треугольника, — радиус описанной окружности.
Для любого треугольника верна теорема синусов:
Теорема синусов:
R — радиус описанной окружности
Задача 2, ЕГЭ. Найдите диаметр окружности, вписанной в треугольник со сторонами 13, 14 и 15.
Решение:
Выразим площадь треугольника двумя разными способами:
где – полупериметр треугольника, a – его стороны.
Тогда , а диаметр окружности равен
Ответ: 8.
Задача 3, ЕГЭ. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .
Решение:
Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .
Запишем площадь треугольника АВС двумя способами:
Приравняв эти выражения, получим, что . Поскольку , получаем, что .
Тогда .
В ответ запишем .
Ответ: 4.
Задача 4, ЕГЭ. В треугольнике сторона равна , а угол равен . Найдите радиус описанной около этого треугольника окружности.
Решение:
По теореме синусов
Тогда
Ответ: 7.
Задача 5, ЕГЭ. В треугольнике угол А равен , а угол В – . Найдите радиус окружности, описанной около треугольника , если сторона равна 10.
Решение:
Зная, что сумма углов треугольника равна , найдем угол С.
По теореме синусов
Значит,
Ответ: 10.
Задача 6, ЕГЭ. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.
По теореме синусов,
Получаем, что . Угол — тупой. Значит, он равен .
Ответ: 150.
Задача 7, ЕГЭ. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.
Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.
, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем .
Тогда .
Ответ: 25.
Задача 8, ОГЭ. В равнобедренном треугольнике основание равно 10 см, а высота, проведенная к основанию, 12 см. Найдите периметр треугольника и радиус вписанной окружности.
Решение:
Высота , проведенная к основанию , является медианой. Значит, .
находится по теореме Пифагора из треугольника :
Периметр треугольника – это сумма длин сторон, т.е.
Площадь треугольника
Радиус вписанной окружности r найдем по формуле
Ответ:
Задача 9, ОГЭ. Стороны и треугольника равны 6 и соответственно, угол . Найдите диаметр окружности, описанной около треугольника .
Решение:
Найдем длину стороны по теореме косинусов, используя длины сторон , и косинус угла В, противолежащего стороне :
Теперь воспользуемся теоремой синусов:
Значит, диаметр окружности, описанной около треугольника , равен 6.
Ответ: 6.
Задача 10. Найдите площадь прямоугольного треугольника, если радиус описанной окружности равен 5, а вписанной 1.
Решение:
Пусть длина радиуса описанной окружности , а длина радиуса вписанной окружности
Мы знаем, что , где – полупериметр, – стороны треугольника.
Значит,
Отсюда
Тогда
Ответ: 11.
Задача 11. Найдите площадь прямоугольного треугольника, если радиус вписанной окружности равен 2, а гипотенуза 10.
Решение:
Пусть радиус вписанной окружности , а гипотенуза
Мы знаем, что в прямоугольном треугольнике
Значит, отсюда
Площадь находится по формуле где – полупериметр, – стороны треугольника.
Ответ: 24.
Рассмотрим также задачу из 2 части ЕГЭ по математике.
Задача 12. Точка О – центр вписанной в треугольник окружности. Прямая вторично пересекает описанную около треугольника окружность в точке Р.
а) Докажите, что
б) Найдите площадь треугольника , если радиус окружности, описанной около треугольника равен 10,
Решение:
а) Пусть О – центр вписанной окружности, значит, и – биссектрисы углов и соответственно, и
как вписанные углы, опирающиеся на одну и ту же дугу
Тогда
– внешний угол треугольника , поэтому он равен сумме двух внутренних углов, не смежных с ним, т.е.
Значит, Что и требовалось доказать.
б) , следовательно, треугольник – равнобедренный, – основание,
Угол равен , значит,
По теореме синусов для треугольника :
Тогда отрезок равен отрезку , т.е. .
Найдем угол С из треугольника :
как вписанные углы, опирающиеся на дугу .
Площадь треугольника находится по формуле:
Ответ:
Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .
Если вам понравился наш материал — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023