Как найти асимптоты гиперболы онлайн

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} — twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{»} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • асимптоты:frac{y^2}{25}-frac{x^2}{9}=1

  • асимптоты:frac{(x+3)^2}{25}-frac{(y-4)^2}{9}=1

  • асимптоты:4x^2-9y^2-48x-72y+108=0

  • асимптоты:x^2-y^2=1

  • Показать больше

Описание

Пошаговый расчет асимптот гиперболы по заданному уравнению

hyperbola-asymptotes-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Practice Makes Perfect

    Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Асимптоты кривой

    Прямая линия называется асимптотой кривой y=f(x), если расстояние точки кривой до этой прямой стремится к нулю при стремлении точки к бесконечности.

    Назначение сервиса. Данный сервис предназначен для нахождения асимптот к графику функции в онлайн режиме. Решение оформляется в формате Word.

    • Решение онлайн
    • Видеоинструкция
    • Оформление Word

    Правила ввода функции

    Примеры

    x^2/(x+2)

    cos2(2x+π)(cos(2*x+pi))^2

    x+(x-1)^(2/3)

    Классификация асимптот

    1. Вертикальные асимптоты.
    2. Горизонтальные асимптоты.
    3. Наклонные асимптоты.

    Вертикальные асимптоты

    Уравнение любой вертикальной прямой, то есть прямой, параллельной оси OY, имеет вид x=a.

    Вертикальные асимптоты

    Если прямая x=a является вертикальной асимптотой графика функции y=f(x), то очевидно, что хотя бы один из односторонних пределов или равен бесконечности (+∞ или -∞).

    Все функции с бесконечными разрывами (разрывы второго рода) имеют вертикальные асимптоты.

    Пример 1. Найти уравнение вертикальных асимптот графика функции .

    Решение. Видим, что y→∞, если x→1, точнее , , то есть прямая x=1 является вертикальной асимптотой, причем двусторонней.

    Горизонтальные асимптоты

    Горизонтальные асимптоты

    Всякая горизонтальная прямая имеет уравнение y=A.

    Если прямая y=A является горизонтальной асимптотой кривой y=f(x), то .

    Пример 2. Найти горизонтальные асимптоты кривой .

    Решение. Найдем , то есть y→0 при x→+∞ и при x→-∞, значит прямая y=0 – горизонтальная асимптота данной кривой.

    Наклонные асимптоты

    Уравнения наклонных асимптот обычно ищут в виде y=kx+b. По определению асимптоты или (1)

    Разделим обе части этого равенства на x:
    , откуда

    (2)

    Теперь из (1):

    (3)

    Для существования наклонных асимптот необходимо существование пределов (2) и (3). Если хотя бы один из них не существует, то наклонных асимптот нет. Пределы (2) и (3) нужно находить отдельно при x→+∞ и при x→-∞, так как пределы могут быть разными (функция имеет две разные асимптоты).

    Пример 4. Найти наклонные асимптоты графика функции .

    Решение. По формуле (2) найдем .

    Теперь найдем . Получаем уравнение наклонной асимптоты y=x+1.

    Пример 5. Найти асимптоты кривой y=(x-1)2(x+3).

    Решение. Вертикальных и горизонтальных асимптот нет, так как y→∞ при x→∞. Ищем наклонные:

    .

    Таким образом, кривая асимптот не имеет.

    Пример 6. Найти асимптоты кривой .

    Решение. Поскольку y→∞ при x→0 и при x→4, то прямые x=0 и x=4 являются вертикальными асимптотами. Так как , то y=2 – горизонтальная асимптота. Выясним вопрос о существовании наклонных асимптот: , следовательно, кривая наклонных асимптот не имеет (искать “b” не имеет смысла, так как горизонтальные асимптоты уже найдены).

    Пример 7. Построить все виды асимптот к функции

    Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:



    Находим коэффициент k:



    Находим коэффициент b:



    Получаем уравнение наклонной асимптоты: y = -x

    Найдем вертикальные асимптоты. Для этого определим точки разрыва:





    Находим переделы в точке





    — является вертикальной асимптотой.

    Находим переделы в точке





    — является вертикальной асимптотой.

    Данный калькулятор предназначен для нахождения асимптот графика функции онлайн, вычислит вертикальные, горизонтальные и наклонные асимптоты.

    Асимптота – это прямая, к которой бесконечно близко приближается график функции, и график при этом бесконечно удаляется от начала координат. Знание уравнения асимптоты функции может быть полезно при анализе функции и построении ее графика.
    В зависимости от поведения аргумента асимптоты разделяются на вертикальные, горизонтальные и наклонные. Вертикальная асимптота – это вертикальная линия вида x=α, если .

    Точки разрыва функции и границы области определения являются основанием для нахождения вертикальных асимптот. Горизонтальная асимптота – горизонтальная прямая линия вида x=α, если . Наклонная асимптота – прямая вида y=kx+b; для существования наклонных асимптот, необходимо одновременное существование пределов .
    Преимуществом онлайн калькулятора является то, что нет необходимости знать, как находить асимптоты графика функции. Достаточно только ввести функцию в ячейку. Основные примеры ввода функций для данного калькулятора указаны ниже.

    Для получения полного хода решения нажимаем в ответе Step-by-step.

    ×

    Пожалуйста напишите с чем связна такая низкая оценка:

    ×

    Для установки калькулятора на iPhone — просто добавьте страницу
    «На главный экран»

    Для установки калькулятора на Android — просто добавьте страницу
    «На главный экран»

    Калькуляторы для нахождения асимптот функции онлайн

    Асимптотой называется прямая к которой неограниченно приближается функция при её удалении от начала координат. Нахождение асимптот является одним из этапов исследования функции при построении её графика. Асимтоты бывают трех видов: горизонтальные, вертикальные и наклонные.

    • Асимптоты к графику функции

      1. Калькулятор горизонтальных асимптот
      2. Калькулятор вертикальных асимптот
      3. Калькулятор наклонных асимптот


    Исследование функции по-шагам

    Примеры исследуемых функций

    • График логарифмической функции
    • y = log(x)/x
    • График показательной функции
    • y = 2^x - 3^x
    • График степенной функции
    • f(x) = x^5 - x^4 + x^2 - x + 1
    • График гиперболы
    • f(x) = (x - 1)/(x + 1)
    • y = 1/x
    • График квадратичной функции
    • x^2 - x + 5
    • График тригонометрической функции
    • sin(x) - 2*cos(x) + 3*sin(2*x)
    • Функция Гомпертца
    • e/2*e^(-e^-x)
    • e^(-e^-x)
    • -1/2*e^(-e^-x)
    • e^(-1/4*e^(-x))
    • e^(-e^(-2*x))
    • Логистическая кривая
    • 1/(1 + exp(-x))

    Что исследует?

    • Область определения функции. Умеет определять только точки, в которых знаменатель функции обращается в нуль
    • Умеет определять точки пересечения графика функции с осями координат
    • Экстремумы функции: интервалы (отрезки) возрастания и убывания функции, а также локальные (или относительные) и глобальные (или абсолютные) минимумы и максимумы функции
    • Точки перегибов графика функции: перегибы: интервалы выпуклости, вогнутости (впуклости)
    • Вертикальные асимптоты: область определения функции, точки, где знаменатель функции обращается в нуль
    • Горизонтальные асимптоты графика функции
    • Наклонные асимптоты графика функции
    • Четность и нечетность функции

    Подробнее про Исследование функции.

    Указанные выше примеры содержат также:

    • модуль или абсолютное значение: absolute(x) или |x|
    • квадратные корни sqrt(x),
      кубические корни cbrt(x)
    • тригонометрические функции:
      синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
    • показательные функции и экспоненты exp(x)
    • обратные тригонометрические функции:
      арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
      арккотангенс acot(x)
    • натуральные логарифмы ln(x),
      десятичные логарифмы log(x)
    • гиперболические функции:
      гиперболический синус sh(x), гиперболический косинус ch(x),
      гиперболический тангенс и котангенс tanh(x), ctanh(x)
    • обратные гиперболические функции:
      гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
      гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
    • другие тригонометрические и гиперболические функции:
      секанс sec(x), косеканс csc(x), арксеканс asec(x),
      арккосеканс acsc(x), гиперболический секанс sech(x),
      гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
      гиперболический арккосеканс acsch(x)
    • функции округления:
      в меньшую сторону floor(x), в большую сторону ceiling(x)
    • знак числа:
      sign(x)
    • для теории вероятности:
      функция ошибок erf(x) (интеграл вероятности),
      функция Лапласа laplace(x)
    • Факториал от x:
      x! или factorial(x)
    • Гамма-функция gamma(x)
    • Функция Ламберта LambertW(x)
    • Тригонометрические интегралы: Si(x),
      Ci(x),
      Shi(x),
      Chi(x)

    Правила ввода

    Можно делать следующие операции

    2*x
    — умножение
    3/x
    — деление
    x^2
    — возведение в квадрат
    x^3
    — возведение в куб
    x^5
    — возведение в степень
    x + 7
    — сложение
    x — 6
    — вычитание
    Действительные числа
    вводить в виде 7.5, не 7,5

    Постоянные

    pi
    — число Пи
    e
    — основание натурального логарифма
    i
    — комплексное число
    oo
    — символ бесконечности

    Like this post? Please share to your friends:
  • Как найти айфон любимого
  • Как найти периметр ломаного прямоугольника 5 класс
  • Что делать если один глаз открыт больше чем другой как исправить
  • Как найти лицевой счет капремонта по адресу
  • Как составить план дипломной работы образец по юриспруденции