From Wikipedia, the free encyclopedia
The astronomical system of units, formerly called the IAU (1976) System of Astronomical Constants, is a system of measurement developed for use in astronomy. It was adopted by the International Astronomical Union (IAU) in 1976 via Resolution No. 1,[1] and has been significantly updated in 1994 and 2009 (see astronomical constant).
The system was developed because of the difficulties in measuring and expressing astronomical data in International System of Units (SI units). In particular, there is a huge quantity of very precise data relating to the positions of objects within the Solar System which cannot conveniently be expressed or processed in SI units. Through a number of modifications, the astronomical system of units now explicitly recognizes the consequences of general relativity, which is a necessary addition to the International System of Units in order to accurately treat astronomical data.
The astronomical system of units is a tridimensional system, in that it defines units of length, mass and time. The associated astronomical constants also fix the different frames of reference that are needed to report observations.[2] The system is a conventional system, in that neither the unit of length nor the unit of mass are true physical constants, and there are at least three different measures of time.
Astronomical unit of time[edit]
Main article: Day
The astronomical unit of time is the day, defined as 86400 seconds. 365.25 days make up one Julian year.[1] The symbol D is used in astronomy to refer to this unit.
Astronomical unit of mass[edit]
The astronomical unit of mass is the solar mass.[1] The symbol M☉ is often used to refer to this unit.
The solar mass (M☉), 1.98892×1030 kg, is a standard way to express mass in astronomy, used to describe the masses of other stars and galaxies. It is equal to the mass of the Sun, about 333000 times the mass of the Earth or 1 048 times the mass of Jupiter.
In practice, the masses of celestial bodies appear in the dynamics of the Solar System only through the products GM, where G is the constant of gravitation. In the past, GM of the Sun could be determined experimentally with only limited accuracy. Its present accepted value is GM☉ = 1.32712442099(10)×1020 m3⋅s−2.[3]
Jupiter mass[edit]
Jupiter mass (MJ or MJUP), is the unit of mass equal to the total mass of the planet Jupiter, 1.898×1027 kg. Jupiter mass is used to describe masses of the gas giants, such as the outer planets and extrasolar planets. It is also used in describing brown dwarfs and Neptune-mass planets.
Earth mass[edit]
Earth mass (MEarth) is the unit of mass equal to that of the Earth. 1 MEarth = 5.9742×1024 kg. Earth mass is often used to describe masses of rocky terrestrial planets. It is also used to describe Neptune-mass planets. One Earth mass is 0.00315 times a Jupiter mass.
Solar mass | |
---|---|
Solar mass | 1 |
Jupiter masses | 1048 |
Earth masses | 332950 |
Astronomical unit of length[edit]
The astronomical unit of length is now defined as exactly 149 597 870 700 meters.[4] It is approximately equal to the mean Earth–Sun distance. It was formerly defined as that length for which the Gaussian gravitational constant (k) takes the value 0.01720209895 when the units of measurement are the astronomical units of length, mass and time.[1] The dimensions of k2 are those of the constant of gravitation (G), i.e., L3M−1T−2. The term “unit distance” is also used for the length A while, in general usage, it is usually referred to simply as the “astronomical unit”, symbol au.
An equivalent formulation of the old definition of the astronomical unit is the radius of an unperturbed circular Newtonian orbit about the Sun of a particle having infinitesimal mass, moving with a mean motion of 0.01720209895 radians per day.[5]
The speed of light in IAU is the defined value c0 = 299792458 m/s of the SI units. In terms of this speed, the old definition of the astronomical unit of length had the accepted value:[3] 1 au = c0τA = (149597870700±3) m, where τA is the transit time of light across the astronomical unit. The astronomical unit of length was determined by the condition that the measured data in the ephemeris match observations, and that in turn decides the transit time τA.
Other units for astronomical distances[edit]
Astronomical range | Typical units |
---|---|
Distances to satellites | kilometres |
Distances to near-Earth objects | lunar distance |
Planetary distances | astronomical units, gigametres |
Distances to nearby stars | parsecs, light-years |
Distances at the galactic scale | kiloparsecs |
Distances to nearby galaxies | megaparsecs |
The distances to distant galaxies are typically not quoted in distance units at all, but rather in terms of redshift. The reasons for this are that converting redshift to distance requires knowledge of the Hubble constant, which was not accurately measured until the early 21st century, and that at cosmological distances, the curvature of spacetime allows one to come up with multiple definitions for distance. For example, the distance as defined by the amount of time it takes for a light beam to travel to an observer is different from the distance as defined by the apparent size of an object.
See also[edit]
- Astronomical constant
- Standard gravitational parameter
- Planetary mass
- Natural units
References[edit]
- ^ a b c d IAU Commission 4 (Ephemerides), Recommendations [to the XVIth General Assembly, Grenoble, France, 1976] (PDF), IAU,
It is recommended that the following list of constants shall be adopted as the ‘IAU (1976) System of Astronomical Constants’.
- ^
In particular, there is the barycentric celestial reference system (BCRS) centered at the barycenter of the Solar System, and the geocentric celestial reference system (GCRS) centered at the center of mass of the Earth (including its fluid envelopes) Dennis D. McCarthy, P. Kenneth Seidelmann (2009). «Resolution B1.3: Definition of the barycentric celestial reference system and geocentric celestial reference system XXIVth International Astronomical Union General Assembly (2000)«. Time: from Earth rotation to atomic physics. Wiley-VCH. p. 105. ISBN 978-3-527-40780-4.
- ^ a b
Gérard Petit and Brian Luzum, ed. (2010). «Table 1.1: IERS numerical standards» (PDF). IERS technical note no. 36: General definitions and numerical standards. International Earth Rotation and Reference Systems Service. For complete document see Gérard Petit and Brian Luzum, ed. (2010). IERS Conventions (2010): IERS technical note no. 36. International Earth Rotation and Reference Systems Service. ISBN 978-3-89888-989-6. - ^ International Astronomical Union, ed. (31 August 2012), «RESOLUTION B2 on the re-definition of the astronomical unit of length» (PDF), RESOLUTION B2, Beijing, China: International Astronomical Union,
The XXVIII General Assembly of International Astronomical Union … recommends … 1. that the astronomical unit be re-defined to be a conventional unit of length equal to 149 597 870 700 m exactly
- ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 126, ISBN 92-822-2213-6, archived (PDF) from the original on 2021-06-04, retrieved 2021-12-16.
External links[edit]
- The IAU and astronomical units
- «2014 Selected Astronomical Constants» in The Astronomical Almanac Online, USNO–UKHO.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 августа 2016;
проверки требуют 5 правок.
Астрономи́ческая едини́ца (русское обозначение: а.е.[1]; международное: au) — исторически сложившаяся единица измерения расстояний в астрономии, приблизительно равная среднему расстоянию от Земли до Солнца.
Свет проходит это расстояние примерно за 500 секунд (8 минут 20 секунд).
Применяется в основном для измерения расстояний между объектами Солнечной системы, внесолнечных систем, а также между компонентами двойных звёзд.
В сентябре 2012 года 28-я Генеральная ассамблея Международного астрономического союза в Пекине приняла решение привязать астрономическую единицу к Международной системе единиц (СИ). Астрономическая единица по определению равна в точности 149 597 870 700 метрам[2][3]. Кроме того, МАС принял решение стандартизовать международное обозначение астрономической единицы: «au»[4]. Иногда применяются также обозначения «a. u.» или «AU». Существует также международный стандарт ISO 80000-3 (англ.)русск., который рекомендует применять обозначение «ua».
В Российской Федерации астрономическая единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «астрономия»[5]. В соответствии с ГОСТ 8.417—2002, наименование и обозначение астрономической единицы не допускается применять с дольными и кратными приставками СИ[1]. Пробела между «а.» и «е.» нет.
Предыдущие определения[править | править вики-текст]
В соответствии с решением 10-й генеральной Ассамблеи МАС 1976 года астрономическая единица была определена как радиус круговой орбиты пробного тела в изотропных координатах, угловая скорость обращения по которой, при пренебрежении всеми телами Солнечной системы кроме Солнца, была бы точно равна 0,017 202 098 95 радиан в эфемеридные сутки[6][7][8]. В системе постоянных IERS 2003 астрономическая единица полагалась равной 149 597 870 691 м.[9]
История[править | править вики-текст]
Со времён появления гелиоцентрической системы, а особенно кеплеровской небесной механики, относительные расстояния в Солнечной системе (исключая слишком близкую Луну) стали известны с хорошей точностью. Поскольку Солнце является центральным телом системы, а обращающаяся по почти круговой орбите Земля — местоположением наблюдателей, естественно было принять радиус этой орбиты за единицу измерения. Однако не существовало способа надёжно измерить величину этой единицы, то есть сравнить её с земными масштабами. Солнце находится слишком далеко, чтобы с Земли надёжно измерить параллакс. Расстояние до Луны было известно, но исходя из известных в XVII веке данных оценить отношение расстояний до Солнца и Луны не удавалось — наблюдение Луны не даёт требуемой точности, а отношение масс Земли и Солнца также не было известно.
В 1672 году Джованни Кассини совместно со своим сотрудником Жаном Рише измерили параллакс Марса. Поскольку параметры орбиты Земли и Марса были измерены с высокой точностью, появилась возможность оценить величину астрономической единицы — в современных единицах у них получилось примерно 140 млн км[10]. Впоследствии проводились уточнённые измерения астрономической единицы при помощи прохождений Венеры по солнечному диску. Сближение астероида Эрос с Землёй в 1901 году и измерение его параллакса позволили получить ещё более точную оценку[источник не указан 1798 дней].
Астрономическая единица также уточнялась с помощью радиолокации планет. Локацией Венеры в 1961 году установлено, что астрономическая единица равна 149 599 300 км. Возможная ошибка не превышала 2000 км. Повторная радиолокация Венеры в 1962 году позволила уменьшить эту неопределенность и уточнить значение астрономической единицы: оно оказалось равным 149 598 100±750 км. Выяснилось, что до локации 1961 года величина а.е. была известна с точностью 0,1 %[источник не указан 1798 дней].
Многолетние измерения расстояния от Земли до Солнца зафиксировали его медленное увеличение со скоростью около 15 метров за сто лет (что на порядок превышает точность современных измерений). Одной из причин может быть потеря Солнцем массы (вследствие солнечного ветра), однако наблюдаемый эффект значительно превышает расчётные значения[11] [12].
Некоторые расстояния[править | править вики-текст]
- Радиус орбиты Нептуна, самой далекой планеты Солнечной системы — около 30 а.е.
- По состоянию на 23 апреля 2016 года, космический аппарат «Вояджер-1» находился на расстоянии 134.75 а.е. от Солнца[13][14], удаляясь от него со скоростью 3,6 а. е./год. Это самый удалённый от Земли и самый быстро движущийся объект, созданный человеком.
- Расстояние до ближайшей к нам звезды, Проксимы Центавра — около 270 000 а.е.
См. также[править | править вики-текст]
- Парсек
- Световой год
- Постоянная Гаусса
Примечания[править | править вики-текст]
- ↑ 1 2 ГОСТ 8.417—2002. Государственная система обеспечения единства измерений. Единицы величин.
- ↑ XXVIII IAU GA RESOLUTION B2 on the re-definition of the astronomical unit of length.
- ↑ Астрономическую единицу изменили; CNews.ru: 17 сентября 2012
- ↑ International Astronomical Union, ed. (31 August 2012), «RESOLUTION B2 on the re-definition of the astronomical unit of length», RESOLUTION B2, Beijing, China: International Astronomical Union
- ↑ Положение о единицах величин, допускаемых к применению в Российской Федерации Утверждено Постановлением Правительства РФ от 31 октября 2009 г. № 879.
- ↑ Resolution No. 10 of the XVIth General Assembly of the International Astronomical Union, Grenoble, 1976
- ↑ H. Hussmann, F. Sohl, J. Oberst (2009), «§4.2.2.1.3: Astronomical units», in Joachim E Trümper, Astronomy, astrophysics, and cosmology. Volume VI/4B Solar System’, Springer, с. 4, ISBN 3540880542, <http://books.google.com/?id=wgydrPWl6XkC&pg=RA1-PA4>
- ↑ Gareth V Williams (1997), «Astronomical unit», in James H. Shirley, Rhodes Whitmore Fairbridge, Encyclopedia of planetary sciences, Springer, с. 48, ISBN 0412069512, <http://books.google.com/books?id=dw2GadaPkYcC&pg=PA48>
- ↑ IERS Conventions (2003)
- ↑ Еремеева А. И., Цицин Ф. А. История астрономии. — М.: Изд-во МГУ, 1989. — С. 316.
- ↑ Krasinsky, G.A. and Brumberg, V.A. Secular increase of astronomical unit from analysis of the major planet motions, and its interpretation (англ.) // Celestial Mechanics and Dynamical Astronomy. — Kluwer Academic Publishers. — Vol. 90, № 3-4. — P. 267—288. — ISSN 0923-2958. — DOI:10.1007/s10569-004-0633-z.
- ↑ Lorenzo Iorio Secular increase of the astronomical unit and perihelion precessions as tests of the Dvali–Gabadadze–Porrati multi-dimensional braneworld scenario (англ.) // Journal of Cosmology and Astroparticle Physics. — 2005. — Vol. 2005, no. 09. — P. 006. — DOI:10.1088/1475-7516/2005/09/006. — arXiv:gr-qc/0508047.
- ↑ Voyager — News (англ.). НАСА/JPL. Проверено 22 марта 2011. Архивировано из первоисточника 23 августа 2011.
- ↑ Where are the Voyagers — NASA Voyager
Солнце – первый космических объект, который заинтересовал человечество. А расстояние до него стало первым, которое люди захотели узнать и измерить. Сегодня, с помощью современных технологий, мы легко можем представить масштабы Солнечной системы и где именно находится Земля от Солнца. Именно поэтому, расстояние до других планет и объектов удобней всего сравнивать именно с расстоянием от Земли до Солнца – так появилась астрономическая единица.
Оглавление
- 1 Что такое астрономическая единица и почему она используется
- 2 Общепринятая астрономическая единица, как единица измерения
- 3 Как используют астрономическую единицу
- 4 Перевод астрономической единицы в другие единицы измерения
Что такое астрономическая единица и почему она используется
Астрономическую единицу ввели в 2012 году. Обозначается астрономическая единица – а.е. или АЕ для русскоязычных источников. Для иностранных принято обозначение «UA» — astronomical unit. Возможно написание как строчных букв, так и через точки.
Если для Вас освоение космоса только начинается, то эта величина первая с которой необходимо познакомится. Ведь изучать космос надо начинать именно с Солнечной системы.
Астрономическая единица равна среднему расстоянию от Земли до Солнца. Или, если рассматривать эллипсовидную орбиту Земли, то большой полуоси эллипса.
Астрономическая единица удобно тем, что ее можно относительно наглядно представить. Например, расстояние до Альфы Центавра составляет 4,36 световых года. Такое расстояние сложно представить. Но если перевести его в астрономические единицы, то получается, что до ближайшей звезды 270 тысяч а.е. Такое расстояние уже можно вообразить и понять, что оно невероятно велико.
Общепринятая астрономическая единица, как единица измерения
Первым, кому удалось измерить расстояние от Земли до Солнца с максимальной точностью для своего времен стал Джованни Кассини. Он получил значение равное 140 000 000 километров. Но эта цифра продолжала уточнятся с развитием новых технологий и методов измерений.
Но есть в этом измерении и определенные неудобства: сложно привязать единицу длины к расстоянию, которое претерпевает изменения: расстояние между Землей и Солнцем увеличивается на 1 метр каждые 7 лет. За 100 лет расстояние увеличится на 15 метров, следовательно, увеличится и астрономическая единица. Конечно, в масштабах Вселенной 15 метров – это капля в море, но с точки зрения точной науки – это создает некоторые неудобства.
Как используют астрономическую единицу
Астрономическая единица официально внесена в систему СИ и может быть использована при измерении расстояний до любых объектов. Но дальше Солнечной системы ею пользоваться неудобно – получаются слишком большие численные значения. Для определения расстояний до объектов за пределами Солнечной системы удобно использовать световой год или парсек.
К астрономической единице не применяются приставки на уменьшение или увеличение (кило-, нано-, мини- и т.п.).
Не существует астрономической единицы Солнца, так как Солнце выступает центральным объектом в вычисление а.е. и именно от Солнца ее и вычисляют.
В астрономических единицах удобно рассматривать расстояния в звездных системах, где находят экзопланеты или расстояние между кратными звездами, так как тогда легче сравнить системы с Солнечной.
Перевод астрономической единицы в другие единицы измерения
Если переводить а.е. в световые года, то получается, что 1 световой год равен 63241,0771 а.е. или 1 а.е. равна ( 1,58125*10^{-5} ) св. лет.
Астрономические единицы применимы только в масштабах Солнечной системы. Пользоваться ими на бОльших расстояниях – совершенно неудобно.
Как далеко находится Земля от Солнца?
22 окт, 14:14, 2017
-
События
Солнце находится в центре Солнечной системы. Все тела Солнечной системы вращаются вокруг него на различных расстояниях. Меркурий, ближайшая планета к Солнцу, подходит к звезде на расстояние 47 млн км. Объекты в Облаке Оорта, ледяной оболочке Солнечной системы, удалены от звезды на 15 трлн км.
Земля вращается вокруг Солнца на расстоянии в 100 тысяч раз ближе, чем облако Оорта. Среднее расстояние между нашей планетой и звездой — 149 597 870 700 метров. Это расстояние называется астрономической единицей, которая используется, чтобы измерять расстояния по всей Солнечной системе.
© NASA
Юпитер, например, находится на расстоянии 5,2 астрономической единицы от Солнца, Нептун — 30,07 а.е. Расстояние до ближайшей к нам звезды, Проксимы Центавра, — около 268 770 а.е. Однако чтобы измерять более длинные расстояния, астрономы используют световые года, или расстояние, которое свет проходит за один земной год, равное 63 239 а.е. Проксима Центавры находится в 4,25 световых года от нас.
Астрономическая единица — среднее расстояния от Земли до Солнца. Земля делает полный оборот вокруг Солнца за 365,25 дня — один год. Однако орбита Земли — не идеальный круг; она имеет форму овала, или эллипса. В течение года Земля иногда приближается ближе к Солнцу, а иногда удаляется от него. Перигелий — точка максимального приближения Земли к Солнцу — наступает в начале января и находится на расстоянии 146 млн км от Солнца, чуть менее 1 а.е. Самая дальняя точка называется афелием. Он происходит в начале июля, когда Земля находится в 152 млн км от солнца, что немного больше 1 а.е.
Первым начал измерять расстояние до Солнца греческий астроном Аристарх примерно в 250 году до н.э. Он использовал фазы Луны, чтобы измерить размеры Земли и Луны и расстояния до них. Во время полумесяца три небесных тела формируют прямой угол. Измеряя угол между Солнцем и Луной с Земли, он решил, что Солнце находится в 19 раз дальше от планеты, чем Луна, и в 19 раз ее больше. На самом деле, Солнце в 400 раз больше Луны.
Хотя его измерения были неточны, Аристарх пришел к правильному выводу — Земля вращается вокруг Солнца.
В 1653 году астроном Христиан Гюйгенс подсчитал расстояние от Земли до Солнца. Он использовал фазы Венеры, чтобы вычислить углы треугольника Венера-Земля-Солнце. Но так как метод Гюйгенса был частично основан на догадках и не был полностью научным, его посчитали недостоверным.
В 1672 году Джованни Кассини использовал метод параллакса, или угловой разности, чтобы высчитать расстояние до Марса, и одновременно вычислил расстояние до Солнца.
С появлением космических аппаратов и радаров стали доступны более точные методы изменения расстояния между Землей и Солнцем. Первым определением астрономической единицы было «радиус невозмущенной круговой ньютоновской орбиты относительно Солнца частицы, имеющей бесконечно малую массу, движущуюся со средней скоростью 0,01720209895 радианов в день (известная как постоянная Гаусса)».
Но это определение было сложным для астрономов, так как расходилось с общей относительностью. Если его использовать, значение а.е. будет постоянно меняться в зависимости от расположения наблюдателя в Солнечной системе. Если бы наблюдатель на Юпитере использовав бы старое определение, чтобы подсчитать расстояние между Землей и Солнцем, измерения отличались бы от сделанных на Земле на 1000 метров.
Более того, постоянная Гаусса зависит от массы Солнца, и так как Солнце теряет массу, выделяя энергию, вместе с этим меняется значение астрономической единицы.
Международный астрономический союз проголосовал в августе 2012 году за изменение определения астрономической единицы на традиционное число:149 597 870 700 метров. Измерение основывается на скорости света, фиксированного расстояния, которое не имеет ничего общего с массой Солнца. Метр определяется как расстояние, которое проходит свет в вакууме за 1/299792458 секунды.
Больше интересного в «Телеграме»
Читайте нас в «Дзене»
Читайте также
Какого размера наша Солнечная система и где она кончается?
Как измерить расстояние до планеты?
В прошлом единственным методом измерения космических расстояний был метод горизонтального параллакса. Хотя этот метод достаточно точен и до сих пор применяется при расчете расстояния до очень далеких космических объектов, для измерения расстояний до планет-соседей по Солнечной системе, с середины 20-го века применяется более простой и ещё более точный способ – метод радиолокации.
В основе методики космической радиолокации лежит идея заимствованная у самой природы: достаточно просто найти на небесной сфере нужный объект (например, планету Венера), “прицелится” в неё и затем “выстрелить” радиоволнами сверхкороткого диапазона. Теперь нам остается только дождаться когда сигнал достигнет поверхности Венеры, отразится от неё и устремится обратно.
Скорость распространения радиоволн точно известна, а время между посылкой волн и их приемом также может быть измерено очень точно. Расстояние, покрытое радиоволнами за время путешествия туда и обратно, а следовательно, и расстояние до Венеры в заданный момент можно определить с несравненно большей точностью, чем методом параллаксов.
Начиная с 1961 г. года этот способ измерения близких космических расстояний стал основным. С помощью полученных данных было вычислено, что среднее расстояние от Земли до Солнца составляет 149 573 000 км.
Радиотелескопы без перерыва «сканируют» космос и ловят «эхо» своих сигналов отраженное от космических объектов
Световая секунда, световой год и другие космические единицы измерения
Используя кеплеровскую схему строения солнечной системы (Солнце в центре, планеты вращаются вокруг него), удобнее всего рассчитывать расстояния в пределах солнечной системы не от Земли, а от центра, то есть от Солнца. Но вот в каких единицах его отсчитывать?
- Во-первых, его можно выражать в миллионах километров. Километр — это наиболее распространенная единица для измерения больших расстояний.
- Во-вторых, чтобы избежать таких чисел, как миллионы километров, можно принять, что среднее расстояние от Земли до Солнца равно одной астрономической единице (сокращенно «а, е.») Тогда можно будет выражать расстояния в а, е., причем 1 а е. равна 149 500 000 км. С вполне достаточной точностью можно считать, что 1 а, е. равна 150 000 000 км.
- В-третьих, расстояние можно выразить через время, которое потребуется для того, чтобы его преодолел свет (или любое аналогичное излучение, например радиоволны). Скорость света в пустоте равна 299 776 км/сек. Число это можно для удобства округлить до 300 000 км/сек.
Таким образом, расстояние примерно в 300 000 км можно считать равным одной световой секунде (ибо это расстояние, преодолеваемое светом за одну секунду). Расстояние, в 60 раз большее, или 18 000 000 км, — это одна световая минута, а расстояние, еще в 60 раз большее, т.е. 1 080 000 000 км, — это один световой час.
Мы не слишком ошибемся, если будем считать, что световой час равен одному миллиарду километров.
Запомнив это, рассмотрим те планеты, которые были известны древним, и приведем таблицу их средних расстояний от Солнца, выраженных в каждой из трех указанных единиц.
Планеты | Среднее расстояние от Солнца | ||
миллионов км | астрономических единиц | световых часов | |
Меркурий | 57,9 | 0,387 | 0,0535 |
Венера | 108,2 | 0,723 | 0,102 |
Земля | 149,5 | 1,000 | 0,137 |
Марс | 227,9 | 1.524 | 0,211 |
Юпитер | 778,3 | 5,203 | 0,722 |
Сатурн | 1428,0 | 9,539 | 1,321 |
Уильям Гершель – в свое время раздвинул горизонты познания, открыв Уран и буквально удвоив границы Солнечной системы
Размеры Солнечной системы
В 17-м веке, когда был открыт Сатурн, астрономы считали его орбиту “границей” Солнечной системы, соответственно вся “система” умещалась в круг диаметром 3 миллиардов км.
Однако в 1781 г., когда английский астроном, немец по происхождению, Уильям Гершель (1738—1822) открыл планету Уран, диаметр Солнечной системы внезапно… удвоился!
А потом снова удвоился, когда сначала французский астроном Урбан Жозсф Леверье (1811 — 1877) открыл в 1846 г. Нептун, затем американский астроном Клайд Уильям Томбо (род. в 1906 г.) — Плутон в 1930 г.
Планеты | Среднее расстояние от Солнца | ||
миллионов км | астрономических единиц | световых часов | |
Уран | 2872 | 19,182 | 2,63 |
Нептун | 4498 | 30,058 | 4,26 |
Плутон | 5910 | 39,518 | 5,47 |
Если мы рассмотрим орбиту Плутона, как ранее орбиту Сатурна, то увидим, что диаметр солнечной системы равен не 3, а 12 миллиардам километров. Лучу света, который преодолевает расстояние, равное окружности Земли, за 1/7 сек и пробегает от Земли до Луны за 1 1/4 сек, понадобится полдня для того, чтобы пересечь солнечную систему.
Кроме того, есть все основания считать, что вовсе не орбита Плутона отмечает границу владений Солнца. Это не значит, что мы должны предполагать существование еще не открытых более далеких планет (за исключением карликовых планет). Имеются уже известные небесные тела, которые время от времени очень легко увидеть и которые, без сомнения, уходят от Солнца гораздо дальше, чем Плутон на самой удаленной точке своей орбиты.
Где находятся границы Солнечной системы
В 1684 г. английский ученый Исаак Ньютон (1642—1727) открыл закон всемирного тяготения. Этот закон строго математически обосновал кеплеровскую схему строения солнечной системы и позволил вычислить орбиту тела, обращающегося вокруг Солнца, даже если тело наблюдалось лишь на части своей орбиты.
Это в свою очередь дало возможность приняться за кометы — небесные тела, которые время от времени появлялись на небе. В древности и в эпоху Средневековья астрономы считали, что кометы появляются без всякой правильности и что движение их не подчинено никаким естественным законам, широкие же массы были убеждены, что единственное назначение комет — предвещать несчастье.
Однако современник и друг Ньютона, английский ученый Эдмунд Галлей (1656—1742) попробовал применить к кометам закон тяготения. Он заметил, что некоторые особенно яркие кометы появлялись в небе через каждые 75—76 лет.
И вот в 1704 г. он предположил, что все эти кометы на самом деле были одним и тем же небесным телом, которое двигалось вокруг Солнца по постоянной эллиптической орбите, причем орбите настолько вытянутой, что значительная ее часть лежала на колоссальном расстоянии от Земли. Когда комета находилась вдали от Земли, она была невидима.
Но через каждые 75 или 76 лет она оказывалась на той части своей орбиты, которая расположена ближе всего к Солнцу (и к Земле), и вот тогда-то она становилась видимой.
Попытка запечатлеть реальные размеры и расстояния планет Солнечной системы от Солнца и друг от друга
Галлей вычислил орбиту этой кометы и предсказал, что она вновь вернется в 1758 г. И действительно, комета появилась в тот год (через 16 лет после смерти Галлея) и с тех пор получила название кометы Галлея.
В ближайшей к Солнцу точке своей орбиты комета Галлея оказывается от него всего лишь примерно в 90 000 000 км, заходя таким образом немного внутрь орбиты Венеры В наиболее же удаленной от Солнца части своей орбиты комета Галлея уходит от него приблизительно в 3 1/2 раза дальше, чем Сатурн.
Таким образом, к 1760 г. астрономы прекрасно знали, что солнечная система не очерчена орбитой “последней” планеты.
Более того, комета Галлея — одна из комет, относительно близких к Солнцу. Существуют кометы, которые движутся вокруг него по таким невероятно вытянутым орбитам, что возвращаются к нему только раз в несколько столетий, а то и тысячелетий. Они уходят от Солнца не на миллиарды километров, а скорее всего на сотни миллиардов.
Голландский астроном Ян Хендрик Оорт (род. в 1900 г) в 1950 г. высказал предположение, что, возможно, существует целое огромное облако комет (известное как “Облако Оорта”), которые на протяжении всей своей орбиты находятся так далеко от Солнца, что никогда не бывают видимы.
Отсюда следует, что максимальный диаметр солнечной системы может достигать 1000 миллиардов, т. е триллиона (1 000 000 000 000) километров или даже больше. Световому лучу требуется 40 суток, чтобы покрыть такое расстояние. Таким образом, можно сказать, что диаметр солнечной системы превосходит один световой месяц.